Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Short Communication

Simple and Efficient Synthesis of Diamino Derivatives of bis-1,2,4-oxadiazole via Tandem Staudinger/aza-Wittig Reaction

Author(s): Hai Xie*, Qing-Qing Hu, Ya-Li Zhang, Xiu-Ting Qin and Lu Li

Volume 20, Issue 6, 2023

Published on: 28 December, 2022

Page: [589 - 594] Pages: 6

DOI: 10.2174/1570179420666221006113032

Price: $65

Abstract

Two efficient, scalable routes to bis-1,2,4-oxadiazole have been developed by tandem Staudinger/aza-Wittig reaction from the same starting material diaziglyoxime, isocyanates and triphenylphosphonium in good yields.

Background: Two convenient and efficient routes for synthesizing diamino derivatives of bis-1,2,4- oxadiazoles were described.

Objective: This study provides a simple protocol for the synthesis of bis-1,2,4-oxadiazoles.

Methods: The two procedures were based on a tandem Staudinger/aza-Wittig reaction from the same starting material of diaziglyoxime, isocyanates and triphenylphosphonium.

Results: In synthesis method I, diaziglyoxime 1 was treated with various aromatic or aliphatic isocyanates to give diazioxalimides 2 a high yield. Diazioxalimides 2 reacted with Ph3P to produce the iminophosphoranes 4; the reaction was directly heated from room temperature to 115 ℃ to get the desired diamino derivatives of bis-1,2,4-oxadiazole 4 in 72-92% yields. In synthesis method II, the same target compounds 4 were synthesized in a one-pot reaction by Ph3P and aromatic or aliphatic isocyanates in toluene for 10 h under 115 ℃ in 53-71% yields.

Conclusion: The two procedures provide proficient methods of making nitrogen-containing heterocyclic rings. The structures of target compounds 4 were identified by IR, 1HNMR, 13CNMR and HRMS.

Keywords: Diamino derivatives of bis-1, 2, 4-oxadiazole, Staudinger reaction, Aza-Wittig reaction, diaziglyoxime, diazioxalimides

Next »
Graphical Abstract

[1]
Ravinaik, B.; Ramachandran, D.; Basaveswara, R.M.V. Design, synthesis and anticancer evaluation of 1,2,4-oxadiazole bearing isoxazole-pyrazole derivatives. Lett. Org. Chem., 2020, 17(5), 352-359.
[http://dx.doi.org/10.2174/1570178616666190725090906]
[2]
Mohammadi, K.M.; Fahimi, K.; Karimpour, R.E.; Safavi, M.; Mahdavi, M.; Saeedi, M.; Akbarzadeh, T. Design, synthesis and cytotoxicity of novel coumarin-1,2,3-triazole-1,2,4-oxadiazole hybrids as potent anti-breast cancer agents. Lett. Drug Des. Discov., 2019, 16(7), 818-824.
[http://dx.doi.org/10.2174/1570180815666180627121006]
[3]
Pitcher, N.P.; Harjani, J.R.; Zhao, Y.; Jin, J.; Knight, D.R.; Li, L.; Putsathit, P.; Riley, T.V.; Carter, G.P.; Baell, J.B. Development of 1,2,4-oxadiazole antimicrobial agents to treat enteric pathogens within the gastrointestinal tract. ACS Omega, 2022, 7(8), 6737-6759.
[http://dx.doi.org/10.1021/acsomega.1c06294] [PMID: 35252669]
[4]
Boudreau, M.A.; Ding, D.; Meisel, J.E.; Janardhanan, J.; Spink, E.; Peng, Z.; Qian, Y.; Yamaguchi, T.; Testero, S.A.; O’Daniel, P.I.; Leemans, E.; Lastochkin, E.; Song, W.; Schroeder, V.A.; Wolter, W.R.; Suckow, M.A.; Mobashery, S.; Chang, M. Structure-activity relationship for the oxadiazole class of antibacterials. ACS Med. Chem. Lett., 2020, 11(3), 322-326.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00379] [PMID: 32184964]
[5]
Bora, R.; Dar, B.; Pradhan, V.; Farooqui, M. [1, 2, 4]-oxadiazoles: Synthesis and biological applications. Mini Rev. Med. Chem., 2014, 14(4), 355-369.
[http://dx.doi.org/10.2174/1389557514666140329200745] [PMID: 24678879]
[6]
Liu, X.H.; Wen, Y.H.; Cheng, L.; Xu, T.M.; Wu, N.J. Design, synthesis, and pesticidal activities of pyrimidin-4-amine derivatives bearing a 5-(trifluoromethyl)-1,2,4-oxadiazole moiety. J. Agric. Food Chem., 2021, 69(25), 6968-6980.
[http://dx.doi.org/10.1021/acs.jafc.1c00236] [PMID: 34137594]
[7]
Stott, A.J.; Maillard, M.C.; Beaumont, V.; Allcock, D.; Aziz, O.; Borchers, A.H.; Blackaby, W.; Breccia, P.; Creighton, G.G.; Haughan, A.F.; Jarvis, R.E.; Luckhurst, C.A.; Matthews, K.L.; McAllister, G.; Pollack, S.; Saville, S.E.; Van De Poël, A.J.; Vater, H.D.; Vann, J.; Williams, R.; Yates, D.; Muñoz, S.I.; Dominguez, C. Evaluation of 5-(Trifluoromethyl)-1,2,4-oxadiazole-based class IIa HDAC inhibitors for Huntington’s disease. ACS Med. Chem. Lett., 2021, 12(3), 380-388.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00532] [PMID: 33738065]
[8]
Tang, Y.; Gao, H.; Mitchell, L.A.; Parrish, D.A.; Shreeve, J.M. Synthesis and promising properties of dense energetic 5,5′- dinitramino-3,3′-azo-1,2,4-oxadiazole and its salts. Angew. Chem. Int. Ed., 2016, 55(9), 3200-3203.
[http://dx.doi.org/10.1002/anie.201600068] [PMID: 26822007]
[9]
Yang, F.; Zhang, P.; Zhou, X.; Lin, Q.; Wang, P.; Lu, M. Combination of polynitropyrazole and 5-amino-1,2,4-oxadiazole derivatives: An approach to high performance energetic materials. Cryst. Growth Des., 2020, 20(6), 3737-3746.
[http://dx.doi.org/10.1021/acs.cgd.0c00016]
[10]
Gulevich, A.V.; Dudnik, A.S.; Chernyak, N.; Gevorgyan, V. Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem. Rev., 2013, 113(5), 3084-3213.
[http://dx.doi.org/10.1021/cr300333u] [PMID: 23305185]
[11]
Tiemann, F.; Krüger, P. Ueber amidoxime und azoxime. Ber. Dtsch. Chem. Ges., 1884, 17(2), 1685-1698.
[http://dx.doi.org/10.1002/cber.18840170230]
[12]
Richardson, C.; Steel, P.J. The first metal complexes of 3,3′-bi-1,2,4-oxadiazole: A curiously ignored ligand. Inorg. Chem. Commun., 2007, 10(8), 884-887.
[http://dx.doi.org/10.1016/j.inoche.2007.04.020]
[13]
Kettner, M.A.; Klapötke, T.M.; Witkowski, T.G.; Von Hundling, F. Synthesis, characterisation and crystal structures of two bi-oxadiazole derivatives featuring the trifluoromethyl group. Chemistry, 2015, 21(11), 4238-4241.
[http://dx.doi.org/10.1002/chem.201406436] [PMID: 25649720]
[14]
Bauer, L.; Benz, M.; Klapötke, T.M.; Lenz, T.; Stierstorfer, J. Polyazido-methyl derivatives of prominent oxadiazole and isoxazole scaffolds: Synthesis, explosive properties, and evaluation. J. Org. Chem., 2021, 86(9), 6371-6380.
[http://dx.doi.org/10.1021/acs.joc.1c00216] [PMID: 33861599]
[15]
Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; De Los Santos, J.M. The aza-Wittig reaction: An efficient tool for the construction of carbon-nitrogen double bonds. Tetrahedron, 2007, 63(3), 523-575.
[http://dx.doi.org/10.1016/j.tet.2006.09.048]
[16]
Wang, Y.; Zhang, W.X.; Xi, Z. Carbodiimide-based synthesis of N-heterocycles: Moving from two classical reactive sites to chemical bond breaking/forming reaction. Chem. Soc. Rev., 2020, 49(16), 5810-5849.
[http://dx.doi.org/10.1039/C9CS00478E] [PMID: 32658233]
[17]
Xie, H.; Hu, Q.Q.; Qin, X.T.; Liang, J.M.; Li, L.; Zhang, Y.L.; Lu, Z. One-pot synthesis of fully substituted oxazol-2-amines via Staudinger/Aza-Wittig/isomerization reaction. Heterocycles, 2022, 104(3), 585-589.
[http://dx.doi.org/10.3987/COM-21-14600]
[18]
Xie, H.; Rao, Y.; Ding, M.W. Synthesis of fluorescent trisubstituted oxazoles via a facile tandem Staudinger/aza-Wittig/isomerization reaction. Dyes Pigments, 2017, 139, 440-447.
[http://dx.doi.org/10.1016/j.dyepig.2016.12.040]
[19]
Xie, H.; Yuan, D.; Ding, M.W. Unexpected synthesis of 2,4,5-trisubstituted oxazoles via a tandem aza-Wittig/Michael/isomerization reaction of vinyliminophosphorane. J. Org. Chem., 2012, 77(6), 2954-2958.
[http://dx.doi.org/10.1021/jo202588j] [PMID: 22332823]
[20]
Ding, M.W.; Xie, H.; Liu, J-C. Facile synthesis of 3-arylidene-3h-1,4-benzodiazepines by a sequential Ugi/Staudinger/aza-Wittig reaction. Synthesis, 2016, 48(24), 4541-4547.
[http://dx.doi.org/10.1055/s-0036-1588308]
[21]
Xie, H.; Liu, J.C.; Wu, L.; Ding, M.W. New efficient synthesis of trisubstituted imidazolidine-2-thiones and thiazoles via vinyliminophosphoranes. Tetrahedron, 2012, 68(38), 7984-7990.
[http://dx.doi.org/10.1016/j.tet.2012.07.002]
[22]
Coşkun, N.; Arikan, N. Direct conversion of aldehydes into nitriles via O-phenylcarbamoylated aldoximes. Tetrahedron, 1999, 55(40), 11943-11948.
[http://dx.doi.org/10.1016/S0040-4020(99)00692-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy