Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Targeting Mitochondria for the Prevention and Treatment of Nonalcoholic Fatty Liver Disease: Polyphenols as a Non-pharmacological Approach

Author(s): Jaime Zapata, Mauricio Castro-Sepulveda, Sandra Soto-Alarcon, Daniela Alvarez, Andres Bustamante, Guiselle Villarroel, Arturo Gallardo, Diego Fernando Garcia-Diaz, Rodrigo Valenzuela and Francisca Echeverria*

Volume 30, Issue 26, 2023

Published on: 08 November, 2022

Page: [2977 - 2995] Pages: 19

DOI: 10.2174/0929867329666221007115809

Price: $65

Abstract

Scope: Nonalcoholic fatty liver disease (NAFLD) has a high and growing prevalence globally. Mitochondria are fundamental in regulating cell energy homeostasis. Nevertheless, mitochondria control mechanisms can be exceeded in this context of energy overload. Damaged mitochondria worsen NAFLD progression. Diet and lifestyle changes are the main recommendations for NAFLD prevention and treatment. Some polyphenols have improved mitochondrial function in different NAFLD and obesity models.

Objective: The study aims to discuss the potential role of polyphenols as a nonpharmacological approach targeting mitochondria to prevent and treat NAFLD, analyzing the influence of polyphenols' chemical structure, limitations and clinical projections.

Methods: In vivo and in vitro NAFLD models were considered. Study searches were performed using the following keywords: nonalcoholic fatty liver disease, liver steatosis, mitochondria, mitochondrial activity, mitochondrial dynamics, mitochondrial dysfunction, mitochondrial morphology, mitochondrial cristae, fusion, fission, polyphenols, flavonoids, anthocyanins, AND/OR bioactive compounds.

Conclusion: Polyphenols are a group of diverse bioactive molecules whose bioactive effects are highly determined by their chemical structure. These bioactive compounds could offer an interesting non-pharmacological approach to preventing and treating NAFLD, regulating mitochondrial dynamics and function. Nevertheless, the mitochondria' role in subjects with NAFLD treatment is not fully elucidated. The dosage and bioavailability of these compounds should be addressed when studied.

[1]
Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes via systematic review and meta-analysis. J. Hepatol., 2019, 71(4), 793-801.
[http://dx.doi.org/10.1016/j.jhep.2019.06.021] [PMID: 31279902]
[2]
Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016, 64(1), 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[3]
Jarvis, H.; Craig, D.; Barker, R.; Spiers, G.; Stow, D.; Anstee, Q.M.; Hanratty, B. Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of population-based observational studies. PLoS Med., 2020, 17(4), e1003100.
[http://dx.doi.org/10.1371/journal.pmed.1003100] [PMID: 32353039]
[4]
Asrih, M.; Jornayvaz, F.R. Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link? Mol. Cell. Endocrinol., 2015, 418(pt 1), 55-65.
[http://dx.doi.org/10.1016/j.mce.2015.02.018]
[5]
Yang, M.; Geng, C.A.; Liu, X.; Guan, M. Lipid disorders in NAFLD and chronic kidney disease. Biomedicines, 2021, 9(10), 1405.
[http://dx.doi.org/10.3390/biomedicines9101405]
[6]
Ota, T. Molecular mechanisms of nonalcoholic fatty liver disease (NAFLD)/Nonalcoholic steatohepatitis (NASH). Adv. Exp. Med. Biol., 2021, 1261, 223-229.
[http://dx.doi.org/10.1007/978-981-15-7360-6_20] [PMID: 33783745]
[7]
Eslam, M.; Sanyal, A.J.; George, J.; Sanyal, A.; Neuschwander-Tetri, B.; Tiribelli, C.; Kleiner, D.E.; Brunt, E.; Bugianesi, E.; Yki-Järvinen, H.; Grønbæk, H.; Cortez-Pinto, H.; George, J.; Fan, J.; Valenti, L.; Abdelmalek, M.; Romero-Gomez, M.; Rinella, M.; Arrese, M.; Eslam, M.; Bedossa, P.; Newsome, P.N.; Anstee, Q.M.; Jalan, R.; Bataller, R.; Loomba, R.; Sookoian, S.; Sarin, S.K.; Harrison, S.; Kawaguchi, T.; Wong, V.W-S.; Ratziu, V.; Yilmaz, Y.; Younossi, Z. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology, 2020, 158(7), 1999-2014.e1.
[http://dx.doi.org/10.1053/j.gastro.2019.11.312] [PMID: 32044314]
[8]
Videla, L.A.; Valenzuela, R. Perspectives in liver redox imbalance: Toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action. Biofactors, 2022, 48(2), 400-415.
[http://dx.doi.org/10.1002/biof.1797] [PMID: 34687092]
[9]
Rives, C.; Fougerat, A.; Ellero-Simatos, S.; Loiseau, N.; Guillou, H.; Gamet-Payrastre, L.; Wahli, W. Oxidative stress in NAFLD: Role of nutrients and food contaminants. Biomol., 2020, 10(12), 1702.
[http://dx.doi.org/10.3390/biom10121702]
[10]
Valenzuela, R.; Videla, L.A. Impact of the coadministration of N-3 fatty acids and olive oil components in preclinical nonalcoholic fatty liver disease models: A mechanistic view. Nutr., 2020, 12(2), 499.
[http://dx.doi.org/10.3390/nu12020499]
[11]
Valenzuela, R.; Videla, L.A. Crosstalk mechanisms in hepatoprotection: Thyroid hormone-docosahexaenoic acid (DHA) and DHA-extra virgin olive oil combined protocols. Pharmacol. Res., 2018, 132, 168-175.
[http://dx.doi.org/10.1016/j.phrs.2017.12.013] [PMID: 29253525]
[12]
Hernández-Rodas, M.C.; Valenzuela, R.; Echeverría, F.; Rincón-Cervera, M.Á.; Espinosa, A.; Illesca, P.; Muñoz, P.; Corbari, A.; Romero, N.; Gonzalez-Mañan, D.; Videla, L.A. Supplementation with docosahexaenoic acid and extra virgin olive oil prevents liver steatosis induced by a highfat diet in mice through PPARα and Nrf2 upregulation with concomitant SREBP1c and NFkB downregulation. Mol. Nutr. Food Res., 2017, 61(12), 1700479.
[http://dx.doi.org/10.1002/mnfr.201700479] [PMID: 28940752]
[13]
Valenzuela, R.; Illesca, P.; Echeverría, F.; Espinosa, A.; Rincón-Cervera, M.Á.; Ortiz, M. Hernandez-Rodas, M.C.; Valenzuela, A.; Videla, L.A. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation. Food Funct., 2017, 8(4), 1526-1537.
[http://dx.doi.org/10.1039/C7FO00090A] [PMID: 28386616]
[14]
Mansouri, A.; Gattolliat, C.H.; Asselah, T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology, 2018, 155(3), 629-647.
[http://dx.doi.org/10.1053/j.gastro.2018.06.083] [PMID: 30012333]
[15]
Barrera, C.; Valenzuela, R.; Rincón, M.Á.; Espinosa, A.; Echeverria, F.; Romero, N.; Gonzalez-Mañan, D.; Videla, L.A. Molecular mechanisms related to the hepatoprotective effects of antioxidant-rich extra virgin olive oil supplementation in rats subjected to short-term iron administration. Free Radic. Biol. Med., 2018, 126, 313-321.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.030] [PMID: 30153476]
[16]
Wu, L.; Mo, W.; Feng, J.; Li, J.; Yu, Q.; Li, S.; Zhang, J.; Chen, K.; Ji, J.; Dai, W.; Wu, J.; Xu, X.; Mao, Y.; Guo, C. Astaxanthin attenuates hepatic damage and mitochondrial dysfunction in nonalcoholic fatty liver disease by upregulating the FGF21/PGC1α pathway. Br. J. Pharmacol., 2020, 177(16), 3760-3777.
[http://dx.doi.org/10.1111/bph.15099] [PMID: 32446270]
[17]
Huang, J.F.; Dai, C.Y.; Huang, C.F.; Tsai, P.C.; Yeh, M.L.; Hsu, P.Y.; Huang, S.F.; Bair, M.J.; Hou, N.J.; Huang, C.I.; Liang, P.C.; Lin, Y.H.; Wang, C.W.; Hsieh, M.Y.; Chen, S.C.; Lin, Z.Y.; Yu, M.L.; Chuang, W.L. First-in-Asian double-blind randomized trial to assess the efficacy and safety of insulin sensitizer in nonalcoholic steatohepatitis patients. Hepatol. Int., 2021, 15(5), 1136-1147.
[http://dx.doi.org/10.1007/s12072-021-10242-2] [PMID: 34386935]
[18]
Park, H.; Shima, T.; Yamaguchi, K.; Mitsuyoshi, H.; Minami, M.; Yasui, K.; Itoh, Y.; Yoshikawa, T.; Fukui, M.; Hasegawa, G.; Nakamura, N.; Ohta, M.; Obayashi, H.; Okanoue, T. Efficacy of long-term ezetimibe therapy in patients with nonalcoholic fatty liver disease. J. Gastroenterol., 2011, 46(1), 101-107.
[http://dx.doi.org/10.1007/s00535-010-0291-8] [PMID: 20658156]
[19]
Cho, Y.; Rhee, H.; Kim, Y.; Lee, M.; Lee, B.W.; Kang, E.S.; Cha, B.S.; Choi, J.Y.; Lee, Y. Ezetimibe combination therapy with statin for non-alcoholic fatty liver disease: An open-label randomized controlled trial (ESSENTIAL study). BMC Med., 2022, 20(1), 93.
[http://dx.doi.org/10.1186/s12916-022-02288-2] [PMID: 35307033]
[20]
Loomba, R.; Ratziu, V.; Harrison, S.A.; Loomba, R.; McFarlane, S.C.; Tamaki, N.; Ratziu, V.; Abdelmalek, M.F.; Rinella, M.E.; Anstee, Q.M.; Younossi, Z.M.; Sanyal, A.; Jairath, V.; Harrison, S.A. Expert panel review to compare FDA and EMA guidance on drug development and endpoints in nonalcoholic steatohepatitis. Gastroenterology, 2022, 162(3), 680-688.
[http://dx.doi.org/10.1053/j.gastro.2021.10.051] [PMID: 34822801]
[21]
Hernandez-Rodas, M.; Valenzuela, R.; Videla, L. Relevant aspects of nutritional and dietary interventions in nonalcoholic fatty liver disease. Int. J. Mol. Sci., 2015, 16(10), 25168-25198.
[http://dx.doi.org/10.3390/ijms161025168] [PMID: 26512643]
[22]
Curioni, C.C.; Lourenço, P.M. Long-term weight loss after diet and exercise: A systematic review. Int. J. Obes., 2005, 29(10), 1168-1174.
[http://dx.doi.org/10.1038/sj.ijo.0803015] [PMID: 15925949]
[23]
Sumida, Y.; Yoneda, M. Current and future pharmacological therapies for NAFLD/NASH. J. Gastroenterol., 2018, 362-376.
[http://dx.doi.org/10.1007/s00535-017-1415-1]
[24]
Bagherniya, M.; Nobili, V.; Blesso, C.N.; Sahebkar, A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacol. Res., 2018, 130, 213-240.
[http://dx.doi.org/10.1016/j.phrs.2017.12.020] [PMID: 29287685]
[25]
Echeverría, F.; Bustamante, A.; Sambra, V.; Álvarez, D.; Videla, L.; Valenzuela, R. Beneficial effects of dietary polyphenols in the prevention and treatment of NAFLD: Cellsignaling pathways underlying health effects. Curr. Med. Chem., 2022, 29(2), 299-328.
[http://dx.doi.org/10.2174/0929867328666210825111350] [PMID: 34525916]
[26]
Soto-Alarcón, S.A.; Ortiz, M.; Orellana, P.; Echeverría, F.; Bustamante, A.; Espinosa, A.; Illesca, P.; Gonzalez-Mañán, D.; Valenzuela, R.; Videla, L.A. Docosahexaenoic acid and hydroxytyrosol coadministration fully prevents liver steatosis and related parameters in mice subjected to highfat diet: A molecular approach. Biofactors, 2019, 45(6), 930-943.
[http://dx.doi.org/10.1002/biof.1556] [PMID: 31454114]
[27]
Elgebaly, A.; Radwan, I.A.I.; AboElnas, M.M.; Ibrahim, H.H.; Eltoomy, M.F.M.; Atta, A.A.; Mesalam, H.A.; Sayed, A.A.; Othman, A.A. Resveratrol supplementation in patients with non-alcoholic fatty liver disease: Systematic review and meta-analysis. J. Gastrointestin. Liver Dis., 2017, 26(1), 59-67.
[http://dx.doi.org/10.15403/jgld.2014.1121.261.ely] [PMID: 28338115]
[28]
Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct., 2019, 10(2), 514-528.
[http://dx.doi.org/10.1039/C8FO01997E] [PMID: 30746536]
[29]
Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol health effects on cardiovascular and neurodegen-erative disorders: A review and meta-analysis. Int. J. Mol. Sci., 2019, 20(2), 20.
[http://dx.doi.org/10.3390/ijms20020351]
[30]
Echeverría, F.; Valenzuela, R.; Bustamante, A.; Álvarez, D.; Ortiz, M.; Espinosa, A.; Illesca, P.; Gonzalez-Mañan, D.; Videla, L.A. High-fat diet induces mouse liver steatosis with a concomitant decline in energy metabolism: Attenuation by eicosapentaenoic acid (EPA) or hydroxytyrosol (HT) supplementation and the additive effects upon EPA and HT co-administration. Food Funct., 2019, 10(9), 6170-6183.
[http://dx.doi.org/10.1039/C9FO01373C] [PMID: 31501836]
[31]
Ortiz, M.; Soto-Alarcón, S.A.; Orellana, P.; Espinosa, A.; Campos, C.; López-Arana, S.; Rincón, M.A.; Illesca, P.; Valenzuela, R.; Videla, L.A. Suppression of high-fat dietinduced obesity-associated liver mitochondrial dysfunction by docosahexaenoic acid and hydroxytyrosol coadministration. Dig. Liver Dis., 2020, 52(8), 895-904.
[http://dx.doi.org/10.1016/j.dld.2020.04.019] [PMID: 32620521]
[32]
Li, R.; Toan, S.; Zhou, H. Role of mitochondrial quality control in the pathogenesis of nonalcoholic fatty liver disease. Aging (Albany NY), 2020, 12(7), 6467-6485.
[http://dx.doi.org/10.18632/aging.102972] [PMID: 32213662]
[33]
Tilokani, L.; Nagashima, S.; Paupe, V.; Prudent, J. Mitochondrial dynamics: Overview of molecular mechanisms. Essays Biochem., 2018, 62(3), 341-360.
[http://dx.doi.org/10.1042/EBC20170104] [PMID: 30030364]
[34]
García-Ruiz, C.; Baulies, A.; Mari, M.; García-Rovés, P.M.; Fernandez-Checa, J.C. Mitochondrial dysfunction in non-alcoholic fatty liver disease and insulin resistance: Cause or consequence? Free Radic. Res., 2013, 47(11), 854-868.
[http://dx.doi.org/10.3109/10715762.2013.830717] [PMID: 23915028]
[35]
Longo, M.; Meroni, M.; Paolini, E.; Macchi, C.; Dongiovanni, P. Mitochondrial dynamics and nonalcoholic fatty liver disease (NAFLD): New perspectives for a fairy-tale ending? Metabolism, 2021, 117, 154708.
[http://dx.doi.org/10.1016/j.metabol.2021.154708] [PMID: 33444607]
[36]
Rafiei, H.; Omidian, K.; Bandy, B. Comparison of dietary polyphenols for protection against molecular mechanisms underlying nonalcoholic fatty liver disease in a cell model of steatosis. Mol. Nutr. Food Res., 2017, 61(9), 1600781.
[http://dx.doi.org/10.1002/mnfr.201600781] [PMID: 28317281]
[37]
Rafiei, H.; Omidian, K.; Bandy, B. Dietary polyphenols protect against oleic acid-induced steatosis in an in vitro model of NAFLD by modulating lipid metabolism and improving mitochondrial function. Nutrients, 2019, 11(3), 541.
[http://dx.doi.org/10.3390/nu11030541] [PMID: 30832407]
[38]
Li, Z.; Zhang, H.; Li, Y.; Chen, H.; Wang, C.; Wong, V.K.W.; Jiang, Z.; Zhang, W. Phytotherapy using blueberry leaf polyphenols to alleviate non-alcoholic fatty liver disease through improving mitochondrial function and oxidative defense. Phytomedicine, 2020, 69, 153209.
[http://dx.doi.org/10.1016/j.phymed.2020.153209] [PMID: 32240928]
[39]
Izdebska, M.; Piątkowska-Chmiel, I.; Korolczuk, A.; Herbet, M.; Gawrońska-Grzywacz, M.; Gieroba, R.; Sysa, M.; Czajkowska-Bania, K.; Cygal, M.; Korga, A.; Dudka, J. The beneficial effects of resveratrol on steatosis and mitochondrial oxidative stress in HepG2 cells. Can. J. Physiol. Pharmacol., 2017, 95(12), 1442-1453.
[http://dx.doi.org/10.1139/cjpp-2016-0561] [PMID: 28759727]
[40]
Liu, Y.T.; Lai, Y.H.; Lin, H.H.; Chen, J.H. Lotus seedpod extracts reduced lipid accumulation and lipotoxicity in hepatocytes. Nutrients, 2019, 11(12), 2895.
[http://dx.doi.org/10.3390/nu11122895] [PMID: 31795130]
[41]
Kroemer, G.; Galluzzi, L.; Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev., 2007, 87(1), 99-163.
[http://dx.doi.org/10.1152/physrev.00013.2006] [PMID: 17237344]
[42]
Petrosillo, G.; Portincasa, P.; Grattagliano, I.; Casanova, G.; Matera, M.; Ruggiero, F.M.; Ferri, D.; Paradies, G. Mitochondrial dysfunction in rat with nonalcoholic fatty liver. Biochim. Biophys. Acta Bioenerg., 2007, 1767(10), 1260-1267.
[http://dx.doi.org/10.1016/j.bbabio.2007.07.011] [PMID: 17900521]
[43]
Teodoro, J.S.; Rolo, A.P.; Duarte, F.V.; Simões, A.M.; Palmeira, C.M. Differential alterations in mitochondrial function induced by a choline-deficient diet: Understanding fatty liver disease progression. Mitochondrion, 2008, 8(5-6), 367-376.
[http://dx.doi.org/10.1016/j.mito.2008.07.008] [PMID: 18765303]
[44]
Takeichi, Y.; Miyazawa, T.; Sakamoto, S.; Hanada, Y.; Wang, L.; Gotoh, K.; Uchida, K.; Katsuhara, S.; Sakamoto, R.; Ishihara, T.; Masuda, K.; Ishihara, N.; Nomura, M.; Ogawa, Y. Non-alcoholic fatty liver disease in mice with hepatocyte-specific deletion of mitochondrial fission factor. Diabetologia, 2021, 64(9), 2092-2107.
[http://dx.doi.org/10.1007/s00125-021-05488-2] [PMID: 34052855]
[45]
Galloway, C.A.; Lee, H.; Brookes, P.S.; Yoon, Y. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307(6), G632-G641.
[http://dx.doi.org/10.1152/ajpgi.00182.2014] [PMID: 25080922]
[46]
Lee, K.; Haddad, A.; Osme, A.; Kim, C.; Borzou, A.; Ilchenko, S.; Allende, D.; Dasarathy, S.; McCullough, A.; Sadygov, R.G.; Kasumov, T. Hepatic mitochondrial defects in a nonalcoholic fatty liver disease mouse model are associated with increased degradation of oxidative phosphorylation subunits. Mol. Cell. Proteomics, 2018, 17(12), 2371-2386.
[http://dx.doi.org/10.1074/mcp.RA118.000961] [PMID: 30171159]
[47]
Lama, A.; Pirozzi, C.; Mollica, M.P.; Trinchese, G.; Di Guida, F.; Cavaliere, G.; Calignano, A. Mattace Raso, G.; Berni Canani, R.; Meli, R. Polyphenol-rich virgin olive oil reduces insulin resistance and liver inflammation and improves mitochondrial dysfunction in high-fat diet fed rats. Mol. Nutr. Food Res., 2017, 61(3), 1600418.
[http://dx.doi.org/10.1002/mnfr.201600418] [PMID: 27794174]
[48]
Kagan, V.E.; Tyurin, V.A.; Jiang, J.; Tyurina, Y.Y.; Ritov, V.B.; Amoscato, A.A.; Osipov, A.N.; Belikova, N.A.; Kapralov, A.A.; Kini, V.; Vlasova, I.I.; Zhao, Q.; Zou, M.; Di, P.; Svistunenko, D.A.; Kurnikov, I.V.; Borisenko, G.G. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol., 2005, 1(4), 223-232.
[http://dx.doi.org/10.1038/nchembio727] [PMID: 16408039]
[49]
Barbier-Torres, L.; Fortner, K.A.; Iruzubieta, P.; Delgado, T.C.; Giddings, E.; Chen, Y.; Champagne, D.; Fernández-Ramos, D.; Mestre, D.; Gomez-Santos, B.; Varela-Rey, M.; de Juan, V.G. Fernán-dez-Tussy, P.; Zubiete-Franco, I.; García-Monzón, C.; González-Rodríguez, Á.; Oza, D.; Valença-Pereira, F.; Fang, Q.; Crespo, J.; Aspichueta, P.; Tremblay, F.; Christensen, B.C.; Anguita, J.; Martínez-Chantar, M.L.; Rincón, M. Silencing hepatic MCJ attenuates non-alcoholic fatty liver disease (NAFLD) by increasing mitochondrial fatty acid oxidation. Nat. Commun., 2020, 11(1), 3360.
[http://dx.doi.org/10.1038/s41467-020-16991-2] [PMID: 32620763]
[50]
Yuan, X.; Sun, Y.; Cheng, Q.; Hu, K.; Ye, J.; Zhao, Y.; Wu, J.; Shao, X.; Fang, L.; Ding, Y.; Sun, X.; Shi, X.; Xue, B. Proteomic analysis to identify differentially expressed proteins between subjects with metabolic healthy obesity and non-alcoholic fatty liver disease. J. Proteomics, 2020, 221, 103683.
[http://dx.doi.org/10.1016/j.jprot.2020.103683] [PMID: 32058041]
[51]
Lim, C.Y.; Jun, D.W.; Jang, S.S.; Cho, W.K.; Chae, J.D.; Jun, J.H. Effects of carnitine on peripheral blood mitochondrial DNA copy number and liver function in non-alcoholic fatty liver disease. Korean J. Gastroenterol., 2010, 55(6), 384-389.
[http://dx.doi.org/10.4166/kjg.2010.55.6.384] [PMID: 20571306]
[52]
Xu, C.; Markova, M.; Seebeck, N.; Loft, A.; Hornemann, S.; Gantert, T.; Kabisch, S.; Herz, K.; Loske, J.; Ost, M.; Coleman, V.; Klauschen, F.; Rosenthal, A.; Lange, V.; Machann, J.; Klaus, S.; Grune, T.; Herzig, S.; Pivovarova-Ramich, O.; Pfeiffer, A.F.H. Highprotein diet more effectively reduces hepatic fat than lowprotein diet despite lower autophagy and FGF21 levels. Liver Int., 2020, 40(12), 2982-2997.
[http://dx.doi.org/10.1111/liv.14596] [PMID: 32652799]
[53]
Sanyal, A.J.; Campbell-Sargent, C.; Mirshahi, F.; Rizzo, W.B.; Contos, M.J.; Sterling, R.K.; Luketic, V.A.; Shiffman, M.L.; Clore, J.N. Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities. Gastroenterology, 2001, 120(5), 1183-1192.
[http://dx.doi.org/10.1053/gast.2001.23256] [PMID: 11266382]
[54]
Simões, I.C.M.; Fontes, A.; Pinton, P.; Zischka, H.; Wieckowski, M.R. Mitochondria in non-alcoholic fatty liver disease. Int. J. Biochem. Cell Biol., 2018, 95, 93-99.
[http://dx.doi.org/10.1016/j.biocel.2017.12.019] [PMID: 29288054]
[55]
Léveillé, M.; Estall, J.L. Mitochondrial dysfunction in the transition from NASH to HCC. Metab., 2019, 9(10), 233.
[http://dx.doi.org/10.3390/metabo9100233]
[56]
Chimienti, G.; Orlando, A.; Russo, F.; D’attoma, B.; Aragno, M.; Aimaretti, E.; Lezza, A.M.S.; Pesce, V. The mitochondrial trigger in an animal model of nonalcoholic fatty liver disease. Genes, 2021, 12(9), 1439.
[http://dx.doi.org/10.3390/genes12091439]
[57]
Karkucinska-Wieckowska, A.; Simoes, I.C.M.; Kalinowski, P.; Lebiedzinska-Arciszewska, M.; Zieniewicz, K.; Milkiewicz, P.; Górska-Ponikowska, M.; Pinton, P.; Malik, A.N.; Krawczyk, M. Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. Eur. J. Clin. Invest., 2021, 2021, 13622.
[http://dx.doi.org/10.1111/eci.13622] [PMID: 34050922]
[58]
Middleton, P.; Vergis, N. Mitochondrial dysfunction and liver disease: Role, relevance, and potential for therapeutic modulation. Therap. Adv. Gastroenterol., 2021, 14, 17562848211031394.
[http://dx.doi.org/10.1177/17562848211031394] [PMID: 34377148]
[59]
Mihajlovic, M.; Vinken, M. Mitochondria as the target of hepatotoxicity and drug-induced liver injury: Molecular mechanisms and detection methods. Int. J. Mol. Sci., 2022, 23(6), 3315.
[http://dx.doi.org/10.3390/ijms23063315] [PMID: 35328737]
[60]
Shannon, C.E.; Ragavan, M.; Palavicini, J.P.; Fourcaudot, M.; Bakewell, T.M.; Valdez, I.A.; Ayala, I.; Jin, E.S.; Madesh, M.; Han, X.; Merritt, M.E.; Norton, L. Insulin resistance is mechanistically linked to hepatic mitochondrial remodeling in non-alcoholic fatty liver disease. Mol. Metab., 2021, 45, 101154.
[http://dx.doi.org/10.1016/j.molmet.2020.101154] [PMID: 33359401]
[61]
Ndakotsu, A.; Vivekanandan, G. The role of thiazolidinediones in the amelioration of nonalcoholic fatty liver disease: A systematic review. Cureus, 2022, 14(5), e25380.
[http://dx.doi.org/10.7759/cureus.25380] [PMID: 35765391]
[62]
Díaz-Zagoya, J.C.; Marín-Medina, A.; Zetina-Esquivel, A.M.; Blé-Castillo, J.L.; Castell-Rodríguez, A.E.; Juárez-Rojop, I.E.; Miranda-Zamora, R. Effects of high rosuvastatin doses on hepatocyte mitochondria of hypercholesterolemic mice. Sci. Rep., 2021, 11(1), 15809.
[http://dx.doi.org/10.1038/s41598-021-95140-1] [PMID: 34349148]
[63]
Piccinin, E.; Villani, G.; Moschetta, A. Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: The role of PGC1 coactivators. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(3), 160-174.
[http://dx.doi.org/10.1038/s41575-018-0089-3] [PMID: 30518830]
[64]
Gonçalves, I.O.; Passos, E.; Diogo, C.V.; Rocha-Rodrigues, S.; Santos-Alves, E.; Oliveira, P.J.; Ascensão, A.; Magalhães, J. Exercise mitigates mitochondrial permeability transition pore and quality control mechanisms alterations in nonalcoholic steatohepatitis. Appl. Physiol. Nutr. Metab., 2016, 41(3), 298-306.
[http://dx.doi.org/10.1139/apnm-2015-0470] [PMID: 26905378]
[65]
Castro-Sepúlveda, M.; Morio, B.; Tuñón-Suárez, M.; Jannas-Vela, S.; Díaz-Castro, F.; Rieusset, J.; Zbinden-Foncea, H. The fastingfeeding metabolic transition regulates mitochondrial dynamics. FASEB J., 2021, 35(10), e21891.
[http://dx.doi.org/10.1096/fj.202100929R] [PMID: 34569666]
[66]
Rom, O.; Liu, Y.; Liu, Z.; Zhao, Y.; Wu, J.; Ghrayeb, A.; Villacorta, L.; Fan, Y.; Chang, L.; Wang, L.; Liu, C.; Yang, D.; Song, J.; Rech, J.C.; Guo, Y.; Wang, H.; Zhao, G.; Liang, W.; Koike, Y.; Lu, H.; Koike, T.; Hayek, T.; Pennathur, S.; Xi, C.; Wen, B.; Sun, D.; Garcia-Barrio, M.T.; Aviram, M.; Gottlieb, E.; Mor, I.; Liu, W.; Zhang, J.; Chen, Y.E. Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Sci. Transl. Med., 2020, 12(572), eaaz2841.
[http://dx.doi.org/10.1126/scitranslmed.aaz2841] [PMID: 33268508]
[67]
Zheng, F.; Cai, Y. Concurrent exercise improves insulin resistance and nonalcoholic fatty liver disease by upregulating PPAR-γ and genes involved in the beta-oxidation of fatty acids in ApoE-KO mice fed a high-fat diet. Lipids Health Dis., 2019, 18(1), 6.
[http://dx.doi.org/10.1186/s12944-018-0933-z] [PMID: 30611256]
[68]
Farzanegi, P.; Dana, A.; Ebrahimpoor, Z.; Asadi, M.; Azarbayjani, M.A. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): Roles of oxidative stress and inflammation. Eur. J. Sport Sci., 2019, 19(7), 994-1003.
[http://dx.doi.org/10.1080/17461391.2019.1571114] [PMID: 30732555]
[69]
Rambold, A.S.; Cohen, S.; Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell, 2015, 32(6), 678-692.
[http://dx.doi.org/10.1016/j.devcel.2015.01.029] [PMID: 25752962]
[70]
Castro-Sepulveda, M.; Jannas-Vela, S.; Fernández-Verdejo, R.; Ávalos-Allele, D.; Tapia, G.; Villa-grán, C.; Quezada, N.; Zbinden-Foncea, H. Relative lipid oxidation associates directly with mitochondrial fusion phenotype and mitochondria-sarcoplasmic reticulum interactions in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab., 2020, 318(6), E848-E855.
[http://dx.doi.org/10.1152/ajpendo.00025.2020] [PMID: 32369416]
[71]
Theurey, P.; Tubbs, E.; Vial, G.; Jacquemetton, J.; Bendridi, N.; Chauvin, M.A.; Alam, M.R.; Le Romancer, M.; Vidal, H.; Rieusset, J. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J. Mol. Cell Biol., 2016, 8(2), 129-143.
[http://dx.doi.org/10.1093/jmcb/mjw004] [PMID: 26892023]
[72]
Seok, S.; Kim, Y.C.; Byun, S.; Choi, S.; Xiao, Z.; Iwamori, N.; Zhang, Y.; Wang, C.; Ma, J.; Ge, K.; Kemper, B.; Kemper, J.K. Fasting-induced JMJD3 histone demethylase epigenetically activates mitochondrial fatty acid β-oxidation. J. Clin. Invest., 2018, 128(7), 3144-3159.
[http://dx.doi.org/10.1172/JCI97736] [PMID: 29911994]
[73]
Hernández-Alvarez, M.I.; Sebastián, D.; Vives, S.; Ivanova, S.; Bartoccioni, P.; Kakimoto, P.; Plana, N.; Veiga, S.R.; Hernández, V.; Vasconcelos, N.; Peddinti, G.; Adrover, A.; Jové, M.; Pamplona, R.; Gordaliza-Alaguero, I.; Calvo, E.; Cabré, N.; Castro, R.; Kuzmanic, A.; Boutant, M.; Sala, D.; Hyotylainen, T.; Orešič, M.; Fort, J.; Errasti-Murugarren, E.; Rodrígues, C.M.P.; Orozco, M.; Joven, J.; Cantó, C.; Palacin, M.; Fernández-Veledo, S.; Vendrell, J.; Zorzano, A. Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease. Cell, 2019, 177(4), 881-895.e17.
[http://dx.doi.org/10.1016/j.cell.2019.04.010] [PMID: 31051106]
[74]
Brown, G.T.; Kleiner, D.E. Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism, 2016, 65(8), 1080-1086.
[http://dx.doi.org/10.1016/j.metabol.2015.11.008] [PMID: 26775559]
[75]
Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1066-1077.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.010] [PMID: 27836629]
[76]
Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 2013, 51, 15-25.
[http://dx.doi.org/10.1016/j.fct.2012.09.021] [PMID: 23017782]
[77]
Pepa, G. Della; Vetrani, C.; Lombardi, G.; Bozzetto, L.; Annuzzi, G.; Rivellese, A. A. Isocaloric dietary changes and non-alcoholic fatty liver disease in high cardiometabolic risk individuals. Nutrients, 2017, 9(10), 1065.
[http://dx.doi.org/10.3390/nu9101065]
[78]
Harborne, J.B. The flavonoids: Advances in research since 1986 (Harborne, J. B.). J. Chem. Educ., 1995, 72(3), A73.
[http://dx.doi.org/10.1021/ed072pA73.11]
[79]
Beckman, C.H. Phenolic-storing cells: Keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol. Mol. Plant Pathol., 2000, 57(3), 101-110.
[http://dx.doi.org/10.1006/pmpp.2000.0287]
[80]
Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 1998, 56(11), 317-333.
[http://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.x] [PMID: 9838798]
[81]
Kondratyuk, T. P.; Pezzuto, J. M. Natural product polyphenols of relevance to human health., 2009, 42(Sup. 1), 46-63.
[http://dx.doi.org/10.3109/13880200490893519]
[82]
Gori, A.; Ferrini, F.; Marzano, M.; Tattini, M.; Centritto, M.; Baratto, M.; Pogni, R.; Brunetti, C. Characterisation and antioxidant activity of crude extract and polyphenolic rich fractions from C. incanus leaves. Int. J. Mol. Sci., 2016, 17(8), 1344.
[http://dx.doi.org/10.3390/ijms17081344] [PMID: 27548139]
[83]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[84]
Rentzsch, M.; Wilkens, A.; Winterhalter, P. Non-flavonoid phenolic compounds.In: Wine Chemistry and Biochemistry; Moreno-Arribas, M.V.; Polo, M.C., Eds.;
[http://dx.doi.org/10.1007/978-0-387-74118-5_23]
[85]
W, K. Dietary polyphenols-important non-nutrients in the prevention of chronic noncommunicable diseases: A systematic review. Nutrients, 2019, 11(5), 1-35.
[86]
Chen, L.; Teng, H.; Xie, Z.; Cao, H.; Cheang, W.S.; Skalicka-Woniak, K.; Georgiev, M.I.; Xiao, J. Modifications of dietary flavonoids towards improved bioactivity: An update on structure-activity relationship. Crit. Rev. Food Sci. Nutr., 2018, 58(4), 513-527.
[http://dx.doi.org/10.1080/10408398.2016.1196334] [PMID: 27438892]
[87]
Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal., 2013, 18(14), 1818-1892.
[http://dx.doi.org/10.1089/ars.2012.4581] [PMID: 22794138]
[88]
Guo, Y.; Bruno, R.S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem., 2015, 26(3), 201-210.
[http://dx.doi.org/10.1016/j.jnutbio.2014.10.008] [PMID: 25468612]
[89]
Kandemir, K.; Tomas, M.; McClements, D.J.; Capanoglu, E. Recent advances on the improvement of quercetin bioavailability. Trends Food Sci. Technol., 2022, 119(119), 192-200.
[http://dx.doi.org/10.1016/j.tifs.2021.11.032]
[90]
Khaled, K.A.; El-Sayed, Y.M.; Al-Hadiya, B.M. Disposition of the flavonoid quercetin in rats after single intravenous and oral doses. Drug Dev. Ind. Pharm., 2003, 29(4), 397-403.
[http://dx.doi.org/10.1081/DDC-120018375] [PMID: 12737533]
[91]
Teng, H.; Zheng, Y.; Cao, H.; Huang, Q.; Xiao, J.; Chen, L. Enhancement of bioavailability and bioactivity of dietderived flavonoids by application of nanotechnology: A review. Crit. Rev. Food Sci. Nutr., 2021, 2021, 1947772.
[http://dx.doi.org/10.1080/10408398.2021.1947772] [PMID: 34278842]
[92]
Walle, T. Methylation of dietary flavones increases their metabolic stability and chemopreventive effects. Int. J. Mol. Sci., 2009, 10(11), 5002-5019.
[http://dx.doi.org/10.3390/ijms10115002] [PMID: 20087474]
[93]
Zhang, Y.; Gu, M.; Cai, W.; Yu, L.; Feng, L.; Zhang, L.; Zang, Q.; Wang, Y.; Wang, D.; Chen, H. Dietary component isorhamnetin is a PPARγ antagonist and ameliorates metabolic disorders induced by diet or leptin deficiency. Sci. Rep., 2015, 2016(6), 1-12.
[http://dx.doi.org/10.1038/srep19288] [PMID: 26775807]
[94]
García-Mediavilla, V.; Crespo, I.; Collado, P.S.; Esteller, A.; Sánchez-Campos, S.; Tuñón, M.J.; González-Gallego, J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol., 2007, 557(2-3), 221-229.
[http://dx.doi.org/10.1016/j.ejphar.2006.11.014] [PMID: 17184768]
[95]
Tian, B.; Liu, J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric., 2020, 100(4), 1392-1404.
[http://dx.doi.org/10.1002/jsfa.10152] [PMID: 31756276]
[96]
Faghihzadeh, F.; Adibi, P.; Rafiei, R.; Hekmatdoost, A. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr. Res., 2014, 34(10), 837-843.
[http://dx.doi.org/10.1016/j.nutres.2014.09.005] [PMID: 25311610]
[97]
Chen, S.; Zhao, X.; Ran, L.; Wan, J.; Wang, X.; Qin, Y.; Shu, F.; Gao, Y.; Yuan, L.; Zhang, Q.; Mi, M. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Dig. Liver Dis., 2015, 47(3), 226-232.
[http://dx.doi.org/10.1016/j.dld.2014.11.015] [PMID: 25577300]
[98]
Kantartzis, K.; Fritsche, L.; Bombrich, M.; Machann, J.; Schick, F.; Staiger, H.; Kunz, I.; Schoop, R.; Lehn-Stefan, A.; Heni, M.; Peter, A.; Fritsche, A.; Häring, H.U.; Stefan, N. Effects of resveratrol supplementation on liver fat content in overweight and insulinresistant subjects: A randomized, doubleblind, placebocontrolled clinical trial. Diabetes Obes. Metab., 2018, 20(7), 1793-1797.
[http://dx.doi.org/10.1111/dom.13268] [PMID: 29484808]
[99]
Farzin, L.; Asghari, S.; Rafraf, M.; Asghari-Jafarabadi, M.; Shirmohammadi, M. No beneficial effects of resveratrol supplementation on atherogenic risk factors in patients with nonalcoholic fatty liver disease. Int. J. Vitam. Nutr. Res., 2020, 90(3-4), 279-289.
[http://dx.doi.org/10.1024/0300-9831/a000528] [PMID: 30789808]
[100]
Chachay, V.S.; Macdonald, G.A.; Martin, J.H.; Whitehead, J.P.; O’Moore-Sullivan, T.M.; Lee, P.; Franklin, M.; Klein, K.; Taylor, P.J.; Ferguson, M.; Coombes, J.S.; Thomas, G.P.; Cowin, G.J.; Kirkpatrick, C.M.J.; Prins, J.B.; Hickman, I.J. Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol., 2014, 12(12), 2092-2103.e6.6.
[http://dx.doi.org/10.1016/j.cgh.2014.02.024] [PMID: 24582567]
[101]
Heebøll, S.; Kreuzfeldt, M.; Hamilton-Dutoit, S.; Kjær Poulsen, M.; Stødkilde-Jørgensen, H.; Møller, H.J.; Jessen, N.; Thorsen, K.; Kristina Hellberg, Y.; Bønløkke Pedersen, S. Placebo-controlled, randomised clinical trial: High-dose resveratrol treatment for non-alcoholic fatty liver disease. Scand. J. Gastroenterol., 2016, 51(4), 456-463.
[http://dx.doi.org/10.3109/00365521.2015.1107620]
[102]
Poulsen, M.K.; Nellemann, B.; Bibby, B.M.; Stødkilde-Jørgensen, H.; Pedersen, S.B.; Grønbaek, H.; Nielsen, S.; Grønbæk, H.; Nielsen, S. No effect of Resveratrol on VLDL-TG kinetics and insulin sensitivity in obese men with nonalcoholic fatty liver disease. Diabetes Obes. Metab., 2018, 20(10), 2504-2509.
[103]
Han, Y.; Chu, X.; Cui, L.; Fu, S.; Gao, C.; Li, Y.; Sun, B. Neuronal mitochondria-targeted therapy for Alzheimer’s disease by systemic delivery of resveratrol using dualmodified novel biomimetic nanosystems. Drug Deliv., 2020, 27(1), 502-518.
[http://dx.doi.org/10.1080/10717544.2020.1745328] [PMID: 32228100]
[104]
Jardim, F.R.; de Rossi, F.T.; Nascimento, M.X.; da Silva Barros, R.G.; Borges, P.A.; Prescilio, I.C.; de Oliveira, M.R. Resveratrol and brain mitochondria: A review. Mol. Neurobiol., 2018, 55(3), 2085-2101.
[http://dx.doi.org/10.1007/s12035-017-0448-z] [PMID: 28283884]
[105]
Lanza, I.R.; Zabielski, P.; Klaus, K.A.; Morse, D.M.; Heppelmann, C.J.; Bergen, H.R., III; Dasari, S.; Walrand, S.; Short, K.R.; Johnson, M.L.; Robinson, M.M.; Schimke, J.M.; Jakaitis, D.R.; Asmann, Y.W.; Sun, Z.; Nair, K.S. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab., 2012, 16(6), 777-788.
[http://dx.doi.org/10.1016/j.cmet.2012.11.003] [PMID: 23217257]
[106]
Mansur, A.P.; Roggerio, A.; Goes, M.F.S.; Avakian, S.D.; Leal, D.P.; Maranhão, R.C.; Strunz, C.M.C. Serum concentrations and gene expression of sirtuin 1 in healthy and slightly overweight subjects after caloric restriction or resveratrol supplementation: A randomized trial. Int. J. Cardiol., 2017, 227, 788-794.
[http://dx.doi.org/10.1016/j.ijcard.2016.10.058] [PMID: 28029409]
[107]
Majeed, Y.; Halabi, N.; Madani, A.Y.; Engelke, R.; Bhagwat, A.M.; Abdesselem, H.; Agha, M.V.; Vakayil, M.; Courjaret, R.; Goswami, N. SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. Sci. Reports, 2021, 11(1), 1-19.
[http://dx.doi.org/10.1038/s41598-021-87759-x]
[108]
Asghari, S.; Asghari-Jafarabadi, M.; Somi, M.H.; Ghavami, S.M.; Rafraf, M. Comparison of calorie-restricted diet and resveratrol supplementation on anthropometric indices, metabolic parameters, and serum sirtuin-1 levels in patients with nonalcoholic fatty liver disease: A randomized controlled clinical trial. J. Am. Coll. Nutr., 2018, 37(3), 223-233.
[http://dx.doi.org/10.1080/07315724.2017.1392264] [PMID: 29313746]
[109]
Krishnamoorthy, S.; Paranthaman, R.; Moses, J.A.; Anandharamakrishnan, C. Curcumin. Nutraceuticals Heal. Care, 2022, 159-175.
[http://dx.doi.org/10.1016/B978-0-323-89779-2.00002-8]
[110]
Rahmani, S.; Asgary, S.; Askari, G.; Keshvari, M.; Hatamipour, M.; Feizi, A.; Sahebkar, A. Treatment of nonalcoholic fatty liver disease with curcumin: A randomized placebo-controlled trial. Phytother. Res., 2016, 30(9), 1540-1548.
[http://dx.doi.org/10.1002/ptr.5659] [PMID: 27270872]
[111]
Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.; Sahebkar, A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: A randomized controlled trial. Drug Res. (Stuttg.), 2017, 67(4), 244-251.
[http://dx.doi.org/10.1055/s-0043-100019] [PMID: 28158893]
[112]
Mirhafez, S.R.; Azimi-Nezhad, M.; Dehabeh, M.; Hariri, M.; Naderan, R.D.; Movahedi, A.; Abdalla, M.; Sathyapalan, T.; Sahebkar, A. The effect of curcumin phytosome on the treatment of patients with non-alcoholic fatty liver disease: A double-blind, randomized, placebo-controlled trial. Adv. Exp. Med. Biol., 2021, 1308, 25-35.
[http://dx.doi.org/10.1007/978-3-030-64872-5_3] [PMID: 33861434]
[113]
Chashmniam, S.; Mirhafez, S.R.; Dehabeh, M.; Hariri, M.; Azimi Nezhad, M.; Nobakht, M.; Gh, B.F. A pilot study of the effect of phospholipid curcumin on serum metabolomic profile in patients with non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled trial. Eur. J. Clin. Nutr., 2019, 73(9), 1224-1235.
[http://dx.doi.org/10.1038/s41430-018-0386-5] [PMID: 30647436]
[114]
Bagheri, H.; Ghasemi, F.; Barreto, G.E.; Rafiee, R.; Sathyapalan, T.; Sahebkar, A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors, 2020, 46(1), 5-20.
[http://dx.doi.org/10.1002/biof.1566] [PMID: 31580521]
[115]
Gao, C.; Wang, Y.; Sun, J.; Han, Y.; Gong, W.; Li, Y.; Feng, Y.; Wang, H.; Yang, M.; Li, Z.; Yang, Y.; Gao, C. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice. Acta Biomater., 2020, 108, 285-299.
[http://dx.doi.org/10.1016/j.actbio.2020.03.029] [PMID: 32251785]
[116]
Pricci, M.; Girardi, B.; Giorgio, F.; Losurdo, G.; Ierardi, E.; Di Leo, A. Curcumin and colorectal cancer: From basic to clinical evidences. Int. J. Mol. Sci., 2020, 21(7), 2364.
[http://dx.doi.org/10.3390/ijms21072364] [PMID: 32235371]
[117]
Mortezaee, K.; Salehi, E.; Mirtavoos-mahyari, H.; Motevaseli, E.; Najafi, M.; Farhood, B.; Rosengren, R.J.; Sahebkar, A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J. Cell. Physiol., 2019, 234(8), 12537-12550.
[http://dx.doi.org/10.1002/jcp.28122] [PMID: 30623450]
[118]
Shukla, R.; Pandey, V.; Vadnere, G.P.; Lodhi, S. Role of flavonoids in management of inflammatory disorders. Bi-oact. Food as Diet. Interv. Arthritis Relat. Inflamm. Dis., 2019, 2019, 293-322.
[http://dx.doi.org/10.1016/B978-0-12-813820-5.00018-0]
[119]
Loffredo, L.; Del Ben, M.; Perri, L.; Carnevale, R.; Nocella, C.; Catasca, E.; Baratta, F.; Ceci, F.; Polimeni, L.; Gozzo, P.; Violi, F.; Angelico, F. Effects of dark chocolate on NOX-2-generated oxidative stress in patients with nonalcoholic steatohepatitis. Aliment. Pharmacol. Ther., 2016, 44(3), 279-286.
[http://dx.doi.org/10.1111/apt.13687] [PMID: 27265388]
[120]
Loffredo, L.; Baratta, F.; Ludovica, P.; Battaglia, S.; Carnevale, R.; Nocella, C.; Novo, M.; Pannitteri, G.; Ceci, F.; Angelico, F.; Violi, F.; Del Ben, M. Effects of dark chocolate on endothelial function in patients with non-alcoholic steatohepatitis. Nutr. Metab. Cardiovasc. Dis., 2018, 28(2), 143-149.
[http://dx.doi.org/10.1016/j.numecd.2017.10.027] [PMID: 29329924]
[121]
Zbinden-Foncea, H.; Castro-Sepulveda, M.; Fuentes, J.; Speisky, H. Effect of epicatechin on skeletal muscle. Curr. Med. Chem., 2022, 29(6), 1110-1123.
[http://dx.doi.org/10.2174/0929867329666211217100020] [PMID: 34923936]
[122]
Daussin, F.N.; Heyman, E.; Burelle, Y. Effects of (−)-epicatechin on mitochondria. Nutr. Rev., 2021, 79(1), 25-41.
[http://dx.doi.org/10.1093/nutrit/nuaa094] [PMID: 32989466]
[123]
Guo, H.; Zhong, R.; Liu, Y.; Jiang, X.; Tang, X.; Li, Z.; Xia, M.; Ling, W. Effects of bayberry juice on inflammatory and apoptotic markers in young adults with features of non-alcoholic fatty liver disease. Nutrition, 2014, 30(2), 198-203.
[http://dx.doi.org/10.1016/j.nut.2013.07.023] [PMID: 24377455]
[124]
Chang, H.C.; Peng, C.H.; Yeh, D.M.; Kao, E.S.; Wang, C.J. Hibiscus sabdariffa extract inhibits obesity and fat accumulation, and improves liver steatosis in humans. Food Funct., 2014, 5(4), 734-739.
[http://dx.doi.org/10.1039/c3fo60495k] [PMID: 24549255]
[125]
Gou, W.; Xu, L.; Wang, Y.; Yu, W.; Zhong, Z.; Gao, J.; Chen, H.; Wang, Y. Mitochondrial protective effects of Myrica rubra extract against acetaminophen-induced toxicity. Am. J. Chin. Med., 2013, 41(5), 1053-1064.
[http://dx.doi.org/10.1142/S0192415X13500717] [PMID: 24117068]
[126]
Kam, A.; Loo, S.; Dutta, B.; Sze, S.K.; Tam, J.P. Plantderived mitochondria-targeting cysteine-rich peptide modulates cellular bioenergetics. J. Biol. Chem., 2019, 294(11), 4000-4011.
[http://dx.doi.org/10.1074/jbc.RA118.006693] [PMID: 30674551]
[127]
Wah Kheong, C.; Nik Mustapha, N.R.; Mahadeva, S. A randomized trial of silymarin for the treatment of nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol., 2017, 15(12), 1940-1949.e8.
[http://dx.doi.org/10.1016/j.cgh.2017.04.016] [PMID: 28419855]
[128]
Chávez, E.; Bravo, C. Silymarin-induced mitochondrial Ca2+ release. Life Sci., 1988, 43(12), 975-981.
[http://dx.doi.org/10.1016/0024-3205(88)90542-5] [PMID: 3172970]
[129]
Si, L.; Fu, J.; Liu, W.; Hayashi, T.; Mizuno, K.; Hattori, S.; Fujisaki, H.; Onodera, S.; Ikejima, T. Silibinin-induced mitochondria fission leads to mitophagy, which attenuates silibinin-induced apoptosis in MCF-7 and MDA-MB-231 cells. Arch. Biochem. Biophys., 2020, 685, 108284.
[http://dx.doi.org/10.1016/j.abb.2020.108284] [PMID: 32014401]
[130]
Huang, Y.; Lang, H.; Chen, K.; Zhang, Y.; Gao, Y.; Ran, L.; Yi, L.; Mi, M.; Zhang, Q. Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPARα pathway. Appl. Physiol. Nutr. Metab., 2020, 45(3), 227-239.
[http://dx.doi.org/10.1139/apnm-2019-0057]
[131]
Rodriguez-Ramiro, I.; Vauzour, D.; Minihane, A.M. Polyphenols and non-alcoholic fatty liver disease: Impact and mechanisms. Proc. Nutr. Soc., 2016, 75, 47-60.
[http://dx.doi.org/10.1017/S0029665115004218]
[132]
Li, S.; Tan, H.Y.; Wang, N.; Cheung, F.; Hong, M.; Feng, Y. The potential and action mechanism of polyphenols in the treatment of liver diseases. In: Oxid. Med. Cell. Longev., 2018, 2018, p. 8394818.
[http://dx.doi.org/10.1155/2018/8394818]
[133]
Musolino, V.; Gliozzi, M.; Scarano, F.; Bosco, F.; Scicchitano, M.; Nucera, S.; Carresi, C.; Ruga, S.; Zito, M.C.; Maiuolo, J.; Macrì, R.; Amodio, N.; Juli, G.; Tassone, P.; Mollace, R.; Caffrey, R.; Marioneaux, J.; Walker, R.; Ehrlich, J.; Palma, E.; Muscoli, C.; Bedossa, P.; Salvemini, D.; Mollace, V.; Sanyal, A.J. Bergamot polyphenols improve dyslipidemia and pathophysiological features in a mouse model of non-alcoholic fatty liver disease. Sci. Rep., 2020, 10(1), 2565.
[http://dx.doi.org/10.1038/s41598-020-59485-3] [PMID: 32054943]
[134]
Liu, H.; Zhan, Q.; Miao, X.; Xia, X.; Yang, G.; Peng, X.; Yan, C. Punicalagin prevents hepatic steatosis through improving lipid homeostasis and inflammation in liver and adipose tissue and modulating gut microbiota in western dietfed mice. Mol. Nutr. Food Res., 2021, 65(4), 2001031.
[http://dx.doi.org/10.1002/mnfr.202001031] [PMID: 33369197]
[135]
Echeverria, F.; Jimenez Patino, P.A.; Castro-Sepulveda, M.; Bustamante, A.; Garcia Concha, P.A.; Poblete-Aro, C.; Valenzuela, R.; Garcia-Diaz, D.F. Microencapsulated pomegranate peel extract induces mitochondrial complex IV activity and prevents mitochondrial cristae alteration in brown adipose tissue in mice fed on a high-fat diet. Br. J. Nutr., 2021, 126(6), 825-836.
[http://dx.doi.org/10.1017/S000711452000481X] [PMID: 33256858]
[136]
Wang, S.; Yang, F.J.; Shang, L.C.; Zhang, Y.H.; Zhou, Y.; Shi, X.L. Puerarin protects against highfat highsucrose dietinduced nonalcoholic fatty liver disease by modulating PARP1/PI3K/AKT signaling pathway and facilitating mitochondrial homeostasis. Phytother. Res., 2019, 33(9), 2347-2359.
[http://dx.doi.org/10.1002/ptr.6417] [PMID: 31273855]
[137]
Li, X.; Shi, Z.; Zhu, Y.; Shen, T.; Wang, H.; Shui, G.; Loor, J.J.; Fang, Z.; Chen, M.; Wang, X.; Peng, Z.; Song, Y.; Wang, Z.; Du, X.; Liu, G. Cyanidin3 O glucoside improves nonalcoholic fatty liver disease by promoting PINK1mediated mitophagy in mice. Br. J. Pharmacol., 2020, 177(15), 3591-3607.
[http://dx.doi.org/10.1111/bph.15083] [PMID: 32343398]
[138]
Badolati, N.; Masselli, R.; Sommella, E.; Sagliocchi, S.; Di Minno, A.; Salviati, E.; Campiglia, P.; Dentice, M.; Tenore, G.C.; Stornaiuolo, M.; Novellino, E. The hepatoprotective effect of taurisolo, a nutraceutical enriched in resveratrol and polyphenols, involves activation of mitochondrial metabolism in mice liver. Antioxidants, 2020, 9(5), 410.
[http://dx.doi.org/10.3390/antiox9050410] [PMID: 32403305]
[139]
Cheng, K.; Jia, P.; Ji, S.; Song, Z.; Zhang, H.; Zhang, L.; Wang, T. Improvement of the hepatic lipid status in intrauterine growth retarded pigs by resveratrol is related to the inhibition of mitochondrial dysfunction, oxidative stress and inflammation. Food Funct., 2021, 12(1), 278-290.
[http://dx.doi.org/10.1039/D0FO01459A] [PMID: 33300526]
[140]
Yan, C.; Sun, W.; Wang, X.; Long, J.; Liu, X.; Feng, Z.; Liu, J. Punicalagin attenuates palmitate-induced lipotoxicity in HepG2 cells by activating the Keap1-Nrf2 antioxidant defense system. Mol. Nutr. Food Res., 2016, 60(5), 1139-1149.
[http://dx.doi.org/10.1002/mnfr.201500490] [PMID: 26989875]
[141]
Rashidzadeh, H.; Danafar, H.; Rahimi, H.; Mozafari, F.; Salehiabar, M.; Rahmati, M.A.; Rahamooz-Haghighi, S.; Mousazadeh, N.; Mohammadi, A.; Ertas, Y.N.; Ramazani, A.; Huseynova, I.; Khalilov, R.; Davaran, S.; Webster, T.J.; Kavetskyy, T.; Eftekhari, A.; Nosrati, H.; Mirsaeidi, M. Nanotechnology against the novel coronavirus (severe acute respiratory syndrome coronavirus 2): Diagnosis, treatment, therapy and future perspectives. Nanomedicine (Lond.), 2021, 16(6), 497-516.
[http://dx.doi.org/10.2217/nnm-2020-0441] [PMID: 33683164]
[142]
Santos, V. da S.; Koji Miyasaki, E.; Cardoso, L.P.; Badan Ribeiro, A.P.; Andrade Santana, M.H. Crystallization, polymorphism and stability of nanostructured lipid carriers developed with soybean oil, fully hydrogenated soybean oil and free phytosterols for food applications. J. Nanotechnol. Res., 2019, 298, 125053.
[http://dx.doi.org/10.26502/jnr.2688-8521001]
[143]
Mousavi, S.N.; Hosseini, E.; Seyed Dorraji, M.S.; Sheikh Mohammadi, S.; Pourmansouri, Z.; Rasoulifard, M.H.; Doosti, M.; Chiti, H. Synthesis of a green bigel using cottonseed oil/cannabis oil/alginate/ferula gum for quercetin release: Synergistic effects for treating infertility in rats. Int. J. Biol. Macromol., 2021, 177, 157-165.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.121] [PMID: 33609576]
[144]
Santos, V. da S.; Braz, B.B.; Silva, A.A.; Cardoso, L.P.; Ribeiro, A.P.B.; Santana, M.H.A. Nanostructured lipid carriers loaded with free phytosterols for food applications. Food Chem., 2019, 298(May), 125053.
[http://dx.doi.org/10.1016/j.foodchem.2019.125053]
[145]
Ahmadian, E.; Eftekhari, A.; Babaei, H.; Nayebi, A.M.; Eghbal, M.A. Anti-cancer effects of citalopram on hepatocellular carcinoma cells occur via cytochrome C release and the activation of NF-kB. Anticancer. Agents Med. Chem., 2017, 17(11), 1570-1577.
[http://dx.doi.org/10.2174/1871520617666170327155930] [PMID: 28356024]
[146]
Ahmadian, E.; Eftekhari, A.; Kavetskyy, T.; Khosroushahi, A.Y.; Turksoy, V.A.; Khalilov, R. Effects of quercetin loaded nanostructured lipid carriers on the paraquat-induced toxicity in human lymphocytes. Pestic. Biochem. Physiol., 2020, 167, 104586.
[http://dx.doi.org/10.1016/j.pestbp.2020.104586] [PMID: 32527420]
[147]
Gabandé-Rodríguez, E.; Gómez de las Heras, M.M.; Mittelbrunn, M. Control of inflammation by calorie restriction mimetics: on the crossroad of autophagy and mitochondria. Cells, 2019, 9(1), 82.
[http://dx.doi.org/10.3390/cells9010082] [PMID: 31905682]
[148]
Hung, L-M.; Chang, C.C.; Chang, C-Y.; Lin, P-C.; Huang, J-P.; Chen, K-H.; Yen, T-H. Administration of low-dose resveratrol attenuated hepatic inflammation and lipid accumulation in high cholesterol-fructose diet-induced rat model of nonalcoholic fatty liver disease. Chin. J. Physiol., 2020, 63(4), 149-155.
[http://dx.doi.org/10.4103/CJP.CJP_43_20] [PMID: 32859881]
[149]
Yessenkyzy, A.; Saliev, T.; Zhanaliyeva, M.; Masoud, A.R.; Umbayev, B.; Sergazy, S.; Krivykh, E.; Gulyayev, A.; Nurgozhin, T. Polyphenols as caloric-restriction mimetics and autophagy inducers in aging research. Nutrients, 2020, 12(5), 1344.
[http://dx.doi.org/10.3390/nu12051344] [PMID: 32397145]
[150]
Mariño, G.; Pietrocola, F.; Madeo, F.; Kroemer, G. Caloric restriction mimetics: Natural/physiological pharmacological autophagy inducers. Autophagy, 2014, 10(11), 1879-1882.
[http://dx.doi.org/10.4161/auto.36413] [PMID: 25484097]
[151]
Davinelli, S.; De Stefani, D.; De Vivo, I.; Scapagnini, G. Polyphenols as caloric restriction mimetics regulating mi-tochondrial biogenesis and mitophagy. Trends Endocrinol. Metab., 2020, 31(7), 536-550.
[http://dx.doi.org/10.1016/j.tem.2020.02.011] [PMID: 32521237]
[152]
Bayele, H.K.; Debnam, E.S.; Srai, K.S. Nrf2 transcriptional derepression from Keap1 by dietary polyphenols. Biochem. Biophys. Res. Commun., 2016, 469(3), 521-528.
[http://dx.doi.org/10.1016/j.bbrc.2015.11.103] [PMID: 26655811]
[153]
Kulkarni, S.R.; Donepudi, A.C.; Xu, J.; Wei, W.; Cheng, Q.C.; Driscoll, M.V.; Johnson, D.A.; Johnson, J.A.; Li, X.; Slitt, A.L. Fasting induces nuclear factor E2-related factor 2 and ATP-binding Cassette transporters via protein kinase A and Sirtuin-1 in mouse and human. Antioxid. Redox Signal., 2014, 20(1), 15-30.
[http://dx.doi.org/10.1089/ars.2012.5082] [PMID: 23725046]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy