Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Prediction of Rhizoma Drynariae Targets in the Treatment of Osteonecrosis of the Femoral Head based on Network Pharmacology and Experimental Verification

Author(s): Yong Zhang, Qiuyan Weng, Tongzhou Hu, Xiaohan Shen and Jinming Han*

Volume 19, Issue 1, 2023

Published on: 15 December, 2022

Page: [13 - 23] Pages: 11

DOI: 10.2174/1573409918666221006122426

Price: $65

conference banner
Abstract

Background: Rhizoma drynariae, a classic prescription in traditional Chinese medicine, has long been used for the treatment of osteonecrosis of the femoral head (ONFH), but its potential targets and molecular mechanisms remain to be further explored.

Objective: This study aims to explore the mechanism of Rhizoma drynariae in ONFH treatment via network pharmacology and in vitro experiments.

Methods: Targets of Rhizoma drynariae and ONFH were predicted using relevant databases, and intersection analysis was conducted to screen for shared targets. A PPI network of the shared targets was built using STRING to identify the key targets. Functional enrichment analyses of Gene Ontology and KEGG pathway data were carried out using R software. The compound-target-pathway network was constructed for Rhizoma Drynariae in the treatment with ONFH using Cytoscape 3.9.0. Cell proliferation was assessed using CCK8 and apoptosis was detected using (Propidium Iodide) PI staining and western blotting.

Results: This study depicts the interrelationship of the bioactive compounds of Rhizoma drynariae with ONFH-associated signaling pathways and target receptors and is a potential reagent for ONFH treatment.

Conclusion: Based on a network pharmacology analysis and in vitro experiment, we predicted and validated the active compounds and potential targets of Rhizoma drynariae, provide valuable evidence of Rhizoma Drynariae in future ONFH treatment.

Graphical Abstract

[1]
Zalavras, C.G.; Lieberman, J.R. Osteonecrosis of the femoral head: Evaluation and treatment. J. Am. Acad. Orthop. Surg., 2014, 22(7), 455-464.
[http://dx.doi.org/10.5435/JAAOS-22-07-455] [PMID: 24966252]
[2]
Ilardi, C.F.; Sokoloff, L. Secondary osteonecrosis in osteoarthritis of the femoral head. Hum. Pathol., 1984, 15(1), 79-83.
[http://dx.doi.org/10.1016/S0046-8177(84)80334-2] [PMID: 6693113]
[3]
Zhao, D.W.; Yu, M.; Hu, K.; Wang, W.; Yang, L.; Wang, B.J.; Gao, X.H.; Guo, Y.M.; Xu, Y.Q.; Wei, Y.S.; Tian, S.M.; Yang, F.; Wang, N.; Huang, S.B.; Xie, H.; Wei, X.W.; Jiang, H.S.; Zang, Y.Q.; Ai, J.; Chen, Y.L.; Lei, G.H.; Li, Y.J.; Tian, G.; Li, Z.S.; Cao, Y.; Ma, L. Prevalence of nontraumatic osteonecrosis of the femoral head and its associated risk factors in the Chinese population: Results from a nationally representative survey. Chin. Med. J., 2015, 128(21), 2843-2850.
[http://dx.doi.org/10.4103/0366-6999.168017] [PMID: 26521779]
[4]
McGrory, B.J.; York, S.C.; Iorio, R.; Macaulay, W.; Pelker, R.R.; Parsley, B.S.; Teeny, S.M. Current practices of AAHKS members in the treatment of adult osteonecrosis of the femoral head. J. Bone Joint Surg. Am., 2007, 89(6), 1194-1204.
[http://dx.doi.org/10.2106/00004623-200706000-00006] [PMID: 17545421]
[5]
Inal, S.; Gok, K.; Gok, A.; Pinar, A.M.; Inal, C. Comparison of biomechanical effects of different configurations of Kirschner wires on the epiphyseal plate and stability in a salter-Harris type 2 distal femoral fracture model. J. Am. Podiatr. Med. Assoc., 2019, 109(1), 13-21.
[http://dx.doi.org/10.7547/16-112] [PMID: 30964320]
[6]
Floerkemeier, T.; Budde, S.; Gronewold, J.; Radtke, K.; Ettinger, M.; Windhagen, H.; von Lewinski, G. Short-stem hip arthroplasty in osteonecrosis of the femoral head. Arch. Orthop. Trauma Surg., 2015, 135(5), 715-722.
[http://dx.doi.org/10.1007/s00402-015-2195-9] [PMID: 25801808]
[7]
Inal, S.; Taspinar, F.; Gulbandilar, E.; Gok, K. Comparison of the biomechanical effects of pertrochanteric fixator and dynamic hip screw on an intertrochanteric femoral fracture using the finite element method. Int. J. Med. Robot., 2015, 11(1), 95-103.
[http://dx.doi.org/10.1002/rcs.1584] [PMID: 24782281]
[8]
Gok, K.; Inal, S.; Gok, A.; Pinar, A.M. Biomechanical effects of three different configurations in Salter Harris type 3 distal femoral epiphyseal fractures. J. Braz. Soc. Mech. Sci. Eng., 2017, 39(4), 1069-1077.
[http://dx.doi.org/10.1007/s40430-016-0666-8]
[9]
Wang, M.F.; Ceccarelli, M.; Carbone, G. Experimental tests on operation performance of a LARM leg mechanism with 3-DOF parallel architecture. Mech. Sci., 2015, 6(1), 1-8.
[http://dx.doi.org/10.5194/ms-6-1-2015]
[10]
Gok, K.; Inal, S.; Gok, A.; Gulbandilar, E. Comparison of effects of different screw materials in the triangle fixation of femoral neck fractures. J. Mater. Sci. Mater. Med., 2017, 28(5), 81.
[http://dx.doi.org/10.1007/s10856-017-5890-y] [PMID: 28397164]
[11]
Amanatullah, D.F.; Strauss, E.J.; Di Cesare, P.E. Current management options for osteonecrosis of the femoral head: Part 1, diagnosis and nonoperative management. Am. J. Orthop., 2011, 40(9), E186-E192.
[PMID: 22022684]
[12]
Gonçalves, M.A.; Santos, L.S.; Prata, D.M.; Peixoto, F.C.; da Cunha, E.F.F.; Ramalho, T.C. Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: Application to thermal and solvent effects of MRI probes. Theor. Chem. Acc., 2017, 136(1), 15.
[http://dx.doi.org/10.1007/s00214-016-2037-z]
[13]
Arai, R.; Takahashi, D.; Inoue, M.; Irie, T.; Asano, T.; Konno, T.; Terkawi, M.A.; Onodera, T.; Kondo, E.; Iwasaki, N. Efficacy of teriparatide in the treatment of nontraumatic osteonecrosis of the femoral head: A retrospective comparative study with alendronate. BMC Musculoskelet. Disord., 2017, 18(1), 24.
[http://dx.doi.org/10.1186/s12891-016-1379-y] [PMID: 28103867]
[14]
Nozaki, Y.; Kumagai, K.; Miyata, N.; Niwa, M. Pravastatin reduces steroid-induced osteonecrosis of the femoral head in SHRSP rats. Acta Orthop., 2012, 83(1), 87-92.
[http://dx.doi.org/10.3109/17453674.2011.641103] [PMID: 22313369]
[15]
Chan, K. Progress in traditional Chinese medicine. Trends Pharmacol. Sci., 1995, 16(6), 182-187.
[http://dx.doi.org/10.1016/S0165-6147(00)89019-7] [PMID: 7652926]
[16]
Tang, J.L.; Liu, B.Y.; Ma, K.W. Traditional Chinese medicine. Lancet, 2008, 372(9654), 1938-1940.
[http://dx.doi.org/10.1016/S0140-6736(08)61354-9] [PMID: 18930523]
[17]
Yu, T.; Zhang, Z.; Xie, L.; Ke, X.; Liu, Y. The influence of traditional Chinese medicine constitutions on the potential repair capacity after osteonecrosis of the femoral head. Complement. Ther. Med., 2016, 29, 89-93.
[http://dx.doi.org/10.1016/j.ctim.2016.09.010] [PMID: 27912962]
[18]
Huang, Z.; Fu, F.; Ye, H.; Gao, H.; Tan, B.; Wang, R.; Lin, N.; Qin, L.; Chen, W. Chinese herbal Huo-Gu formula for the treatment of steroid-associated osteonecrosis of femoral head: A 14-year follow-up of convalescent SARS patients. J. Orthop. Translat., 2020, 23, 122-131.
[http://dx.doi.org/10.1016/j.jot.2020.03.014] [PMID: 32292697]
[19]
Vakil, N.; Sparberg, M. Steroid-related osteonecrosis in inflammatory bowel disease. Gastroenterology, 1989, 96(1), 62-67.
[http://dx.doi.org/10.1016/0016-5085(89)90764-6] [PMID: 2909438]
[20]
Zhu, Y.P. Yang-tonifying herbs. Chinese Materia Medica, Chemistry, Pharmacology and Applications; CRC press, 1998.
[21]
Wang, H.; Liu, J.; Zhao, Y. Progress on integrated Chinese and Western medicine in the treatment of osteoarthritis. Chin. J. Integr. Med., 2010, 16(4), 378-384.
[http://dx.doi.org/10.1007/s11655-010-0512-2] [PMID: 20697952]
[22]
Gan, D.; Xu, X.; Chen, D.; Feng, P.; Xu, Z. Network pharmacology-based pharmacological mechanism of the Chinese medicine rhizoma drynariae against osteoporosis. Med. Sci. Monit., 2019, 25, 5700-5716.
[http://dx.doi.org/10.12659/MSM.915170] [PMID: 31368456]
[23]
Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111.
[http://dx.doi.org/10.1038/nbt1007-1110] [PMID: 17921993]
[24]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[25]
Di, L.; Kerns, E. Drug-like properties: Concepts, structure design and methods from ADME to toxicity optimization; Academic press, 2015.
[26]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc, Bioinformatics, 2016, 54(1), 30.1-33.
[http://dx.doi.org/10.1002/cpbi.5] [PMID: 27322403]
[27]
Chen, C.Y.; Peng, W.H.; Tsai, K.D.; Hsu, S.L. Luteolin suppresses inflammation-associated gene expression by blocking NF-κB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci., 2007, 81(23-24), 1602-1614.
[http://dx.doi.org/10.1016/j.lfs.2007.09.028] [PMID: 17977562]
[28]
Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol., 2018, 225, 342-358.
[http://dx.doi.org/10.1016/j.jep.2018.05.019] [PMID: 29801717]
[29]
Yan, Z.; Zhan, J.; Qi, W.; Lin, J.; Huang, Y.; Xue, X.; Pan, X. The protective effect of luteolin in glucocorticoid-induced osteonecrosis of the femoral head. Front. Pharmacol., 2020, 11, 1195.
[http://dx.doi.org/10.3389/fphar.2020.01195] [PMID: 32903480]
[30]
Devi, K.P.; Malar, D.S.; Nabavi, S.F.; Sureda, A.; Xiao, J.; Nabavi, S.M.; Daglia, M. Kaempferol and inflammation: From chemistry to medicine. Pharmacol. Res., 2015, 99, 1-10.
[http://dx.doi.org/10.1016/j.phrs.2015.05.002] [PMID: 25982933]
[31]
Park, M.Y.; Ji, G.E.; Sung, M.K. Dietary kaempferol suppresses inflammation of dextran sulfate sodium-induced colitis in mice. Dig. Dis. Sci., 2012, 57(2), 355-363.
[http://dx.doi.org/10.1007/s10620-011-1883-8] [PMID: 21901258]
[32]
Duan, L.; Zuo, J.; Zhang, F.; Li, B.; Xu, Z.; Zhang, H.; Yang, B.; Song, W.; Jiang, J. Magnetic targeting of HU-MSCs in the treatment of glucocorticoid-associated osteonecrosis of the femoral head through Akt/Bcl2/Bad/Caspase-3 pathway. Int. J. Nanomedicine, 2020, 15, 3605-3620.
[http://dx.doi.org/10.2147/IJN.S244453] [PMID: 32547017]
[33]
Nonokawa, M.; Shimizu, T.; Yoshinari, M.; Hashimoto, Y.; Nakamura, Y.; Takahashi, D.; Asano, T.; Nishibata, Y.; Masuda, S.; Nakazawa, D.; Tanaka, S.; Tomaru, U.; Iwasaki, N.; Ishizu, A. Association of neutrophil extracellular traps with the development of idiopathic osteonecrosis of the femoral head. Am. J. Pathol., 2020, 190(11), 2282-2289.
[http://dx.doi.org/10.1016/j.ajpath.2020.07.008] [PMID: 32702358]
[34]
Lin, L.; Fu, P.; Chen, N.; Gao, N.; Cao, Q.; Yue, K.; Xu, T.; Zhang, C.; Zhang, C.; Liu, F.; Wang, X.; Huang, S. Total flavonoids of Rhizoma drynariae protect hepatocytes against aflatoxin B1-induced oxidative stress and apoptosis in broiler chickens. Ecotoxicol. Environ. Saf., 2022, 230, 113148.
[http://dx.doi.org/10.1016/j.ecoenv.2021.113148] [PMID: 34995912]
[35]
He, L.; Ma, C.; Cai, S.; Hou, R.; Xu, H.; Liu, J. Study on the mechanism of treating femoral head necrosis with drynariae rhizoma based on network pharmacology. Comput Math Methods Med, 2022, 2022
[http://dx.doi.org/10.1155/2022/3631722]
[36]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[37]
Adapala, N.S.; Yamaguchi, R.; Phipps, M.; Aruwajoye, O.; Kim, H.K.W. Necrotic bone stimulates proinflammatory responses in macrophages through the activation of toll-like receptor 4. Am. J. Pathol., 2016, 186(11), 2987-2999.
[http://dx.doi.org/10.1016/j.ajpath.2016.06.024] [PMID: 27648614]
[38]
Ham, S.W.; Jeon, H.Y.; Jin, X.; Kim, E.J.; Kim, J.K.; Shin, Y.J.; Lee, Y.; Kim, S.H.; Lee, S.Y.; Seo, S.; Park, M.G.; Kim, H.M.; Nam, D.H.; Kim, H. TP53 gain-of-function mutation promotes inflammation in glioblastoma. Cell Death Differ., 2019, 26(3), 409-425.
[http://dx.doi.org/10.1038/s41418-018-0126-3] [PMID: 29786075]
[39]
Zalavras, C.; Shah, S.; Birnbaum, M.J.; Frenkel, B. Role of apoptosis in glucocorticoid-induced osteoporosis and osteonecrosis. Crit. Rev. Eukaryot. Gene Expr., 2003, 13, 221-235.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.v13.i24.140]
[40]
Deng, S.; Dai, G.; Chen, S.; Nie, Z.; Zhou, J.; Fang, H.; Peng, H. Dexamethasone induces osteoblast apoptosis through ROS-PI3K/AKT/GSK3β signaling pathway. Biomed. Pharmacother., 2019, 110, 602-608.
[http://dx.doi.org/10.1016/j.biopha.2018.11.103] [PMID: 30537677]
[41]
Yamaguchi, R.; Kamiya, N.; Adapala, N.S.; Drissi, H.; Kim, H.K.W. HIF-1-dependent IL-6 activation in articular chondrocytes initiating synovitis in femoral head ischemic osteonecrosis. J. Bone Joint Surg. Am., 2016, 98(13), 1122-1131.
[http://dx.doi.org/10.2106/JBJS.15.01209] [PMID: 27385686]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy