Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

The Role of Cartilage Stem/Progenitor Cells in Cartilage Repair in Osteoarthritis

Author(s): Ning Hu, Jingwen Qiu, Bo Xu, Shunhao Zhang, Zijian Guo, Jing Xie and Wenbin Yang*

Volume 18, Issue 7, 2023

Published on: 31 October, 2022

Page: [892 - 903] Pages: 12

DOI: 10.2174/1574888X17666221006113739

Price: $65

Abstract

Osteoarthritis (OA) is a degenerative joint disease characterized by the loss of cartilage, which seriously affects the quality of patient's life and may even cause permanent sequelae. The treatment of OA is diversified, mostly limited to relieving clinical symptoms. Less invasive treatments that can cure OA are still lacking. With the rise of tissue-cell engineering, stem cell therapy has gradually aroused great interest in treating OA. Cartilage stem/progenitor cells (CSPCs), a type of stem cell found on the surface of articular cartilage, have many similarities with mesenchymal stem cells (MSCs). These cells can be isolated and cultured from animals and humans and exist in articular cartilage over the body, such as the knee joint, patellofemoral joint, and temporomandibular joint. Due to their strong proliferative and chondrogenic differentiation abilities, CSPCs may contribute a lot to cartilage regeneration and repair in OA. We will provide an overview of the biological characteristics of CSPCs and their role in OA in combination with the research progress. Despite some existing limitations, CSPCs still offer an innovative idea for OA treatment with great advantages.

Keywords: Cartilage stem cell, Cartilage progenitor cell, Osteoarthritis, Cartilage, Regenerative therapy

Graphical Abstract

[1]
Xia B. Di Chen, Zhang J, Hu S, Jin H, Tong P. Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcif Tissue Int 2014; 95(6): 495-505.
[http://dx.doi.org/10.1007/s00223-014-9917-9] [PMID: 25311420]
[2]
Charlier E, Relic B, Deroyer C, et al. Insights on molecular mechanisms of chondrocytes death in osteoarthritis. Int J Mol Sci 2016; 17(12): 2146.
[http://dx.doi.org/10.3390/ijms17122146] [PMID: 27999417]
[3]
Mehana ESE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci 2019; 234: 116786.
[http://dx.doi.org/10.1016/j.lfs.2019.116786] [PMID: 31445934]
[4]
Zhang R, Ma J, Han J, Zhang W, Ma J. Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis. Am J Transl Res 2019; 11(10): 6275-89.
[PMID: 31737182]
[5]
Zhao Y, Xie L. An update on mesenchymal stem cell-centered therapies in temporomandibular joint osteoarthritis. Stem Cells Int 2021; 2021: 6619527.
[http://dx.doi.org/10.1155/2021/6619527] [PMID: 33868408]
[6]
Hayes AJ, MacPherson S, Morrison H, Dowthwaite G, Archer CW. The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol 2001; 203(6): 469-79.
[http://dx.doi.org/10.1007/s004290100178] [PMID: 11453164]
[7]
Barbero A, Ploegert S, Heberer M, Martin I. Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthritis Rheum 2003; 48(5): 1315-25.
[http://dx.doi.org/10.1002/art.10950] [PMID: 12746904]
[8]
Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci 2004; 117(6): 889-97.
[http://dx.doi.org/10.1242/jcs.00912] [PMID: 14762107]
[9]
Alsalameh S, Amin R, Gemba T, Lotz M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 2004; 50(5): 1522-32.
[http://dx.doi.org/10.1002/art.20269] [PMID: 15146422]
[10]
Koelling S, Kruegel J, Irmer M, et al. Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 2009; 4(4): 324-35.
[http://dx.doi.org/10.1016/j.stem.2009.01.015] [PMID: 19341622]
[11]
Tong W, Geng Y, Huang Y, et al. In vivo identification and induction of articular cartilage stem cells by inhibiting NF-κB signaling in osteoarthritis. Stem Cells 2015; 33(10): 3125-37.
[http://dx.doi.org/10.1002/stem.2124] [PMID: 26285913]
[12]
Matta C, Lewis R, Fellows C, et al. Transcriptome‐based screening of ion channels and transporters in a migratory chondroprogenitor cell line isolated from late‐stage osteoarthritic cartilage. J Cell Physiol 2021; 236(11): 7421-39.
[http://dx.doi.org/10.1002/jcp.30413] [PMID: 34008188]
[13]
Turkiewicz A, Kiadaliri AA, Englund M. Cause-specific mortality in osteoarthritis of peripheral joints. Osteoarthritis Cartilage 2019; 27(6): 848-54.
[http://dx.doi.org/10.1016/j.joca.2019.02.793] [PMID: 30797945]
[14]
Williams R, Khan IM, Richardson K, et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One 2010; 5(10): e13246.
[http://dx.doi.org/10.1371/journal.pone.0013246] [PMID: 20976230]
[15]
Xue K, Xia W, Zhang X, et al. Isolation and identification of stem cells in different subtype of cartilage tissue. Expert Opin Biol Ther 2015; 15(5): 623-32.
[http://dx.doi.org/10.1517/14712598.2015.989207] [PMID: 25556915]
[16]
Xue K, Zhang X, Gao Z, Xia W, Qi L, Liu K. Cartilage progenitor cells combined with PHBV in cartilage tissue engineering. J Transl Med 2019; 17(1): 104.
[http://dx.doi.org/10.1186/s12967-019-1855-x] [PMID: 30925884]
[17]
Shen W, Chen J, Zhu T, et al. Intra-articular injection of human meniscus stem/progenitor cells promotes meniscus regeneration and ameliorates osteoarthritis through stromal cell-derived factor-1/CXCR4-mediated homing. Stem Cells Transl Med 2014; 3(3): 387-94.
[http://dx.doi.org/10.5966/sctm.2012-0170] [PMID: 24448516]
[18]
Mizuno M, Kobayashi S, Takebe T, et al. Brief report: Reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage. Stem Cells 2014; 32(3): 816-21.
[http://dx.doi.org/10.1002/stem.1529] [PMID: 24038678]
[19]
Seol D, Zhou C, Brouillette MJ, et al. Characteristics of meniscus progenitor cells migrated from injured meniscus. J Orthop Res 2017; 35(9): 1966-72.
[http://dx.doi.org/10.1002/jor.23472] [PMID: 27813166]
[20]
Ansari AM, Ahmed AK, Matsangos AE, et al. Cellular GFP toxicity and immunogenicity: Potential confounders in in vivo cell tracking experiments. Stem Cell Rev 2016; 12(5): 553-9.
[http://dx.doi.org/10.1007/s12015-016-9670-8] [PMID: 27435468]
[21]
Burns TC, Ortiz GXR, Gutiérrez PM, et al. Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation: A word of caution. Stem Cells 2006; 24(4): 1121-7.
[http://dx.doi.org/10.1634/stemcells.2005-0463] [PMID: 16373692]
[22]
Tao R, Sun TJ, Han YQ, Xu G, Liu J, Han YF. Optimization of in vitro cell labeling methods for human umbilical cord-derived mesenchymal stem cells. Eur Rev Med Pharmacol Sci 2014; 18(8): 1127-34.
[PMID: 24817285]
[23]
Liu W, Frank JA. Detection and quantification of magnetically labeled cells by cellular MRI. Eur J Radiol 2009; 70(2): 258-64.
[http://dx.doi.org/10.1016/j.ejrad.2008.09.021] [PMID: 18995978]
[24]
Lee JB, Kuroda S, Shichinohe H, et al. A pre-clinical assessment model of rat autogeneic bone marrow stromal cell transplantation into the central nervous system. Brain Res Brain Res Protoc 2004; 14(1): 37-44.
[http://dx.doi.org/10.1016/j.brainresprot.2004.09.004] [PMID: 15519950]
[25]
Hacein BAS, Von KC, Schmidt M, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348(3): 255-6.
[http://dx.doi.org/10.1056/NEJM200301163480314] [PMID: 12529469]
[26]
Saha S, Yang XB, Tanner S, Curran S, Wood D, Kirkham J. The effects of iron oxide incorporation on the chondrogenic potential of three human cell types. J Tissue Eng Regen Med 2013; 7(6): 461-9.
[http://dx.doi.org/10.1002/term.544] [PMID: 22396122]
[27]
Vinod E, James JV, Kachroo U, Sathishkumar S, Livingston A, Ramasamy B. Comparison of incremental concentrations of micron-sized superparamagnetic iron oxide for labelling articular cartilage derived chondroprogenitors. Acta Histochem 2019; 121(7): 791-7.
[http://dx.doi.org/10.1016/j.acthis.2019.07.004] [PMID: 31326114]
[28]
Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - Current trends and future prospective. Biosci Rep 2015; 35(2): e00191.
[http://dx.doi.org/10.1042/BSR20150025] [PMID: 25797907]
[29]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International society for cellular therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[30]
Ekram S, Khalid S, Bashir I, Salim A, Khan I. Human umbilical cord-derived mesenchymal stem cells and their chondroprogenitor derivatives reduced pain and inflammation signaling and promote regeneration in a rat intervertebral disc degeneration model. Mol Cell Biochem 2021; 476(8): 3191-205.
[http://dx.doi.org/10.1007/s11010-021-04155-9] [PMID: 33864569]
[31]
Ji Q, Zheng Y, Zhang G, et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann Rheum Dis 2019; 78(1): 100-10.
[http://dx.doi.org/10.1136/annrheumdis-2017-212863] [PMID: 30026257]
[32]
Grandi FC, Baskar R, Smeriglio P, et al. Single-cell mass cytometry reveals cross-talk between inflammation-dampening and inflammation-amplifying cells in osteoarthritic cartilage. Sci Adv 2020; 6(11): eaay5352.
[http://dx.doi.org/10.1126/sciadv.aay5352] [PMID: 32201724]
[33]
Vinod E, Parameswaran R, Amirtham SM, Rebekah G, Kachroo U. Comparative analysis of human bone marrow mesenchymal stem cells, articular cartilage derived chondroprogenitors and chondrocytes to determine cell superiority for cartilage regeneration. Acta Histochem 2021; 123(4): 151713.
[http://dx.doi.org/10.1016/j.acthis.2021.151713] [PMID: 33894479]
[34]
Kachroo U, Ramasamy B, Vinod E. Evaluation of CD49e as a distinguishing marker for human articular cartilage derived chondroprogenitors. Knee 2020; 27(3): 833-7.
[http://dx.doi.org/10.1016/j.knee.2020.04.002] [PMID: 32317141]
[35]
Jiang Y, Tuan RS. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat Rev Rheumatol 2015; 11(4): 206-12.
[http://dx.doi.org/10.1038/nrrheum.2014.200] [PMID: 25536487]
[36]
Flores TE, Orozco BA, Gonzalez ROR, Carrasco YA, Gazarian K, Cuneo PS. The CD271 expression could be alone for establisher phenotypic marker in Bone Marrow derived mesenchymal stem cells. Folia Histochem Cytobiol 2010; 48(4): 682-6.
[PMID: 21478116]
[37]
Jiang Y, Cai Y, Zhang W, et al. Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration. Stem Cells Transl Med 2016; 5(6): 733-44.
[http://dx.doi.org/10.5966/sctm.2015-0192] [PMID: 27130221]
[38]
Mabuchi Y, Houlihan DD, Akazawa C, Okano H, Matsuzaki Y. Prospective isolation of murine and human bone marrow mesenchymal stem cells based on surface markers. Stem Cells Int 2013; 2013: 507301.
[http://dx.doi.org/10.1155/2013/507301] [PMID: 23766770]
[39]
Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol 2013; 9(10): 584-94.
[http://dx.doi.org/10.1038/nrrheum.2013.109] [PMID: 23881068]
[40]
Murray IR, West CC, Hardy WR, et al. Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci 2014; 71(8): 1353-74.
[http://dx.doi.org/10.1007/s00018-013-1462-6] [PMID: 24158496]
[41]
Vinod E, Kachroo U, Rebekah G, Yadav BK, Ramasamy B. Characterization of human articular chondrocytes and chondroprogenitors derived from non-diseased and osteoarthritic knee joints to assess superiority for cell-based therapy. Acta Histochem 2020; 122(6): 151588.
[http://dx.doi.org/10.1016/j.acthis.2020.151588] [PMID: 32778244]
[42]
Vinod E, Parameswaran R, Manickam Amirtham S, Livingston A, Ramasamy B, Kachroo U. Comparison of the efficiency of laminin versus fibronectin as a differential adhesion assay for isolation of human articular cartilage derived chondroprogenitors. Connect Tissue Res 2021; 62(4): 427-35.
[http://dx.doi.org/10.1080/03008207.2020.1761344] [PMID: 32406271]
[43]
Karlsson C, Stenhamre H, Sandstedt J, Lindahl A. Neither notch1 expression nor cellular size correlate with mesenchymal stem cell properties of adult articular chondrocytes. Cells Tissues Organs 2008; 187(4): 275-85.
[http://dx.doi.org/10.1159/000113409] [PMID: 18187938]
[44]
McCarthy HE, Bara JJ, Brakspear K, Singhrao SK, Archer CW. The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse. Vet J 2012; 192(3): 345-51.
[http://dx.doi.org/10.1016/j.tvjl.2011.08.036] [PMID: 21968294]
[45]
Hattori S, Oxford C, Reddi AH. Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochem Biophys Res Commun 2007; 358(1): 99-103.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.142] [PMID: 17482567]
[46]
Bernstein P, Sperling I, Corbeil D, Hempel U, Fickert S. Progenitor cells from cartilage-No osteoarthritis-grade-specific differences in stem cell marker expression. Biotechnol Prog 2013; 29(1): 206-12.
[http://dx.doi.org/10.1002/btpr.1668] [PMID: 23172745]
[47]
Fickert S, Fiedler J, Brenner RE. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res 2004; 6(5): R422-32.
[http://dx.doi.org/10.1186/ar1210] [PMID: 15380042]
[48]
Grogan SP, Miyaki S, Asahara H, D’Lima DD, Lotz MK. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther 2009; 11(3): R85.
[http://dx.doi.org/10.1186/ar2719] [PMID: 19500336]
[49]
Li L, Newton PT, Bouderlique T, et al. Superficial cells are self‐renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. FASEB J 2017; 31(3): 1067-84.
[http://dx.doi.org/10.1096/fj.201600918R] [PMID: 27965322]
[50]
Bi R, Yin Q, Mei J, et al. Identification of human temporomandibular joint fibrocartilage stem cells with distinct chondrogenic capacity. Osteoarthritis Cartilage 2020; 28(6): 842-52.
[http://dx.doi.org/10.1016/j.joca.2020.02.835] [PMID: 32147536]
[51]
Embree MC, Chen M, Pylawka S, et al. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury. Nat Commun 2016; 7(1): 13073.
[http://dx.doi.org/10.1038/ncomms13073] [PMID: 27721375]
[52]
Nathan J, Ruscitto A, Pylawka S, Sohraby A, Shawber CJ, Embree MC. Fibrocartilage stem cells engraft and self-organize into vascularized bone. J Dent Res 2018; 97(3): 329-37.
[http://dx.doi.org/10.1177/0022034517735094] [PMID: 29020504]
[53]
Seol D, McCabe DJ, Choe H, et al. Chondrogenic progenitor cells respond to cartilage injury. Arthritis Rheum 2012; 64(11): 3626-37.
[http://dx.doi.org/10.1002/art.34613] [PMID: 22777600]
[54]
Seol D, Yu Y, Choe H, et al. Effect of short-term enzymatic treatment on cell migration and cartilage regeneration: In vitro organ culture of bovine articular cartilage. Tissue Eng Part A 2014; 20(13-14): 1807-14.
[http://dx.doi.org/10.1089/ten.tea.2013.0444] [PMID: 24428547]
[55]
Joos H, Wildner A, Hogrefe C, Reichel H, Brenner RE. Interleukin-1 beta and tumor necrosis factor alpha inhibit migration activity of chondrogenic progenitor cells from non-fibrillated osteoarthritic cartilage. Arthritis Res Ther 2013; 15(5): R119.
[http://dx.doi.org/10.1186/ar4299] [PMID: 24034344]
[56]
Jang KW, Ding L, Seol D, Lim TH, Buckwalter JA, Martin JA. Low-intensity pulsed ultrasound promotes chondrogenic progenitor cell migration via focal adhesion kinase pathway. Ultrasound Med Biol 2014; 40(6): 1177-86.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2013.12.007] [PMID: 24612644]
[57]
Decker RS, Um HB, Dyment NA, et al. Cell origin, volume and arrangement are drivers of articular cartilage formation, morphogenesis and response to injury in mouse limbs. Dev Biol 2017; 426(1): 56-68.
[http://dx.doi.org/10.1016/j.ydbio.2017.04.006] [PMID: 28438606]
[58]
Roelofs AJ, Zupan J, Riemen AHK, et al. Joint morphogenetic cells in the adult mammalian synovium. Nat Commun 2017; 8(1): 15040.
[http://dx.doi.org/10.1038/ncomms15040] [PMID: 28508891]
[59]
Mao G, Xu Y, Long D, et al. Exosome-transported circRNA_0001236 enhances chondrogenesis and suppress cartilage degradation via the miR-3677-3p/Sox9 axis. Stem Cell Res Ther 2021; 12(1): 389.
[http://dx.doi.org/10.1186/s13287-021-02431-5] [PMID: 34256841]
[60]
Xu G, Liu Y, Zhang C, et al. Temporal and spatial expression of Sox9, Pax1, TGF-β1 and type I and II collagen in human intervertebral disc development. Neurochirurgie 2020; 66(3): 168-73.
[http://dx.doi.org/10.1016/j.neuchi.2019.12.011] [PMID: 32201238]
[61]
Yin Q, Bi RY, Zhu SS. Condylar fcscs are potential resources to delay cartilaginous degeneration and repair joint injury in TMJOA patients. Int J Oral Maxillofac Surg. 2019; 48(Supl. 1): p. 187.
[http://dx.doi.org/10.1016/j.ijom.2019.03.580]
[62]
Murakami S, Lefebvre V, De Crombrugghe B. Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha. J Biol Chem 2000; 275(5): 3687-92.
[http://dx.doi.org/10.1074/jbc.275.5.3687] [PMID: 10652367]
[63]
Tew SR, Clegg PD, Brew CJ, Redmond CM, Hardingham TE. SOX9 transduction of a human chondrocytic cell line identifies novel genes regulated in primary human chondrocytes and in osteoarthritis. Arthritis Res Ther 2007; 9(5): R107.
[http://dx.doi.org/10.1186/ar2311] [PMID: 17935617]
[64]
Zhu L, Zhou J, Zeng J, Zhang X, Shen P, Weng F. The role and mechanism of S100 calcium binding protein B in osteoarthritis cartilage damage repair. Chinese J Reparative and Reconstructive Surg 2018; 32(11): 1429-34.
[PMID: 30417619]
[65]
Diaz RJ, Quintin A, Schoenholzer E, et al. S100A1 and S100B expression patterns identify differentiation status of human articular chondrocytes. J Cell Physiol 2014; 229(8): 1106-17.
[http://dx.doi.org/10.1002/jcp.24547] [PMID: 24402969]
[66]
Song J, Kim D, Chun CH, Jin EJ. MicroRNA-375, a new regulator of cadherin-7, suppresses the migration of chondrogenic progenitors. Cell Signal 2013; 25(3): 698-706.
[http://dx.doi.org/10.1016/j.cellsig.2012.11.014] [PMID: 23178988]
[67]
Buhrmann C, Mobasheri A, Matis U, Shakibaei M. Curcumin mediated suppression of nuclear factor-κB promotes chondrogenic differentiation of mesenchymal stem cells in a high-density co-culture microenvironment. Arthritis Res Ther 2010; 12(4): R127.
[http://dx.doi.org/10.1186/ar3065] [PMID: 20594343]
[68]
Park J, Park H, Lee Y, et al. Blocking TNFα attenuates progressive cartilage matrix degradation in inflammatory arthritis. Exp Ther Med 2021; 22(2): 808.
[http://dx.doi.org/10.3892/etm.2021.10240] [PMID: 34093764]
[69]
Zhu H, Hu Y, Wang C, Zhang X, He D. CircGCN1L1 promotes synoviocyte proliferation and chondrocyte apoptosis by targeting miR-330-3p and TNF-α in TMJ osteoarthritis. Cell Death Dis 2020; 11(4): 284.
[http://dx.doi.org/10.1038/s41419-020-2447-7] [PMID: 32332704]
[70]
Yuan J, Ding W, Wu N, Jiang S, Li W. Protective effect of genistein on condylar cartilage through downregulating NF- κ B expression in experimentally created osteoarthritis rats. BioMed Res Int 2019; 2019: 2629791.
[http://dx.doi.org/10.1155/2019/2629791]
[71]
Bi R, Chen K, Wang Y, et al. Regulating fibrocartilage stem cells via TNF-α/Nf-κB in TMJ osteoarthritis. J Dent Res 2022; 101(3): 312-22.
[http://dx.doi.org/10.1177/00220345211037248] [PMID: 34515572]
[72]
Montaseri A, Busch F, Mobasheri A, et al. IGF-1 and PDGF-bb suppress IL-1β-induced cartilage degradation through down-regulation of NF-κB signaling: involvement of Src/PI-3K/AKT pathway. PLoS One 2011; 6(12): e28663.
[http://dx.doi.org/10.1371/journal.pone.0028663] [PMID: 22194879]
[73]
Saito T, Tanaka S. Molecular mechanisms underlying osteoarthritis development: Notch and NF-κB. Arthritis Res Ther 2017; 19(1): 94.
[http://dx.doi.org/10.1186/s13075-017-1296-y] [PMID: 28506315]
[74]
D’Souza B, Meloty KL, Weinmaster G. Canonical and non-canonical notch ligands. Curr Top Dev Biol 2010; 92: 73-129.
[http://dx.doi.org/10.1016/S0070-2153(10)92003-6] [PMID: 20816393]
[75]
Tian Y, Guo R, Shi B, Chen L, Yang L, Fu Q. MicroRNA-30a promotes chondrogenic differentiation of mesenchymal stem cells through inhibiting delta-like 4 expression. Life Sci 2016; 148: 220-8.
[http://dx.doi.org/10.1016/j.lfs.2016.02.031] [PMID: 26872979]
[76]
Hosaka Y, Saito T, Sugita S, et al. Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. Proc Natl Acad Sci USA 2013; 110(5): 1875-80.
[http://dx.doi.org/10.1073/pnas.1207458110] [PMID: 23319657]
[77]
Sugita S, Hosaka Y, Okada K, et al. Transcription factor Hes1 modulates osteoarthritis development in cooperation with calcium/calmodulin-dependent protein kinase 2. Proc Natl Acad Sci USA 2015; 112(10): 3080-5.
[http://dx.doi.org/10.1073/pnas.1419699112] [PMID: 25733872]
[78]
Chen Y, Zhao B, Zhu Y, Zhao H, Ma C. HIF-1-VEGF-notch mediates angiogenesis in temporomandibular joint osteoarthritis. Am J Transl Res 2019; 11(5): 2969-82.
[PMID: 31217867]
[79]
Monteagudo S, Lories RJ. A notch in the joint that exacerbates osteoarthritis. Nat Rev Rheumatol 2018; 14(10): 563-4.
[http://dx.doi.org/10.1038/s41584-018-0076-7] [PMID: 30185988]
[80]
Ruscitto A, Scarpa V, Morel M, Pylawka S, Shawber CJ, Embree MC. Notch regulates fibrocartilage stem cell fate and is upregulated in inflammatory TMJ arthritis. J Dent Res 2020; 99(10): 1174-81.
[http://dx.doi.org/10.1177/0022034520924656] [PMID: 32442041]
[81]
Lan L, Jiang Y, Zhang W, Li T, Ying B, Zhu S. Expression of notch signaling pathway during osteoarthritis in the temporomandibular joint. J Craniomaxillofac Surg 2017; 45(8): 1338-48.
[http://dx.doi.org/10.1016/j.jcms.2017.05.029] [PMID: 28684076]
[82]
Luo X, Jiang Y, Bi R, Jiang N, Zhu S. Inhibition of notch signaling pathway temporally postpones the cartilage degradation progress of temporomandibular joint arthritis in mice. J Craniomaxillofac Surg 2018; 46(7): 1132-8.
[http://dx.doi.org/10.1016/j.jcms.2018.04.026] [PMID: 29779621]
[83]
Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat Med 2013; 19(2): 179-92.
[http://dx.doi.org/10.1038/nm.3074] [PMID: 23389618]
[84]
Bouaziz W, Funck BT, Lin H, et al. Loss of sclerostin promotes osteoarthritis in mice via β-catenin-dependent and -independent Wnt pathways. Arthritis Res Ther 2015; 17(1): 24.
[http://dx.doi.org/10.1186/s13075-015-0540-6] [PMID: 25656376]
[85]
Zhu M, Tang D, Wu Q, et al. Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice. J Bone Miner Res 2009; 24(1): 12-21.
[http://dx.doi.org/10.1359/jbmr.080901] [PMID: 18767925]
[86]
Liu X, Li X, Hua B, Yang X, Zheng J, Liu S. WNT16 is upregulated early in mouse TMJ osteoarthritis and protects fibrochondrocytes against IL-1β induced inflammatory response by regulation of RUNX2/MMP13 cascade. Bone 2021; 143: 115793.
[http://dx.doi.org/10.1016/j.bone.2020.115793]
[87]
Qin H, Huang S, Ji P, Zhang S, Ren X. Effects of YAP inhibition on proliferation and apoptosis of fibrocartilage stem cells. J Oral Sci Res 2021; 37(11): 1017-22.
[88]
Jiang L, Li J, Zhang C, Shang Y, Lin J. YAP mediated crosstalk between the Wnt and hippo signaling pathways.(Review) Mol Med Rep 2020; 22(5): 4101-6.
[http://dx.doi.org/10.3892/mmr.2016.5010] [PMID: 33000236]
[89]
Negoro T, Takagaki Y, Okura H, Matsuyama A. Trends in clinical trials for articular cartilage repair by cell therapy. NPJ Regen Med 2018; 3(1): 17.
[http://dx.doi.org/10.1038/s41536-018-0055-2] [PMID: 30345076]
[90]
Yu Y, Brouillette MJ, Seol D, Zheng H, Buckwalter JA, Martin JA. Use of recombinant human stromal cell-derived factor 1α-loaded fibrin/hyaluronic acid hydrogel networks to achieve functional repair of full-thickness bovine articular cartilage via homing of chondrogenic progenitor cells. Arthritis Rheumatol 2015; 67(5): 1274-85.
[http://dx.doi.org/10.1002/art.39049] [PMID: 25623441]
[91]
Flannery CR, Zollner R, Corcoran C, et al. Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arthritis Rheum 2009; 60(3): 840-7.
[http://dx.doi.org/10.1002/art.24304] [PMID: 19248108]
[92]
Ravalli S, Szychlinska MA, Lauretta G, Di Rosa M, Musumeci G. Investigating lubricin and known cartilage-based biomarkers of osteoarthritis. Expert Rev Mol Diagn 2020; 20(4): 443-52.
[http://dx.doi.org/10.1080/14737159.2020.1733978] [PMID: 32085680]
[93]
Yasuhara R, Ohta Y, Yuasa T, et al. Roles of β-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells. Lab Invest 2011; 91(12): 1739-52.
[http://dx.doi.org/10.1038/labinvest.2011.144] [PMID: 21968810]
[94]
Wei Y, Luo L, Gui T, et al. Targeting cartilage EGFR pathway for osteoarthritis treatment. Sci Transl Med 2021; 13(576): eabb3946.
[http://dx.doi.org/10.1126/scitranslmed.abb3946] [PMID: 33441426]
[95]
Xuan F, Yano F, Mori D, et al. Wnt/β-catenin signaling contributes to articular cartilage homeostasis through lubricin induction in the superficial zone. Arthritis Res Ther 2019; 21(1): 247.
[http://dx.doi.org/10.1186/s13075-019-2041-5] [PMID: 31771658]
[96]
Vinod E, Amirtham SM, Kachroo U, et al. Articular chondroprogenitors in platelet rich plasma for treatment of osteoarthritis and osteochondral defects in a rabbit knee model. Knee 2021; 30: 51-62.
[http://dx.doi.org/10.1016/j.knee.2021.03.010] [PMID: 33857741]
[97]
Jayasuriya CT, Chen Y, Liu W, Chen Q. The influence of tissue microenvironment on stem cell-based cartilage repair. Ann N Y Acad Sci 2016; 1383(1): 21-33.
[http://dx.doi.org/10.1111/nyas.13170] [PMID: 27464254]
[98]
Wang K, Li J, Li Z, et al. Chondrogenic progenitor cells exhibit superiority over mesenchymal stem cells and chondrocytes in platelet-rich plasma scaffold-based cartilage regeneration. Am J Sports Med 2019; 47(9): 2200-15.
[http://dx.doi.org/10.1177/0363546519854219] [PMID: 31194571]
[99]
Wang HC, Lin TH, Hsu CC, Yeh ML. Restoring osteochondral defects through the differentiation potential of cartilage stem/progenitor cells cultivated on porous scaffolds. Cells 2021; 10(12): 3536.
[http://dx.doi.org/10.3390/cells10123536] [PMID: 34944042]
[100]
Chen Y, Xue K, Zhang X, Zheng Z, Liu K. Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells. Stem Cell Res Ther 2018; 9(1): 318.
[http://dx.doi.org/10.1186/s13287-018-1047-2] [PMID: 30463592]
[101]
Tao T, Li Y, Gui C, et al. Fibronectin enhances cartilage repair by activating progenitor cells through Integrin α5β1 receptor. Tissue Eng Part A 2018; 24(13-14): 1112-24.
[http://dx.doi.org/10.1089/ten.tea.2017.0322] [PMID: 29343182]
[102]
Xue K, Jiang Y, Zhang X, Wu J, Qi L, Liu K. Hypoxic ADSCs-derived EVs promote the proliferation and chondrogenic differentiation of cartilage stem/progenitor cells. Adipocyte 2021; 10(1): 322-37.
[http://dx.doi.org/10.1080/21623945.2021.1945210] [PMID: 34224296]
[103]
Zhao Z, Wang Y, Wang Q, et al. Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo. Stem Cell Res Ther 2021; 12(1): 19.
[http://dx.doi.org/10.1186/s13287-020-02076-w] [PMID: 33413606]
[104]
Chen CH, Tang N, Xue K, et al. Long-term tri-modal in vivo tracking of engrafted cartilage-derived stem/progenitor cells based on upconversion nanoparticles. Biomolecules 2021; 11(7): 958.
[http://dx.doi.org/10.3390/biom11070958] [PMID: 34209859]
[105]
Xu W, Liao DF, Xia N, Liu D, Wang W, Zheng W. Research progress on the role of superficial zone cartilage-derived stem/progenitor cells in osteoarthritis. Med J Chin People’s Liberation Army 2021; 46(10): 1045-50.
[106]
Diaz FL Jr, Gutierrez R, Madrid JF, et al. Cell sources for cartilage repair contribution of the mesenchymal perivascular niche. Front Biosci 2012; S4(4): 1275-94.
[http://dx.doi.org/10.2741/s331] [PMID: 22652871]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy