Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Melatonin in Reproductive Medicine: A Promising Therapeutic Target?

Author(s): Xueqin Feng*, Yumeng Zhang, Na Li, Yingying Zhang, Qiutong Zheng, Minya Sun, Jiaqi Tang* and Zhice Xu*

Volume 30, Issue 27, 2023

Published on: 14 November, 2022

Page: [3090 - 3118] Pages: 29

DOI: 10.2174/0929867329666221005101031

Price: $65

Abstract

Melatonin, mainly released from the pineal gland, also produced in the reproductive organs and cells, plays important roles in rhythms of the sleep-wake cycle, retardation of ageing processes, and antioxidant/anti-inflammatory functions. As a key mediator in reproductive systems, melatonin is participated in the reproductive process via regulating gamete and embryo development and influences reproductive diseases and pregnancy outcomes. The underlying mechanisms include epigenetic and other regulations, which are interesting for exploring new targets in the prevention and treatment of reproductive diseases. This review discusses the relationship between melatonin and reproductive functions and dysfunction, as well as potential clinical applications of melatonin in reproductive medicine. Notably, Developmental Origins of Health and Diseases (DOHaD) is closely linked to reproduction, this article is the first to review the new progress in studies on the possible relationship between melatonin and DOHaD.

Keywords: melatonin, reproductive physiology, reproductive pathology, DOHaD

[1]
Yong, W.; Ma, H.; Na, M.; Gao, T.; Zhang, Y.; Hao, L.; Yu, H.; Yang, H.; Deng, X. Roles of melatonin in the field of reproductive medicine. Biomed. Pharmacother., 2021, 144, 112001.
[http://dx.doi.org/10.1016/j.biopha.2021.112001] [PMID: 34624677]
[2]
Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem., 2018, 62, 2-10.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.03.012] [PMID: 29555319]
[3]
Sun, H.; Gong, T.T.; Jiang, Y.T.; Zhang, S.; Zhao, Y.H.; Wu, Q.J. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990–2017: Results from a global burden of disease study, 2017. Aging (Albany NY), 2019, 11(23), 10952-10991.
[http://dx.doi.org/10.18632/aging.102497] [PMID: 31790362]
[4]
Yasmin, F.; Sutradhar, S.; Das, P.; Mukherjee, S. Gut melatonin: A potent candidate in the diversified journey of melatonin research. Gen. Comp. Endocrinol., 2021, 303, 113693.
[http://dx.doi.org/10.1016/j.ygcen.2020.113693] [PMID: 33309697]
[5]
Di Bella, G.; Mascia, F.; Gualano, L.; Di Bella, L. Melatonin anticancer effects: Review. Int. J. Mol. Sci., 2013, 14(2), 2410-2430.
[http://dx.doi.org/10.3390/ijms14022410] [PMID: 23348932]
[6]
Talib, W. Melatonin and cancer hallmarks. Molecules, 2018, 23(3), 518.
[http://dx.doi.org/10.3390/molecules23030518] [PMID: 29495398]
[7]
Claustrat, B.; Leston, J. Melatonin: Physiological effects in humans. Neurochirurgie, 2015, 61(2-3), 77-84.
[http://dx.doi.org/10.1016/j.neuchi.2015.03.002] [PMID: 25908646]
[8]
Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.Y.; Xu, D.P.; Li, H.B. Dietary sources and bioactivities of melatonin. Nutrients, 2017, 9(4), 367.
[http://dx.doi.org/10.3390/nu9040367] [PMID: 28387721]
[9]
Sae-Teaw, M.; Johns, J.; Johns, N.P.; Subongkot, S. Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers. J. Pineal Res., 2013, 55(1), 58-64.
[http://dx.doi.org/10.1111/jpi.12025] [PMID: 23137025]
[10]
Bernard, M.; Guerlotté, J.; Grève, P.; Gréchez-Cassiau, A.; Iuvone, M.P.; Zatz, M.; Chong, N.W.; Klein, D.C.; Voisin, P. Melatonin synthesis pathway: Circadian regulation of the genes encoding the key enzymes in the chicken pineal gland and retina. Reprod. Nutr. Dev., 1999, 39(3), 325-334.
[http://dx.doi.org/10.1051/rnd:19990305] [PMID: 10420435]
[11]
Xiao, L.; Hu, J.; Zhao, X.; Song, L.; Zhang, Y.; Dong, W.; Zhang, Q.; Ma, Y.; Li, F. Expression of melatonin and its related synthase and membrane receptors in the oestrous corpus luteum and corpus luteum verum of sheep. Reprod. Domest. Anim., 2018, 53(5), 1142-1148.
[http://dx.doi.org/10.1111/rda.13218] [PMID: 29943511]
[12]
Reppert, S.M.; Godson, C.; Mahle, C.D.; Weaver, D.R.; Slaugenhaupt, S.A.; Gusella, J.F. Molecular characterization of a second melatonin receptor expressed in human retina and brain: The Mel1b melatonin receptor. Proc. Natl. Acad. Sci. USA, 1995, 92(19), 8734-8738.
[http://dx.doi.org/10.1073/pnas.92.19.8734] [PMID: 7568007]
[13]
Reppert, S.M.; Weaver, D.R.; Ebisawa, T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron, 1994, 13(5), 1177-1185.
[http://dx.doi.org/10.1016/0896-6273(94)90055-8] [PMID: 7946354]
[14]
von Gall, C.; Stehle, J.H.; Weaver, D.R. Mammalian melatonin receptors: Molecular biology and signal transduction. Cell Tissue Res., 2002, 309(1), 151-162.
[http://dx.doi.org/10.1007/s00441-002-0581-4] [PMID: 12111545]
[15]
Vanecek, J. Cellular mechanisms of melatonin action. Physiol. Rev., 1998, 78(3), 687-721.
[http://dx.doi.org/10.1152/physrev.1998.78.3.687] [PMID: 9674691]
[16]
Zhang, L.; Zhang, Z.; Wang, J.; Lv, D.; Zhu, T.; Wang, F.; Tian, X.; Yao, Y.; Ji, P.; Liu, G. Melatonin regulates the activities of ovary and delays the fertility decline in female animals via MT1/AMPK pathway. J. Pineal Res., 2019, 66(3), e12550.
[http://dx.doi.org/10.1111/jpi.12550] [PMID: 30597622]
[17]
Kandalepas, P.C.; Mitchell, J.W.; Gillette, M.U. Melatonin signal transduction pathways require e-box-mediated transcription of Per1 and Per2 to reset the SCN clock at dusk. PLoS One, 2016, 11(6), e0157824.
[http://dx.doi.org/10.1371/journal.pone.0157824] [PMID: 27362940]
[18]
Wang, J.; Zhu, T.; Ma, X.; Wang, Y.; Liu, J.; Li, G.; Liu, Y.; Ji, P.; Zhang, Z.; Zhang, L.; Liu, G. Melatonergic systems of AANAT, melatonin, and its receptor MT2 in the corpus luteum are essential for reproductive success in mammals. Biol. Reprod., 2021, 104(2), 430-444.
[http://dx.doi.org/10.1093/biolre/ioaa190] [PMID: 33571374]
[19]
Nosjean, O.; Ferro, M.; Cogé, F.; Beauverger, P.; Henlin, J.M.; Lefoulon, F.; Fauchère, J.L.; Delagrange, P.; Canet, E.; Boutin, J.A. Identification of the melatonin-binding site MT3 as the quinone reductase 2. J. Biol. Chem., 2000, 275(40), 31311-31317.
[http://dx.doi.org/10.1074/jbc.M005141200] [PMID: 10913150]
[20]
Tan, D.X.; Manchester, L.C.; Terron, M.P.; Flores, L.J.; Tamura, H.; Reiter, R.J. Melatonin as a naturally occurring co-substrate of quinone reductase-2, the putative MT 3 melatonin membrane receptor: Hypothesis and significance. J. Pineal Res., 2007, 43(4), 317-320.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00513.x] [PMID: 17910598]
[21]
Yang, H.L.; Zhou, W.J.; Gu, C.J.; Meng, Y.H.; Shao, J.; Li, D.J.; Li, M.Q. Pleiotropic roles of melatonin in endometriosis, recurrent spontaneous abortion, and polycystic ovary syndrome. Am. J. Reprod. Immunol., 2018, 80(1), e12839.
[http://dx.doi.org/10.1111/aji.12839] [PMID: 29493042]
[22]
Hu, J.J.; Zhang, X.Y.; Zhang, Y.; Zhao, X.X.; Li, F.D.; Tao, J.Z. Molecular characterization and expression profile of the melatonin receptor MT1 in the ovary of Tianzhu white yak (Bos grunniens). Gen. Comp. Endocrinol., 2017, 242, 101-107.
[http://dx.doi.org/10.1016/j.ygcen.2015.10.006] [PMID: 26482006]
[23]
Woo, M.M.M.; Tai, C.J.; Kang, S.K.; Nathwani, P.S.; Pang, S.F.; Leung, P.C.K. Direct action of melatonin in human granulosa-luteal cells. J. Clin. Endocrinol. Metab., 2001, 86(10), 4789-4797.
[http://dx.doi.org/10.1210/jcem.86.10.7912] [PMID: 11600542]
[24]
Niles, L.P.; Wang, J.; Shen, L.; Lobb, D.K.; Younglai, E.V. Melatonin receptor mRNA expression in human granulosa cells. Mol. Cell. Endocrinol., 1999, 156(1-2), 107-110.
[http://dx.doi.org/10.1016/S0303-7207(99)00135-5] [PMID: 10612428]
[25]
Lemley, C.O.; Camacho, L.E.; Vonnahme, K.A. Uterine infusion of melatonin or melatonin receptor antagonist alters ovine feto-placental hemodynamics during midgestation. Biol. Reprod., 2013, 89(2), 40.
[http://dx.doi.org/10.1095/biolreprod.113.109074] [PMID: 23782836]
[26]
Berbets, A.M.; Davydenko, I.S.; Barbe, A.M.; Konkov, D.H.; Albota, O.M.; Yuzko, O.M. Melatonin 1A and 1B receptors’ expression decreases in the placenta of women with fetal growth restriction. Reprod. Sci., 2021, 28(1), 197-206.
[http://dx.doi.org/10.1007/s43032-020-00285-5] [PMID: 32804352]
[27]
Sagrillo-Fagundes, L.; Soliman, A.; Vaillancourt, C. Maternal and placental melatonin: Actions and implication for successful pregnancies. Minerva Ginecol., 2014, 66(3), 251-266.
[PMID: 24971781]
[28]
Lanoix, D.; Beghdadi, H.; Lafond, J.; Vaillancourt, C. Human placental trophoblasts synthesize melatonin and express its receptors. J. Pineal Res., 2008, 45(1), 50-60.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00555.x] [PMID: 18312298]
[29]
Mosher, A.A.; Tsoulis, M.W.; Lim, J.; Tan, C.; Agarwal, S.K.; Leyland, N.A.; Foster, W.G. Melatonin activity and receptor expression in endometrial tissue and endometriosis. Hum. Reprod., 2019, 34(7), 1215-1224.
[http://dx.doi.org/10.1093/humrep/dez082] [PMID: 31211323]
[30]
Zhao, H.; Pang, S.F.; Poon, A.M.S. Variations of mt 1 melatonin receptor density in the rat uterus during decidualization, the estrous cycle and in response to exogenous steroid treatment. J. Pineal Res., 2002, 33(3), 140-145.
[http://dx.doi.org/10.1034/j.1600-079X.2002.02898.x] [PMID: 12220327]
[31]
Steffens, F.; Zhou, X.B.; Sausbier, U.; Sailer, C.; Motejlek, K.; Ruth, P.; Olcese, J.; Korth, M.; Wieland, T. Melatonin receptor signaling in pregnant and nonpregnant rat uterine myocytes as probed by large conductance Ca2+-activated K+ channel activity. Mol. Endocrinol., 2003, 17(10), 2103-2115.
[http://dx.doi.org/10.1210/me.2003-0047] [PMID: 12869590]
[32]
Tabecka-Lonczynska, A.; Mytych, J.; Solek, P.; Kulpa-Greszta, M.; Koziorowski, M. Melatonin receptors subtypes (MT1 and MT2) in the uterus masculinus of mature male european bison. Biological and seasonal reproductive role. J. Physiol. Pharmacol., 2018, 69(1), 67-73.
[http://dx.doi.org/10.26402/jpp.2018.1.07] [PMID: 29769422]
[33]
Xu, D.; Liu, L.; Zhao, Y.; Yang, L.; Cheng, J.; Hua, R.; Zhang, Z.; Li, Q. Melatonin protects mouse testes from palmitic acid‐induced lipotoxicity by attenuating oxidative stress and DNA damage in a SIRT1‐dependent manner. J. Pineal Res., 2020, 69(4), e12690.
[http://dx.doi.org/10.1111/jpi.12690] [PMID: 32761924]
[34]
Izzo, G.; Francesco, A.; Ferrara, D.; Campitiello, M.R.; Serino, I.; Minucci, S.; d’Istria, M. Expression of melatonin (MT1, MT2) and melatonin-related receptors in the adult rat testes and during development. Zygote, 2010, 18(3), 257-264.
[http://dx.doi.org/10.1017/S0967199409990293] [PMID: 20109269]
[35]
Kozioł, K.; Broda, D.; Romerowicz-Misielak, M.; Nowak, S.; Koziorowski, M. Melatonin concentration in peripheral blood and melatonin receptors (MT1 and MT2) in the testis and epididymis of male roe deer during active spermatogenesis. Theriogenology, 2020, 149, 25-37.
[http://dx.doi.org/10.1016/j.theriogenology.2020.03.025] [PMID: 32234648]
[36]
González-Arto, M.; Aguilar, D.; Gaspar-Torrubia, E.; Gallego, M.; Carvajal-Serna, M.; Herrera-Marcos, L.; Serrano-Blesa, E.; Hamilton, T.; Pérez-Pé, R.; Muiño-Blanco, T.; Cebrián-Pérez, J.; Casao, A. Melatonin MT1 and MT2 receptors in the ram reproductive tract. Int. J. Mol. Sci., 2017, 18(3), 662.
[http://dx.doi.org/10.3390/ijms18030662] [PMID: 28335493]
[37]
Yang, W.C.; Tang, K.Q.; Fu, C.Z.; Riaz, H.; Zhang, Q.; Zan, L.S. Melatonin regulates the development and function of bovine Sertoli cells via its receptors MT1 and MT2. Anim. Reprod. Sci., 2014, 147(1-2), 10-16.
[http://dx.doi.org/10.1016/j.anireprosci.2014.03.017] [PMID: 24768045]
[38]
Zhi, S.M.; Fang, G.X.; Xie, X.M.; Liu, L.H.; Yan, J.; Liu, D.B.; Yu, H.Y. Melatonin reduces OGD/R-induced neuron injury by regulating redox/inflammation/apoptosis signaling. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(3), 1524-1536.
[http://dx.doi.org/10.26355/eurrev_202002_20211] [PMID: 32096202]
[39]
Gou, Z.; Su, X.; Hu, X.; Zhou, Y.; Huang, L.; Fan, Y.; Li, J.; Lu, L. Melatonin improves hypoxic-ischemic brain damage through the Akt/Nrf2/Gpx4 signaling pathway. Brain Res. Bull., 2020, 163, 40-48.
[http://dx.doi.org/10.1016/j.brainresbull.2020.07.011] [PMID: 32679060]
[40]
Cui, L.; Xu, F.; Wang, S.; Jiang, Z.; Liu, L.; Ding, Y.; Sun, X.; Du, M. Melatonin-MT1 signal is essential for endometrial decidualization. Reproduction, 2021, 162(2), 161-170.
[http://dx.doi.org/10.1530/REP-21-0159] [PMID: 34115609]
[41]
Barberino, R.S.; Lins, T.L.B.G.; Monte, A.P.O.; Gouveia, B.B.; Campinho, D.S.P.; Palheta, R.C., Jr; Smitz, J.E.J.; Matos, M.H.T. Melatonin attenuates cyclophosphamide-induced primordial follicle loss by interaction with MT1 receptor and modulation of PTEN/Akt/FOXO3a proteins in the mouse ovary. Reprod. Sci., 2022, 29(9), 2505-2514.
[http://dx.doi.org/10.1007/s43032-021-00768-z] [PMID: 34642909]
[42]
Tamura, H.; Nakamura, Y.; Korkmaz, A.; Manchester, L.C.; Tan, D.X.; Sugino, N.; Reiter, R.J. Melatonin and the ovary: Physiological and pathophysiological implications. Fertil. Steril., 2009, 92(1), 328-343.
[http://dx.doi.org/10.1016/j.fertnstert.2008.05.016] [PMID: 18804205]
[43]
Lemley, C.O.; Vonnahme, K.A. Physiology and endocrinology symposium: Alterations in uteroplacental hemodynamics during melatonin supplementation in sheep and cattle. J. Anim. Sci., 2017, 95(5), 2211-2221.
[http://dx.doi.org/10.2527/jas2016.1151] [PMID: 28726984]
[44]
Cruz, M.H.C.; Leal, C.L.V.; Cruz, J.F.; Tan, D.X.; Reiter, R.J. Role of melatonin on production and preservation of gametes and embryos: A brief review. Anim. Reprod. Sci., 2014, 145(3-4), 150-160.
[http://dx.doi.org/10.1016/j.anireprosci.2014.01.011] [PMID: 24559971]
[45]
Tripathi, A.; PremKumar, K.V.; Pandey, A.N.; Khatun, S.; Mishra, S.K.; Shrivastav, T.G.; Chaube, S.K. Melatonin protects against clomiphene citrate-induced generation of hydrogen peroxide and morphological apoptotic changes in rat eggs. Eur. J. Pharmacol., 2011, 667(1-3), 419-424.
[http://dx.doi.org/10.1016/j.ejphar.2011.06.005] [PMID: 21693115]
[46]
Shi, J.M.; Tian, X.Z.; Zhou, G.B.; Wang, L.; Gao, C.; Zhu, S.E.; Zeng, S.M.; Tian, J.H.; Liu, G.S. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J. Pineal Res., 2009, 47(4), 318-323.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00717.x] [PMID: 19817971]
[47]
Gao, C.; Han, H.B.; Tian, X.Z.; Tan, D.X.; Wang, L.; Zhou, G.B.; Zhu, S.E.; Liu, G.S. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J. Pineal Res., 2012, 52(3), 305-311.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00944.x] [PMID: 22225541]
[48]
Sagrillo-Fagundes, L.; Clabault, H.; Laurent, L.; Hudon-Thibeault, A.A.; Salustiano, E.M.A.; Fortier, M.; Bienvenue-Pariseault, J.; Wong Yen, P.; Sanderson, T.J.; Vaillancourt, C. Human primary trophoblast cell culture model to study the protective effects of melatonin against hypoxia/reoxygenation-induced disruption. J. Vis. Exp., 2016, 113, 54228.
[http://dx.doi.org/10.3791/54228] [PMID: 27500522]
[49]
Tamura, H.; Nakamura, Y.; Terron, M.; Flores, L.; Manchester, L.; Tan, D.; Sugino, N.; Reiter, R. Melatonin and pregnancy in the human. Reprod. Toxicol., 2008, 25(3), 291-303.
[http://dx.doi.org/10.1016/j.reprotox.2008.03.005] [PMID: 18485664]
[50]
Reiter, R.J.; Tan, D.X.; Korkmaz, A.; Rosales-Corral, S.A. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum. Reprod. Update, 2014, 20(2), 293-307.
[http://dx.doi.org/10.1093/humupd/dmt054] [PMID: 24132226]
[51]
Peng, X.; Cai, X.; Li, J.; Huang, Y.; Liu, H.; He, J.; Fang, Z.; Feng, B.; Tang, J.; Lin, Y.; Jiang, X.; Hu, L.; Xu, S.; Zhuo, Y.; Che, L.; Wu, D. Effects of melatonin supplementation during pregnancy on reproductive performance, maternal–placental–fetal redox status, and placental mitochondrial function in a sow model. Antioxidants, 2021, 10(12), 1867.
[http://dx.doi.org/10.3390/antiox10121867] [PMID: 34942970]
[52]
Hsu, C.N.; Tain, Y.L. Early origins of hypertension: Should prevention start before birth using natural antioxidants? Antioxidants, 2020, 9(11), 1034.
[http://dx.doi.org/10.3390/antiox9111034] [PMID: 33113999]
[53]
Sales, F.; Peralta, O.A.; Narbona, E.; McCoard, S.; González-Bulnes, A.; Parraguez, V.H. Rapid Communication: Maternal melatonin implants improve fetal oxygen supply and body weight at term in sheep pregnancies1. J. Anim. Sci., 2019, 97(2), 839-845.
[http://dx.doi.org/10.1093/jas/sky443] [PMID: 30452689]
[54]
Choi, J.; Park, S.M.; Lee, E.; Kim, J.H.; Jeong, Y.I.; Lee, J.Y.; Park, S.W.; Kim, H.S.; Hossein, M.S.; Jeong, Y.W.; Kim, S.; Hyun, S.H.; Hwang, W.S. Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Mol. Reprod. Dev., 2008, 75(7), 1127-1135.
[http://dx.doi.org/10.1002/mrd.20861] [PMID: 18324672]
[55]
Chitimus, D.M.; Popescu, M.R.; Voiculescu, S.E.; Panaitescu, A.M.; Pavel, B.; Zagrean, L.; Zagrean, A.M. Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease. Biomolecules, 2020, 10(9), 1211.
[http://dx.doi.org/10.3390/biom10091211] [PMID: 32825327]
[56]
Reiter, R.J.; Tan, D.X.; Tamura, H.; Cruz, M.H.C.; Fuentes-Broto, L. Clinical relevance of melatonin in ovarian and placental physiology: A review. Gynecol. Endocrinol., 2014, 30(2), 83-89.
[http://dx.doi.org/10.3109/09513590.2013.849238] [PMID: 24319996]
[57]
Zhu, H.L.; Shi, X.T.; Xu, X.F.; Zhou, G.X.; Xiong, Y.W.; Yi, S.J.; Liu, W.B.; Dai, L.M.; Cao, X.L.; Xu, D.X.; Wang, H. Melatonin protects against environmental stress-induced fetal growth restriction via suppressing ROS-mediated GCN2/ATF4/BNIP3-dependent mitophagy in placental trophoblasts. Redox Biol., 2021, 40, 101854.
[http://dx.doi.org/10.1016/j.redox.2021.101854] [PMID: 33454563]
[58]
Doğanlar, O.; Doğanlar, Z.B.; Ovali, M.A.; Güçlü, O.; Demir, U.; Doğan, A.; Uzun, M. Melatonin regulates oxidative stress and apoptosis in fetal hearts of pinealectomised RUPP rats. Hypertens. Pregnancy, 2020, 39(4), 429-443.
[http://dx.doi.org/10.1080/10641955.2020.1802595] [PMID: 32791955]
[59]
Doğanlar, Z.B.; Güçlü, H.; Öztopuz, Ö.; Türkön, H.; Dogan, A.; Uzun, M.; Doğanlar, O. The role of melatonin in oxidative stress, DNA damage, apoptosis and angiogenesis in fetal eye under preeclampsia and melatonin deficiency stress. Curr. Eye Res., 2019, 44(10), 1157-1169.
[http://dx.doi.org/10.1080/02713683.2019.1619778] [PMID: 31090463]
[60]
Sagrillo-Fagundes, L.; Assunção Salustiano, E.M.; Ruano, R.; Markus, R.P.; Vaillancourt, C. Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation. J. Pineal Res., 2018, 65(4), e12520.
[http://dx.doi.org/10.1111/jpi.12520] [PMID: 30091210]
[61]
Domínguez Rubio, A.P.; Sordelli, M.S.; Salazar, A.I.; Aisemberg, J.; Bariani, M.V.; Cella, M.; Rosenstein, R.E.; Franchi, A.M. Melatonin prevents experimental preterm labor and increases offspring survival. J. Pineal Res., 2014, 56(2), 154-162.
[http://dx.doi.org/10.1111/jpi.12108] [PMID: 24313220]
[62]
Kim, J.M.; Lee, S.Y.; Lee, J.Y. Melatonin for the prevention of fetal injury associated with intrauterine inflammation. Am. J. Reprod. Immunol., 2021, 86(1), e13402.
[http://dx.doi.org/10.1111/aji.13402] [PMID: 33583108]
[63]
Lee, J.Y.; Na, Q.; Shin, N.E.; Shin, H.E.; Kang, Y.; Chudnovets, A.; Lei, J.; Song, H.; Burd, I. Melatonin for prevention of fetal lung injury associated with intrauterine inflammation and for improvement of lung maturation. J. Pineal Res., 2020, 69(3), e12687.
[http://dx.doi.org/10.1111/jpi.12687] [PMID: 32737901]
[64]
Xu, D.X.; Wang, H.; Ning, H.; Zhao, L.; Chen, Y.H. Maternally administered melatonin differentially regulates lipopolysaccharide-induced proinflammatory and anti-inflammatory cytokines in maternal serum, amniotic fluid, fetal liver, and fetal brain. J. Pineal Res., 2007, 43(1), 74-79.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00445.x] [PMID: 17614838]
[65]
Domínguez Rubio, A.P.; Correa, F.; Aisemberg, J.; Dorfman, D.; Bariani, M.V.; Rosenstein, R.E.; Zorrilla Zubilete, M.; Franchi, A.M. Maternal administration of melatonin exerts short- and long-term neuroprotective effects on the offspring from lipopolysaccharide-treated mice. J. Pineal Res., 2017, 63(4), e12439.
[http://dx.doi.org/10.1111/jpi.12439] [PMID: 28776755]
[66]
Tain, Y.L.; Sheen, J.M.; Yu, H.R.; Chen, C.C.; Tiao, M.M.; Hsu, C.N.; Lin, Y.J.; Kuo, K.C.; Huang, L.T. Maternal melatonin therapy rescues prenatal dexamethasone and postnatal high-fat diet induced programmed hypertension in male rat offspring. Front. Physiol., 2015, 6, 377.
[http://dx.doi.org/10.3389/fphys.2015.00377] [PMID: 26696906]
[67]
Tain, Y.L.; Huang, L.T.; Hsu, C.N.; Lee, C.T. Melatonin therapy prevents programmed hypertension and nitric oxide deficiency in offspring exposed to maternal caloric restriction. Oxid. Med. Cell. Longev., 2014, 2014, 283180.
[http://dx.doi.org/10.1155/2014/283180] [PMID: 24864188]
[68]
Chang, H.Y.; Tain, Y.L. Postnatal dexamethasone-induced programmed hypertension is related to the regulation of melatonin and its receptors. Steroids, 2016, 108, 1-6.
[http://dx.doi.org/10.1016/j.steroids.2016.02.017] [PMID: 26921678]
[69]
Shi, X.T.; Zhu, H.L.; Xu, X.F.; Xiong, Y.W.; Dai, L.M.; Zhou, G.X.; Liu, W.B.; Zhang, Y.F.; Xu, D.X.; Wang, H. Gestational cadmium exposure impairs placental angiogenesis via activating GC/GR signaling. Ecotoxicol. Environ. Saf., 2021, 224, 112632.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112632] [PMID: 34411824]
[70]
Russo, M.; Forte, G.; Montanino Oliva, M.; Laganà, A.S.; Unfer, V. Melatonin and myo-inositol: Supporting reproduction from the oocyte to birth. Int. J. Mol. Sci., 2021, 22(16), 8433.
[http://dx.doi.org/10.3390/ijms22168433] [PMID: 34445135]
[71]
Félix, F.; Oliveira, C.C.V.; Cabrita, E. Antioxidants in fish sperm and the potential role of melatonin. Antioxidants, 2020, 10(1), 36.
[http://dx.doi.org/10.3390/antiox10010036] [PMID: 33396234]
[72]
Hsu, C.N.; Huang, L.T.; Tain, Y.L. Perinatal use of melatonin for offspring health: Focus on cardiovascular and neurological diseases. Int. J. Mol. Sci., 2019, 20(22), 5681.
[http://dx.doi.org/10.3390/ijms20225681] [PMID: 31766163]
[73]
Ejaz, H.; Figaro, J.K.; Woolner, A.M.F.; Thottakam, B.M.V.; Galley, H.F. Maternal serum melatonin increases during pregnancy and falls immediately after delivery implicating the placenta as a major source of melatonin. Front. Endocrinol. (Lausanne), 2021, 11, 623038.
[http://dx.doi.org/10.3389/fendo.2020.623038] [PMID: 33679607]
[74]
Nakamura, Y.; Tamura, H.; Kashida, S.; Takayama, H.; Yamagata, Y.; Karube, A.; Sugino, N.; Kato, H. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy. J. Pineal Res., 2001, 30(1), 29-33.
[http://dx.doi.org/10.1034/j.1600-079X.2001.300104.x] [PMID: 11168904]
[75]
Lanoix, D.; Ouellette, R.; Vaillancourt, C. Expression of melatoninergic receptors in human placental choriocarcinoma cell lines. Hum. Reprod., 2006, 21(8), 1981-1989.
[http://dx.doi.org/10.1093/humrep/del120] [PMID: 16632463]
[76]
Ogasawara, T.; Adachi, N.; Nishijima, M. Melatonin levels in maternal plasma before and during delivery, and in fetal and neonatal plasma. Nihon. Sanka. Fujinka. Gakkai. Zasshi., 1991, 43(3), 335-341.
[PMID: 2045702]
[77]
McMillen, I.C.; Nowak, R. Maternal pinealectomy abolishes the diurnal rhythm in plasma melatonin concentrations in the fetal sheep and pregnant ewe during late gestation. J. Endocrinol., 1989, 120(3), 459-464.
[http://dx.doi.org/10.1677/joe.0.1200459] [PMID: 2926312]
[78]
Tarocco, A.; Caroccia, N.; Morciano, G.; Wieckowski, M.R.; Ancora, G.; Garani, G.; Pinton, P. Melatonin as a master regulator of cell death and inflammation: Molecular mechanisms and clinical implications for newborn care. Cell Death Dis., 2019, 10(4), 317.
[http://dx.doi.org/10.1038/s41419-019-1556-7] [PMID: 30962427]
[79]
Okatani, Y.; Okamoto, K.; Hayashi, K.; Wakatsuki, A.; Tamura, S.; Sagara, Y. Maternal-fetal transfer of melatonin in pregnant women near term. J. Pineal Res., 1998, 25(3), 129-134.
[http://dx.doi.org/10.1111/j.1600-079X.1998.tb00550.x] [PMID: 9745980]
[80]
Bagci, S.; Berner, A.L.; Reinsberg, J.; Gast, A.S.; Zur, B.; Welzing, L.; Bartmann, P.; Mueller, A. Melatonin concentration in umbilical cord blood depends on mode of delivery. Early Hum. Dev., 2012, 88(6), 369-373.
[http://dx.doi.org/10.1016/j.earlhumdev.2011.09.012] [PMID: 22018695]
[81]
Voiculescu, S.E.; Zygouropoulos, N.; Zahiu, C.D.; Zagrean, A.M. Role of melatonin in embryo fetal development. J. Med. Life, 2014, 7(4), 488-492.
[PMID: 25713608]
[82]
Serón-Ferré, M.; Mendez, N.; Abarzua-Catalan, L.; Vilches, N.; Valenzuela, F.J.; Reynolds, H.E.; Llanos, A.J.; Rojas, A.; Valenzuela, G.J.; Torres-Farfan, C. Circadian rhythms in the fetus. Mol. Cell. Endocrinol., 2012, 349(1), 68-75.
[http://dx.doi.org/10.1016/j.mce.2011.07.039] [PMID: 21840372]
[83]
Jimenez-Jorge, S.; Jimenez-Caliani, A.J.; Guerrero, J.M.; Naranjo, M.C.; Lardone, P.J.; Carrillo-Vico, A.; Osuna, C.; Molinero, P. Melatonin synthesis and melatonin-membrane receptor (MT1) expression during rat thymus development: Role of the pineal gland. J. Pineal Res., 2005, 39(1), 77-83.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00220.x] [PMID: 15978061]
[84]
Nagasawa, Y.; Nanami, M.; Kuragano, T.; Ishihara, M. Melatonin and gestational hypertension. Hypertens. Res., 2021, 44(11), 1540-1542.
[http://dx.doi.org/10.1038/s41440-021-00722-1] [PMID: 34385689]
[85]
Man, G.C.W.; Zhang, T.; Chen, X.; Wang, J.; Wu, F.; Liu, Y.; Wang, C.C.; Cheong, Y.; Li, T.C. The regulations and role of circadian clock and melatonin in uterine receptivity and pregnancy-An immunological perspective. Am. J. Reprod. Immunol., 2017, 78(2), e12715.
[http://dx.doi.org/10.1111/aji.12715] [PMID: 28585704]
[86]
Dair, E.L.; Simoes, R.S.; Simões, M.J.; Romeu, L.R.G.; Oliveira-Filho, R.M.; Haidar, M.A.; Baracat, E.C.; Soares, J.M., Jr Effects of melatonin on the endometrial morphology and embryo implantation in rats. Fertil. Steril., 2008, 89(5)(Suppl.), 1299-1305.
[http://dx.doi.org/10.1016/j.fertnstert.2007.03.050] [PMID: 17561006]
[87]
de Almeida Chuffa, L.G.; Lupi, L.A.; Cucielo, M.S.; Silveira, H.S.; Reiter, R.J.; Seiva, F.R.F. Melatonin promotes uterine and placental health: Potential molecular mechanisms. Int. J. Mol. Sci., 2019, 21(1), 300.
[http://dx.doi.org/10.3390/ijms21010300] [PMID: 31906255]
[88]
Drew, J.E.; Williams, L.M.; Hannah, L.T.; Barrett, P.; Abramovich, D.R. Melatonin receptors in the human fetal kidney: 2-[125I]iodomelatonin binding sites correlated with expression of Mel1a and Mel1b receptor genes. J. Endocrinol., 1998, 156(2), 261-267.
[http://dx.doi.org/10.1677/joe.0.1560261] [PMID: 9518871]
[89]
Wu, Y.H.; Zhou, J.N.; Balesar, R.; Unmehopa, U.; Bao, A.; Jockers, R.; Van Heerikhuize, J.; Swaab, D.F. Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: Colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone. J. Comp. Neurol., 2006, 499(6), 897-910.
[http://dx.doi.org/10.1002/cne.21152] [PMID: 17072839]
[90]
Seron-Ferre, M.; Valenzuela, G.J.; Torres-Farfan, C. Circadian clocks during embryonic and fetal development. Birth Defects Res. C Embryo Today, 2007, 81(3), 204-214.
[http://dx.doi.org/10.1002/bdrc.20101] [PMID: 17963275]
[91]
Paster, M.B. Avian reproductive endocrinology. Vet. Clin. North Am. Small Anim. Pract., 1991, 21(6), 1343-1359.
[http://dx.doi.org/10.1016/S0195-5616(91)50143-1] [PMID: 1767479]
[92]
Serón-Ferré, M.; Torres-Farfán, C.; Forcelledo, M.L.; Valenzuela, G.J. The development of circadian rhythms in the fetus and neonate. Semin. Perinatol., 2001, 25(6), 363-370.
[http://dx.doi.org/10.1053/sper.2001.29037] [PMID: 11778907]
[93]
Mirmiran, M.; Maas, Y.G.H.; Ariagno, R.L. Development of fetal and neonatal sleep and circadian rhythms. Sleep Med. Rev., 2003, 7(4), 321-334.
[http://dx.doi.org/10.1053/smrv.2002.0243] [PMID: 14505599]
[94]
Yellon, S.M.; Longo, L.D. Effect of maternal pinealectomy and reverse photoperiod on the circadian melatonin rhythm in the sheep and fetus during the last trimester of pregnancy. Biol. Reprod., 1988, 39(5), 1093-1099.
[http://dx.doi.org/10.1095/biolreprod39.5.1093] [PMID: 3219382]
[95]
Torres-Farfan, C.; Rocco, V.; Monsó, C.; Valenzuela, F.J.; Campino, C.; Germain, A.; Torrealba, F.; Valenzuela, G.J.; Seron-Ferre, M. Maternal melatonin effects on clock gene expression in a nonhuman primate fetus. Endocrinology, 2006, 147(10), 4618-4626.
[http://dx.doi.org/10.1210/en.2006-0628] [PMID: 16840546]
[96]
Mendez, N.; Abarzua-Catalan, L.; Vilches, N.; Galdames, H.A.; Spichiger, C.; Richter, H.G.; Valenzuela, G.J.; Seron-Ferre, M.; Torres-Farfan, C. Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light. PLoS One, 2012, 7(8), e42713.
[http://dx.doi.org/10.1371/journal.pone.0042713] [PMID: 22912724]
[97]
Arima, Y.; Nishiyama, K.; Izumiya, Y.; Kaikita, K.; Hokimoto, S.; Tsujita, K. Fetal origins of hypertension. Adv. Exp. Med. Biol., 2018, 1012, 41-48.
[http://dx.doi.org/10.1007/978-981-10-5526-3_5] [PMID: 29956193]
[98]
Kanaka-Gantenbein, C. Fetal origins of adult diabetes. Ann. N. Y. Acad. Sci., 2010, 1205(1), 99-105.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05683.x] [PMID: 20840260]
[99]
Wu, G.; Bazer, F.W.; Cudd, T.A.; Meininger, C.J.; Spencer, T.E. Maternal nutrition and fetal development. J. Nutr., 2004, 134(9), 2169-2172.
[http://dx.doi.org/10.1093/jn/134.9.2169] [PMID: 15333699]
[100]
Reiter, R.J.; Tan, D.X.; Manchester, L.C.; Paredes, S.D.; Mayo, J.C.; Sainz, R.M. Melatonin and reproduction revisited. Biol. Reprod., 2009, 81(3), 445-456.
[http://dx.doi.org/10.1095/biolreprod.108.075655] [PMID: 19439728]
[101]
Richter, H.G.; Hansell, J.A.; Raut, S.; Giussani, D.A. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J. Pineal Res., 2009, 46(4), 357-364.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00671.x] [PMID: 19552758]
[102]
Valenzuela, F.J.; Vera, J.; Venegas, C.; Pino, F.; Lagunas, C. Circadian system and melatonin hormone: Risk factors for complications during pregnancy. Obstet. Gynecol. Int., 2015, 2015, 825802.
[http://dx.doi.org/10.1155/2015/825802] [PMID: 25821470]
[103]
Aydın, S.; Benian, A.; Madazli, R.; Uludaǧ, S.; Uzun, H.; Kaya, S. Plasma malondialdehyde, superoxide dismutase, sE-selectin, fibronectin, endothelin-1 and nitric oxide levels in women with preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol., 2004, 113(1), 21-25.
[http://dx.doi.org/10.1016/S0301-2115(03)00368-3] [PMID: 15036705]
[104]
Aversa, S.; Pellegrino, S.; Barberi, I.; Reiter, R.J.; Gitto, E. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period. J. Matern. Fetal Neonatal Med., 2012, 25(3), 207-221.
[http://dx.doi.org/10.3109/14767058.2011.573827] [PMID: 21557691]
[105]
Lanoix, D.; Guérin, P.; Vaillancourt, C. Placental melatonin production and melatonin receptor expression are altered in preeclampsia: New insights into the role of this hormone in pregnancy. J. Pineal Res., 2012, 53(4), 417-425.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01012.x] [PMID: 22686298]
[106]
Tranquilli, A.L.; Turi, A.; Giannubilo, S.R.; Garbati, E. Circadian melatonin concentration rhythm is lost in pregnant women with altered blood pressure rhythm. Gynecol. Endocrinol., 2004, 18(3), 124-129.
[http://dx.doi.org/10.1080/09513590410001667841] [PMID: 15255280]
[107]
Zhao, M.; Li, Y.; Xu, L.; Hickey, A.; Groom, K.; Stone, P.R.; Chamley, L.W.; Chen, Q. Melatonin prevents preeclamptic sera and antiphospholipid antibodies inducing the production of reactive nitrogen species and extrusion of toxic trophoblastic debris from first trimester placentae. Placenta, 2017, 58, 17-24.
[http://dx.doi.org/10.1016/j.placenta.2017.08.001] [PMID: 28962691]
[108]
Laste, G.; Silva, A.A.; Gheno, B.R.; Rychcik, P.M. Relationship between melatonin and high-risk pregnancy: A review of investigations published between the years 2010 and 2020. Chronobiol. Int., 2021, 38(2), 168-181.
[http://dx.doi.org/10.1080/07420528.2020.1863975] [PMID: 33432828]
[109]
Çelik, S.; Guve, H.; Çalışkan, C.; Çelik, S. The role of melatonin, IL-8 and IL-10 in intrahepatic cholestasis of pregnancy. Z. Geburtshilfe Neonatol., 2021, 225(3), 238-243.
[http://dx.doi.org/10.1055/a-1233-9084] [PMID: 32942322]
[110]
Reiter, R.J.; Tan, D.; Osuna, C.; Gitto, E. Actions of melatonin in the reduction of oxidative stress. J. Biomed. Sci., 2000, 7(6), 444-458.
[http://dx.doi.org/10.1007/BF02253360] [PMID: 11060493]
[111]
Ortiz, A.; Espino, J.; Bejarano, I.; Lozano, G.M.; Monllor, F.; García, J.F.; Pariente, J.A.; Rodríguez, A.B. High endogenous melatonin concentrations enhance sperm quality and short-term in vitro exposure to melatonin improves aspects of sperm motility. J. Pineal Res., 2010, 50(2), 132-139.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00822.x] [PMID: 20964711]
[112]
Casao, A.; Vega, S.; Palacín, I.; Pérez-Pe, R.; Laviña, A.; Quintín, F.J.; Sevilla, E.; Abecia, J.A.; Cebrián-Pérez, J.A.; Forcada, F.; Muiño-Blanco, T. Effects of melatonin implants during non-breeding season on sperm motility and reproductive parameters in Rasa aragonesa rams. Reprod. Domest. Anim., 2010, 45(3), 425-432.
[http://dx.doi.org/10.1111/j.1439-0531.2008.01215.x] [PMID: 18954380]
[113]
Jang, H.Y.; Kim, Y.H.; Kim, B.W.; Park, I.C.; Cheong, H.T.; Kim, J.T.; Park, C.K.; Kong, H.S.; Lee, H.K.; Yang, B.K. Ameliorative effects of melatonin against hydrogen peroxide-induced oxidative stress on boar sperm characteristics and subsequent in vitro embryo development. Reprod. Domest. Anim., 2010, 45(6), 943-950.
[http://dx.doi.org/10.1111/j.1439-0531.2009.01466.x] [PMID: 19473309]
[114]
Casao, A.; Pérez-Pé, R.; Abecia, J.A.; Forcada, F.; Muiño-Blanco, T.; Cebrián-Pérez, J.Á. The effect of exogenous melatonin during the non-reproductive season on the seminal plasma hormonal profile and the antioxidant defence system of Rasa aragonesa rams. Anim. Reprod. Sci., 2013, 138(3-4), 168-174.
[http://dx.doi.org/10.1016/j.anireprosci.2013.02.002] [PMID: 23522696]
[115]
Casao, A.; Mendoza, N.; Pérez-Pé, R.; Grasa, P.; Abecia, J.A.; Forcada, F.; Cebrián-Pérez, J.A.; Muino-Blanco, T. Melatonin prevents capacitation and apoptotic-like changes of ram spermatozoa and increases fertility rate. J. Pineal Res., 2010, 48(1), 39-46.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00722.x] [PMID: 19919602]
[116]
Martín-Hidalgo, D.; Barón, F.J.; Bragado, M.J.; Carmona, P.; Robina, A.; García-Marín, L.J.; Gil, M.C. The effect of melatonin on the quality of extended boar semen after long-term storage at 17 °C. Theriogenology, 2011, 75(8), 1550-1560.
[http://dx.doi.org/10.1016/j.theriogenology.2010.12.021] [PMID: 21320723]
[117]
Cebrián-Pérez, J.A.; Casao, A.; González-Arto, M.; dos Santos Hamilton, T.R.; Pérez-Pé, R.; Muiño-Blanco, T. Melatonin in sperm biology: Breaking paradigms. Reprod. Domest. Anim., 2014, 49(Suppl. 4), 11-21.
[http://dx.doi.org/10.1111/rda.12378] [PMID: 25277428]
[118]
Fujinoki, M. Melatonin-enhanced hyperactivation of hamster sperm. Reproduction, 2008, 136(5), 533-541.
[http://dx.doi.org/10.1530/REP-08-0202] [PMID: 18715981]
[119]
De Lamirande, E.; Gagnon, C. Origin of a motility inhibitor within the male reproductive tract. J. Androl., 1984, 5(4), 269-276.
[http://dx.doi.org/10.1002/j.1939-4640.1984.tb00788.x] [PMID: 6332104]
[120]
Tamura, H.; Takasaki, A.; Taketani, T.; Tanabe, M.; Kizuka, F.; Lee, L.; Tamura, I.; Maekawa, R.; Asada, H.; Yamagata, Y.; Sugino, N. Melatonin as a free radical scavenger in the ovarian follicle. Endocr. J., 2013, 60(1), 1-13.
[http://dx.doi.org/10.1507/endocrj.EJ12-0263] [PMID: 23171705]
[121]
Drevet, J.R. The antioxidant glutathione peroxidase family and spermatozoa: A complex story. Mol. Cell. Endocrinol., 2006, 250(1-2), 70-79.
[http://dx.doi.org/10.1016/j.mce.2005.12.027] [PMID: 16427183]
[122]
Talpur, H.S.; Chandio, I.B.; Brohi, R.D.; Worku, T.; Rehman, Z.; Bhattarai, D.; Ullah, F.; JiaJia, L.; Yang, L. Research progress on the role of melatonin and its receptors in animal reproduction: A comprehensive review. Reprod. Domest. Anim., 2018, 53(4), 831-849.
[http://dx.doi.org/10.1111/rda.13188] [PMID: 29663591]
[123]
Valenti, S.; Thellung, S.; Florio, T.; Giusti, M.; Schettini, G.; Giordano, G. A novel mechanism for the melatonin inhibition of testosterone secretion by rat Leydig cells: Reduction of GnRH-induced increase in cytosolic Ca2+. J. Mol. Endocrinol., 1999, 23(3), 299-306.
[http://dx.doi.org/10.1677/jme.0.0230299] [PMID: 10601975]
[124]
Bouchard, M.F.; Taniguchi, H.; Viger, R.S. The effect of human GATA4 gene mutations on the activity of target gonadal promoters. J. Mol. Endocrinol., 2009, 42(2), 149-160.
[http://dx.doi.org/10.1677/JME-08-0089] [PMID: 19008335]
[125]
Svechnikov, K.; Landreh, L.; Weisser, J.; Izzo, G.; Colón, E.; Svechnikova, I.; Söder, O. Origin, development and regulation of human Leydig cells. Horm. Res. Paediatr., 2010, 73(2), 93-101.
[http://dx.doi.org/10.1159/000277141] [PMID: 20190545]
[126]
Qin, F.; Zhang, J.; Zan, L.; Guo, W.; Wang, J.; Chen, L.; Cao, Y.; Shen, O.; Tong, J. Inhibitory effect of melatonin on testosterone synthesis is mediated via GATA-4/SF-1 transcription factors. Reprod. Biomed. Online, 2015, 31(5), 638-646.
[http://dx.doi.org/10.1016/j.rbmo.2015.07.009] [PMID: 26386639]
[127]
Rocha, C.S.; Martins, A.D.; Rato, L.; Silva, B.M.; Oliveira, P.F.; Alves, M.G. Melatonin alters the glycolytic profile of Sertoli cells: Implications for male fertility. Mol. Hum. Reprod., 2014, 20(11), 1067-1076.
[http://dx.doi.org/10.1093/molehr/gau080] [PMID: 25205674]
[128]
Deng, S.L.; Wang, Z.P.; Jin, C.; Kang, X.L.; Batool, A.; Zhang, Y.; Li, X.Y.; Wang, X.X.; Chen, S.R.; Chang, C.S.; Cheng, C.Y.; Lian, Z.X.; Liu, Y.X. Melatonin promotes sheep Leydig cell testosterone secretion in a co-culture with Sertoli cells. Theriogenology, 2018, 106, 170-177.
[http://dx.doi.org/10.1016/j.theriogenology.2017.10.025] [PMID: 29073541]
[129]
Bustos-Obregón, E.; González, J.R.; Espinoza, O. Melatonin as protective agent for the cytotoxic effects of diazinon in the spermatogenesis in the earthworm Eisenia foetida. Ital. J. Anat. Embryol., 2005, 110(2)(Suppl. 1), 159-165.
[PMID: 16101034]
[130]
Onofre, J.; Baert, Y.; Faes, K.; Goossens, E. Cryopreservation of testicular tissue or testicular cell suspensions: A pivotal step in fertility preservation. Hum. Reprod. Update, 2016, 22(6), 744-761.
[http://dx.doi.org/10.1093/humupd/dmw029] [PMID: 27566839]
[131]
Sato, T.; Katagiri, K.; Gohbara, A.; Inoue, K.; Ogonuki, N.; Ogura, A.; Kubota, Y.; Ogawa, T. In vitro production of functional sperm in cultured neonatal mouse testes. Nature, 2011, 471(7339), 504-507.
[http://dx.doi.org/10.1038/nature09850] [PMID: 21430778]
[132]
Zhou, Q.; Wang, M.; Yuan, Y.; Wang, X.; Fu, R.; Wan, H.; Xie, M.; Liu, M.; Guo, X.; Zheng, Y.; Feng, G.; Shi, Q.; Zhao, X.Y.; Sha, J.; Zhou, Q. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell, 2016, 18(3), 330-340.
[http://dx.doi.org/10.1016/j.stem.2016.01.017] [PMID: 26923202]
[133]
Navid, S.; Abbasi, M.; Hoshino, Y. The effects of melatonin on colonization of neonate spermatogonial mouse stem cells in a three-dimensional soft agar culture system. Stem Cell Res. Ther., 2017, 8(1), 233.
[http://dx.doi.org/10.1186/s13287-017-0687-y] [PMID: 29041987]
[134]
Navid, S.; Rastegar, T.; Baazm, M.; Alizadeh, R.; Talebi, A.; Gholami, K.; Khosravi-Farsani, S.; Koruji, M.; Abbasi, M. In vitro effects of melatonin on colonization of neonate mouse spermatogonial stem cells. Syst. Biol. Reprod. Med., 2017, 63(6), 370-381.
[http://dx.doi.org/10.1080/19396368.2017.1358774] [PMID: 28846448]
[135]
Niu, B.; Li, B.; Wu, C.; Wu, J.; Yan, Y.; Shang, R.; Bai, C.; Li, G.; Hua, J. Melatonin promotes goat spermatogonia stem cells (SSCs) proliferation by stimulating glial cell line-derived neurotrophic factor (GDNF) production in Sertoli cells. Oncotarget, 2016, 7(47), 77532-77542.
[http://dx.doi.org/10.18632/oncotarget.12720] [PMID: 27769051]
[136]
Deng, S.L.; Chen, S.R.; Wang, Z.P.; Zhang, Y.; Tang, J.X.; Li, J.; Wang, X.X.; Cheng, J.M.; Jin, C.; Li, X.Y.; Zhang, B.L.; Yu, K.; Lian, Z.X.; Liu, G.S.; Liu, Y.X. Melatonin promotes development of haploid germ cells from early developing spermatogenic cells of Suffolk sheep under in vitro condition. J. Pineal Res., 2016, 60(4), 435-447.
[http://dx.doi.org/10.1111/jpi.12327] [PMID: 26993286]
[137]
Deng, S.L.; Zhang, Y.; Yu, K.; Wang, X.X.; Chen, S.R.; Han, D.P.; Cheng, C.Y.; Lian, Z.X.; Liu, Y.X. Melatonin up-regulates the expression of the GATA-4 transcription factor and increases testosterone secretion from Leydig cells through RORα signaling in an in vitro goat spermatogonial stem cell differentiation culture system. Oncotarget, 2017, 8(66), 110592-110605.
[http://dx.doi.org/10.18632/oncotarget.22855] [PMID: 29299171]
[138]
Araki, A.; Mitsui, T.; Miyashita, C.; Nakajima, T.; Naito, H.; Ito, S.; Sasaki, S.; Cho, K.; Ikeno, T.; Nonomura, K.; Kishi, R. Association between maternal exposure to di(2-ethylhexyl) phthalate and reproductive hormone levels in fetal blood: The Hokkaido study on environment and children’s health. PLoS One, 2014, 9(10), e109039.
[http://dx.doi.org/10.1371/journal.pone.0109039] [PMID: 25296284]
[139]
Fénichel, P.; Déchaux, H.; Harthe, C.; Gal, J.; Ferrari, P.; Pacini, P.; Wagner-Mahler, K.; Pugeat, M.; Brucker-Davis, F. Unconjugated bisphenol A cord blood levels in boys with descended or undescended testes. Hum. Reprod., 2012, 27(4), 983-990.
[http://dx.doi.org/10.1093/humrep/der451] [PMID: 22267833]
[140]
Rahman, M.S.; Kwon, W.S.; Lee, J.S.; Yoon, S.J.; Ryu, B.Y.; Pang, M.G. Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa. Sci. Rep., 2015, 5(1), 9169.
[http://dx.doi.org/10.1038/srep09169] [PMID: 25772901]
[141]
Zhang, T.; Zhou, Y.; Li, L.; Zhao, Y.; De Felici, M.; Reiter, R.J.; Shen, W. Melatonin protects prepuberal testis from deleterious effects of bisphenol A or diethylhexyl phthalate by preserving H3K9 methylation. J. Pineal Res., 2018, 65(2), e12497.
[http://dx.doi.org/10.1111/jpi.12497] [PMID: 29655234]
[142]
Yang, Q.; Zhu, L.; Jin, L. Human Follicle in vitro Culture Including Activation, Growth, and Maturation: A Review of Research Progress. Front. Endocrinol. (Lausanne), 2020, 11, 548.
[http://dx.doi.org/10.3389/fendo.2020.00548] [PMID: 32849312]
[143]
Telfer, E.E.; Zelinski, M.B. Ovarian follicle culture: Advances and challenges for human and nonhuman primates. Fertil. Steril., 2013, 99(6), 1523-1533.
[http://dx.doi.org/10.1016/j.fertnstert.2013.03.043] [PMID: 23635350]
[144]
Cao, Y.; Shen, M.; Jiang, Y.; Sun, S.; Liu, H. Melatonin reduces oxidative damage in mouse granulosa cells via restraining JNK-dependent autophagy. Reproduction, 2018, 155(3), 307-319.
[http://dx.doi.org/10.1530/REP-18-0002] [PMID: 29363570]
[145]
Zou, H.; Chen, B.; Ding, D.; Gao, M.; Chen, D.; Liu, Y.; Hao, Y.; Zou, W.; Ji, D.; Zhou, P.; Wei, Z.; Cao, Y.; Zhang, Z. Melatonin promotes the development of immature oocytes from the COH cycle into healthy offspring by protecting mitochondrial function. J. Pineal Res., 2020, 68(1), e12621.
[http://dx.doi.org/10.1111/jpi.12621] [PMID: 31714635]
[146]
Manca, M.E.; Manunta, M.L.; Spezzigu, A.; Torres-Rovira, L.; Gonzalez-Bulnes, A.; Pasciu, V.; Piu, P.; Leoni, G.G.; Succu, S.; Chesneau, D.; Naitana, S.; Berlinguer, F. Melatonin deprival modifies follicular and corpus luteal growth dynamics in a sheep model. Reproduction, 2014, 147(6), 885-895.
[http://dx.doi.org/10.1530/REP-13-0405] [PMID: 24570480]
[147]
Tao, J.; Zhang, L.; Zhang, X.; Chen, Y.; Chen, Q.; Shen, M.; Liu, H.; Deng, S. Effect of exogenous melatonin on the development of mice ovarian follicles and follicular angiogenesis. Int. J. Mol. Sci., 2021, 22(20), 11262.
[http://dx.doi.org/10.3390/ijms222011262] [PMID: 34681919]
[148]
Nakamura, Y.; Tamura, H.; Takayama, H.; Kato, H. Increased endogenous level of melatonin in preovulatory human follicles does not directly influence progesterone production. Fertil. Steril., 2003, 80(4), 1012-1016.
[http://dx.doi.org/10.1016/S0015-0282(03)01008-2] [PMID: 14556825]
[149]
Wang, L.; Tang, J.; Wang, L.; Tan, F.; Song, H.; Zhou, J.; Li, F. Oxidative stress in oocyte aging and female reproduction. J. Cell. Physiol., 2021, 236(12), 7966-7983.
[http://dx.doi.org/10.1002/jcp.30468] [PMID: 34121193]
[150]
Nakamura, Y.; Smith, M.; Krishna, A.; Terranova, P.F. Increased number of mast cells in the dominant follicle of the cow: Relationships among luteal, stromal, and hilar regions. Biol. Reprod., 1987, 37(3), 546-549.
[http://dx.doi.org/10.1095/biolreprod37.3.546] [PMID: 3676403]
[151]
Brännström, M.; Mayrhofer, G.; Robertson, S.A. Localization of leukocyte subsets in the rat ovary during the periovulatory period. Biol. Reprod., 1993, 48(2), 277-286.
[http://dx.doi.org/10.1095/biolreprod48.2.277] [PMID: 8439617]
[152]
Gupta, R.K.; Miller, K.P.; Babus, J.K.; Flaws, J.A. Methoxychlor inhibits growth and induces atresia of antral follicles through an oxidative stress pathway. Toxicol. Sci., 2006, 93(2), 382-389.
[http://dx.doi.org/10.1093/toxsci/kfl052] [PMID: 16807286]
[153]
Korzekwa, A.J.; Okuda, K.; Woclawek-Potocka, I.; Murakami, S.; Skarzynski, D.J. Nitric oxide induces apoptosis in bovine luteal cells. J. Reprod. Dev., 2006, 52(3), 353-361.
[http://dx.doi.org/10.1262/jrd.17092] [PMID: 16493180]
[154]
Reiter, R.J.; Tan, D.X.; Gitto, E.; Sainz, R.M.; Mayo, J.C.; Leon, J.; Manchester, L.C.; Vijayalaxmi; Kilic, E.; Kilic, U. Pharmacological utility of melatonin in reducing oxidative cellular and molecular damage. Pol. J. Pharmacol., 2004, 56(2), 159-170.
[PMID: 15156066]
[155]
Tan, D.X.; Manchester, L.C.; Terron, M.P.; Flores, L.J.; Reiter, R.J. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res., 2007, 42(1), 28-42.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00407.x] [PMID: 17198536]
[156]
Deng, S.L.; Sun, T.C.; Yu, K.; Wang, Z.P.; Zhang, B.L.; Zhang, Y.; Wang, X.X.; Lian, Z.X.; Liu, Y.X. Melatonin reduces oxidative damage and upregulates heat shock protein 90 expression in cryopreserved human semen. Free Radic. Biol. Med., 2017, 113, 347-354.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.10.342] [PMID: 29051117]
[157]
Frungieri, M.; Calandra, R.; Rossi, S. Local actions of melatonin in somatic cells of the testis. Int. J. Mol. Sci., 2017, 18(6), 1170.
[http://dx.doi.org/10.3390/ijms18061170] [PMID: 28561756]
[158]
Gholami, M.; Saki, G.; Hemadi, M.; Khodadadi, A.; Mohammadi-Asl, J. Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice. Iran. J. Basic Med. Sci., 2014, 17(2), 93-99.
[PMID: 24711891]
[159]
Sharbatoghli, M.; Rezazadeh Valojerdi, M.; Bahadori, M.H.; Salman Yazdi, R.; Ghaleno, L.R. The Relationship between seminal melatonin with sperm parameters, DNA fragmentation and nuclear maturity in intra-cytoplasmic sperm injection candidates. Cell J., 2015, 17(3), 547-553.
[http://dx.doi.org/10.22074/cellj.2015.15] [PMID: 26464827]
[160]
Pant, N.; Upadhyay, G.; Pandey, S.; Mathur, N.; Saxena, D.K.; Srivastava, S.P. Lead and cadmium concentration in the seminal plasma of men in the general population: Correlation with sperm quality. Reprod. Toxicol., 2003, 17(4), 447-450.
[http://dx.doi.org/10.1016/S0890-6238(03)00036-4] [PMID: 12849856]
[161]
Kaur, F.; Sangha, G.K.; Bilaspuri, G.S. Cyclophosphamide-induced structural and biochemical changes in testis and epididymidis of rats. Indian J. Exp. Biol., 1997, 35(7), 771-775.
[PMID: 9418379]
[162]
Anjum, S.; Rahman, S.; Kaur, M.; Ahmad, F.; Rashid, H.; Ansari, R.A.; Raisuddin, S. Melatonin ameliorates bisphenol A-induced biochemical toxicity in testicular mitochondria of mouse. Food Chem. Toxicol., 2011, 49(11), 2849-2854.
[http://dx.doi.org/10.1016/j.fct.2011.07.062] [PMID: 21840368]
[163]
Deng, S.; Wang, X.; Wang, Z.; Chen, S.; Wang, Y.; Hao, X.; Sun, T.; Zhang, Y.; Lian, Z.; Liu, Y. In vitro production of functional haploid sperm cells from male germ cells of Saanen dairy goat. Theriogenology, 2017, 90, 120-128.
[http://dx.doi.org/10.1016/j.theriogenology.2016.12.002] [PMID: 28166958]
[164]
Vriend, J.; Reiter, R.J. Breast cancer cells: Modulation by melatonin and the ubiquitin-proteasome system – A review. Mol. Cell. Endocrinol., 2015, 417, 1-9.
[http://dx.doi.org/10.1016/j.mce.2015.09.001] [PMID: 26363225]
[165]
Letellier, K.; Azeddine, B.; Parent, S.; Labelle, H.; Rompré, P.H.; Moreau, A.; Moldovan, F. Estrogen cross-talk with the melatonin signaling pathway in human osteoblasts derived from adolescent idiopathic scoliosis patients. J. Pineal Res., 2008, 45(4), 383-393.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00603.x] [PMID: 18507714]
[166]
Boekelheide, K.; Darney, S.P.; Daston, G.P.; David, R.M.; Luderer, U.; Olshan, A.F.; Sanderson, W.T.; Willhite, C.C.; Woskie, S. NTP-CERHR Expert Panel Report on the reproductive and developmental toxicity of 2-bromopropane. Reprod. Toxicol., 2004, 18(2), 189-217.
[http://dx.doi.org/10.1016/j.reprotox.2003.10.003] [PMID: 15019719]
[167]
Huang, F.; Ning, H.; Xin, Q.Q.; Huang, Y.; Wang, H.; Zhang, Z.H.; Xu, D.X.; Ichihara, G.; Ye, D.Q. Melatonin pretreatment attenuates 2-bromopropane-induced testicular toxicity in rats. Toxicology, 2009, 256(1-2), 75-82.
[http://dx.doi.org/10.1016/j.tox.2008.11.005] [PMID: 19061934]
[168]
Pool, K.R.; Rickard, J.P.; de Graaf, S.P. Melatonin improves the motility and DNA integrity of frozen-thawed ram spermatozoa likely via suppression of mitochondrial superoxide production. Domest. Anim. Endocrinol., 2021, 74, 106516.
[http://dx.doi.org/10.1016/j.domaniend.2020.106516] [PMID: 32712540]
[169]
Tamura, H.; Jozaki, M.; Tanabe, M.; Shirafuta, Y.; Mihara, Y.; Shinagawa, M.; Tamura, I.; Maekawa, R.; Sato, S.; Taketani, T.; Takasaki, A.; Reiter, R.J.; Sugino, N. Importance of melatonin in assisted reproductive technology and ovarian aging. Int. J. Mol. Sci., 2020, 21(3), 1135.
[http://dx.doi.org/10.3390/ijms21031135] [PMID: 32046301]
[170]
Moss, J.L.; Choi, A.W.; Fitzgerald Keeter, M.K.; Brannigan, R.E. Male adolescent fertility preservation. Fertil. Steril., 2016, 105(2), 267-273.
[http://dx.doi.org/10.1016/j.fertnstert.2015.12.002] [PMID: 26707904]
[171]
Medrano, J.V.; Andrés, M.M.; García, S.; Herraiz, S.; Vilanova-Pérez, T.; Goossens, E.; Pellicer, A. Basic and clinical approaches for fertility preservation and restoration in cancer patients. Trends Biotechnol., 2018, 36(2), 199-215.
[http://dx.doi.org/10.1016/j.tibtech.2017.10.010] [PMID: 29153762]
[172]
Miguel-Jiménez, S.; Pina-Beltrán, B.; Gimeno-Martos, S.; Carvajal-Serna, M.; Casao, A.; Pérez-Pe, R. NADPH Oxidase 5 and melatonin: Involvement in ram sperm capacitation. Front. Cell Dev. Biol., 2021, 9, 655794.
[http://dx.doi.org/10.3389/fcell.2021.655794] [PMID: 34026754]
[173]
Gimeno-Martos, S.; Casao, A.; Yeste, M.; Cebrián-Pérez, J.A.; Muiño-Blanco, T.; Pérez-Pé, R. Melatonin reduces cAMP-stimulated capacitation of ram spermatozoa. Reprod. Fertil. Dev., 2019, 31(2), 420-431.
[http://dx.doi.org/10.1071/RD18087] [PMID: 30209004]
[174]
Li, C.Y.; Hao, H.S.; Zhao, Y.H.; Zhang, P.P.; Wang, H.Y.; Pang, Y.W.; Du, W.H.; Zhao, S.J.; Liu, Y.; Huang, J.M.; Wang, J.J.; Ruan, W.M.; Hao, T.; Reiter, R.J.; Zhu, H.B.; Zhao, X.M. Melatonin improves the fertilization capacity of sex-sorted bull sperm by inhibiting apoptosis and increasing fertilization capacitation via MT1. Int. J. Mol. Sci., 2019, 20(16), 3921.
[http://dx.doi.org/10.3390/ijms20163921] [PMID: 31409031]
[175]
Alagbonsi, I.A.; Olayaki, L.A. Melatonin attenuates Δ9-tetrahydrocannabinol-induced reduction in rat sperm motility and kinematics in-vitro. Reprod. Toxicol., 2018, 77, 62-69.
[http://dx.doi.org/10.1016/j.reprotox.2018.02.005] [PMID: 29454037]
[176]
Fujinoki, M.; Takei, G.L. Estrogen suppresses melatonin-enhanced hyperactivation of hamster spermatozoa. J. Reprod. Dev., 2015, 61(4), 287-295.
[http://dx.doi.org/10.1262/jrd.2014-116] [PMID: 25959801]
[177]
Wang, Z.; Teng, Z.; Wang, Z.; Song, Z.; Zhu, P.; Li, N.; Zhang, Y.; Liu, X.; Liu, F. Melatonin ameliorates paclitaxel‐induced mice spermatogenesis and fertility defects. J. Cell. Mol. Med., 2022, 26(4), 1219-1228.
[http://dx.doi.org/10.1111/jcmm.17177] [PMID: 35001532]
[178]
Rateb, S.A.; Khalifa, M.A.; Abd El-Hamid, I.S.; Shedeed, H.A. Enhancing liquid-chilled storage and cryopreservation capacities of ram spermatozoa by supplementing the diluent with different additives. Asian-Australas. J. Anim. Sci., 2020, 33(7), 1068-1076.
[http://dx.doi.org/10.5713/ajas.19.0338] [PMID: 32054222]
[179]
Riviere, E.; Rossi, S.P.; Tavalieri, Y.E.; Muñoz de Toro, M.M.; Ponzio, R.; Puigdomenech, E.; Levalle, O.; Martinez, G.; Terradas, C.; Calandra, R.S.; Matzkin, M.E.; Frungieri, M.B. Melatonin daily oral supplementation attenuates inflammation and oxidative stress in testes of men with altered spermatogenesis of unknown aetiology. Mol. Cell. Endocrinol., 2020, 515, 110889.
[http://dx.doi.org/10.1016/j.mce.2020.110889] [PMID: 32622722]
[180]
Pandey, N.; Giri, S. Melatonin attenuates radiofrequency radiation (900 MHz)-induced oxidative stress, DNA damage and cell cycle arrest in germ cells of male Swiss albino mice. Toxicol. Ind. Health, 2018, 34(5), 315-327.
[http://dx.doi.org/10.1177/0748233718758092] [PMID: 29562845]
[181]
Kurcer, Z.; Hekimoglu, A.; Aral, F.; Baba, F.; Sahna, E. Effect of melatonin on epididymal sperm quality after testicular ischemia/reperfusion in rats. Fertil. Steril., 2010, 93(5), 1545.
[http://dx.doi.org/10.1016/j.fertnstert.2009.01.146] [PMID: 19328481]
[182]
Gupta, S.; Agarwal, A.; Krajcir, N.; Alvarez, J.G. Role of oxidative stress in endometriosis. Reprod. Biomed., 2006, 13(1), 126-134.
[http://dx.doi.org/10.1016/S1472-6483(10)62026-3] [PMID: 16820124]
[183]
Weber, M.L.; Germeyer, A. Endometriosis and Menopause. Ther. Umsch., 2021, 78(8), 441-446.
[http://dx.doi.org/10.1024/0040-5930/a001295] [PMID: 34555977]
[184]
Van Langendonckt, A.; Casanas-Roux, F.; Donnez, J. Oxidative stress and peritoneal endometriosis. Fertil. Steril., 2002, 77(5), 861-870.
[http://dx.doi.org/10.1016/S0015-0282(02)02959-X] [PMID: 12009336]
[185]
Zeller, J.M.; Henig, I.; Radwanska, E.; Dmowski, W.P. Enhancement of human monocyte and peritoneal macrophage chemiluminescence activities in women with endometriosis. Am. J. Reprod. Immunol. Microbiol., 1987, 13(3), 78-82.
[http://dx.doi.org/10.1111/j.1600-0897.1987.tb00097.x] [PMID: 3605484]
[186]
Lin, X.; Dai, Y.; Tong, X.; Xu, W.; Huang, Q.; Jin, X.; Li, C.; Zhou, F.; Zhou, H.; Lin, X.; Huang, D.; Zhang, S. Excessive oxidative stress in cumulus granulosa cells induced cell senescence contributes to endometriosis-associated infertility. Redox Biol., 2020, 30, 101431.
[http://dx.doi.org/10.1016/j.redox.2020.101431] [PMID: 31972508]
[187]
Harlev, A.; Gupta, S.; Agarwal, A. Targeting oxidative stress to treat endometriosis. Expert Opin. Ther. Targets, 2015, 19(11), 1447-1464.
[http://dx.doi.org/10.1517/14728222.2015.1077226] [PMID: 26256952]
[188]
Güney, M.; Oral, B.; Karahan, N.; Mungan, T. Regression of endometrial explants in a rat model of endometriosis treated with melatonin. Fertil. Steril., 2008, 89(4), 934-942.
[http://dx.doi.org/10.1016/j.fertnstert.2007.04.023] [PMID: 17582405]
[189]
Schwertner, A.; Conceição dos Santos, C.C.; Costa, G.D.; Deitos, A.; de Souza, A.; de Souza, I.C.C.; Torres, I.L.S.; da Cunha Filho, J.S.L.; Caumo, W. Efficacy of melatonin in the treatment of endometriosis: A phase II, randomized, double-blind, placebo-controlled trial. Pain, 2013, 154(6), 874-881.
[http://dx.doi.org/10.1016/j.pain.2013.02.025] [PMID: 23602498]
[190]
Lin, Q.D.; Qiu, L.H. Pathogenesis, diagnosis, and treatment of recurrent spontaneous abortion with immune type. Front. Med. China, 2010, 4(3), 275-279.
[http://dx.doi.org/10.1007/s11684-010-0101-y] [PMID: 21191831]
[191]
Magnus, M.C.; Wilcox, A.J.; Morken, N.H.; Weinberg, C.R.; Håberg, S.E. Role of maternal age and pregnancy history in risk of miscarriage: Prospective register based study. BMJ, 2019, 364, l869.
[http://dx.doi.org/10.1136/bmj.l869] [PMID: 30894356]
[192]
Dimitriadis, E.; Menkhorst, E.; Saito, S.; Kutteh, W.H.; Brosens, J.J. Recurrent pregnancy loss. Nat. Rev. Dis. Primers, 2020, 6(1), 98.
[http://dx.doi.org/10.1038/s41572-020-00228-z] [PMID: 33303732]
[193]
Larsen, E.C.; Christiansen, O.B.; Kolte, A.M.; Macklon, N. New insights into mechanisms behind miscarriage. BMC Med., 2013, 11(1), 154.
[http://dx.doi.org/10.1186/1741-7015-11-154] [PMID: 23803387]
[194]
Yiyenoğlu, Ö.B.; Uğur, M.G.; Özcan, H.Ç.; Can, G.; Öztürk, E.; Balat, Ö.; Erel, Ö. Assessment of oxidative stress markers in recurrent pregnancy loss: A prospective study. Arch. Gynecol. Obstet., 2014, 289(6), 1337-1340.
[http://dx.doi.org/10.1007/s00404-013-3113-4] [PMID: 24297302]
[195]
Gupta, S.; Agarwal, A.; Banerjee, J.; Alvarez, J.G. The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss: A systematic review. Obstet. Gynecol. Surv., 2007, 62(5), 335-347.
[http://dx.doi.org/10.1097/01.ogx.0000261644.89300.df] [PMID: 17425812]
[196]
Agarwal, A.; Gupta, S.; Sekhon, L.; Shah, R. Redox considerations in female reproductive function and assisted reproduction: From molecular mechanisms to health implications. Antioxid. Redox Signal., 2008, 10(8), 1375-1404.
[http://dx.doi.org/10.1089/ars.2007.1964] [PMID: 18402550]
[197]
Tan, D.X.; Manchester, L.; Qin, L.; Reiter, R. Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int. J. Mol. Sci., 2016, 17(12), 2124.
[http://dx.doi.org/10.3390/ijms17122124] [PMID: 27999288]
[198]
Zisapel, N. Melatonin-dopamine interactions: From basic neurochemistry to a clinical setting. Cell. Mol. Neurobiol., 2001, 21(6), 605-616.
[http://dx.doi.org/10.1023/A:1015187601628] [PMID: 12043836]
[199]
Juszczak, M.; Stempniak, B. Melatonin inhibits the substance P-induced secretion of vasopressin and oxytocin from the rat hypothalamo-neurohypophysial system: In vitro studies. Brain Res. Bull., 2003, 59(5), 393-397.
[http://dx.doi.org/10.1016/S0361-9230(02)00942-5] [PMID: 12507691]
[200]
Jones, M.R.; Goodarzi, M.O. Genetic determinants of polycystic ovary syndrome: Progress and future directions. Fertil. Steril., 2016, 106(1), 25-32.
[http://dx.doi.org/10.1016/j.fertnstert.2016.04.040] [PMID: 27179787]
[201]
Rotterdam, E.A-S.P. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod., 2004, 19(1), 41-47.
[http://dx.doi.org/10.1093/humrep/deh098] [PMID: 14688154]
[202]
Patel, S. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J. Steroid Biochem. Mol. Biol., 2018, 182, 27-36.
[http://dx.doi.org/10.1016/j.jsbmb.2018.04.008] [PMID: 29678491]
[203]
Asghari, M.H.; Moloudizargari, M.; Baeeri, M.; Baghaei, A.; Rahimifard, M.; Solgi, R.; Jafari, A.; Aminjan, H.H.; Hassani, S.; Moghadamnia, A.A.; Ostad, S.N.; Abdollahi, M. On the mechanisms of melatonin in protection of aluminum phosphide cardiotoxicity. Arch. Toxicol., 2017, 91(9), 3109-3120.
[http://dx.doi.org/10.1007/s00204-017-1998-6] [PMID: 28551710]
[204]
Johansson, J.; Stener-Victorin, E. Polycystic ovary syndrome: Effect and mechanisms of acupuncture for ovulation induction. Evid. Based Complement. Alternat. Med., 2013, 2013, 762615.
[http://dx.doi.org/10.1155/2013/762615] [PMID: 24073009]
[205]
Kruijver, F.P.M.; Swaab, D.F. Sex hormone receptors are present in the human suprachiasmatic nucleus. Neuroendocrinology, 2002, 75(5), 296-305.
[http://dx.doi.org/10.1159/000057339] [PMID: 12006783]
[206]
Luboshitzky, R.; Qupti, G.; Ishay, A.; Shen-Orr, Z.; Futerman, B.; Linn, S. Increased 6-sulfatoxymelatonin excretion in women with polycystic ovary syndrome. Fertil. Steril., 2001, 76(3), 506-510.
[http://dx.doi.org/10.1016/S0015-0282(01)01930-6] [PMID: 11532473]
[207]
Jain, M.; Jain, S.; Singh, T.B.; Haldar, C.; Jain, P. Melatonin and its correlation with testosterone in polycystic ovarian syndrome. J. Hum. Reprod. Sci., 2013, 6(4), 253-258.
[http://dx.doi.org/10.4103/0974-1208.126295] [PMID: 24672165]
[208]
Li, C.; Shi, Y.; You, L.; Wang, L.; Chen, Z.J. Melatonin receptor 1A gene polymorphism associated with polycystic ovary syndrome. Gynecol. Obstet. Invest., 2011, 72(2), 130-134.
[http://dx.doi.org/10.1159/000323542] [PMID: 21474908]
[209]
Peschke, E.; Frese, T.; Chankiewitz, E.; Peschke, D.; Preiss, U.; Schneyer, U.; Spessert, R.; Mühlbauer, E. Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status. J. Pineal Res., 2006, 40(2), 135-143.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00287.x] [PMID: 16441550]
[210]
Pai, S.A.; Majumdar, A.S. Protective effects of melatonin against metabolic and reproductive disturbances in polycystic ovary syndrome in rats. J. Pharm. Pharmacol., 2014, 66(12), 1710-1721.
[http://dx.doi.org/10.1111/jphp.12297] [PMID: 25176048]
[211]
Li, Y.; Liu, H.; Wu, K.; Liu, H.; Huang, T.; Chen, Z.J.; Zhao, S.; Ma, J.; Zhao, H. Melatonin promotes human oocyte maturation and early embryo development by enhancing clathrin‐mediated endocytosis. J. Pineal Res., 2019, 67(3), e12601.
[http://dx.doi.org/10.1111/jpi.12601] [PMID: 31361919]
[212]
Yang, Q.; Dai, S.; Luo, X.; Zhu, J.; Li, F.; Liu, J.; Yao, G.; Sun, Y. Melatonin attenuates postovulatory oocyte dysfunction by regulating SIRT1 expression. Reproduction, 2018, 156(1), 81-92.
[http://dx.doi.org/10.1530/REP-18-0211] [PMID: 29752296]
[213]
Fernando, S.; Wallace, E.M.; Vollenhoven, B.; Lolatgis, N.; Hope, N.; Wong, M.; Lawrence, M.; Lawrence, A.; Russell, C.; Leong, K.; Thomas, P.; Rombauts, L. Melatonin in assisted reproductive technology: A pilot double-blind randomized placebo-controlled clinical trial. Front. Endocrinol. (Lausanne), 2018, 9, 545.
[http://dx.doi.org/10.3389/fendo.2018.00545] [PMID: 30283403]
[214]
Roussev, R.G.; Kaider, B.D.; Price, D.E.; Coulam, C.B. Laboratory evaluation of women experiencing reproductive failure. Am. J. Reprod. Immunol., 1996, 35(4), 415-420.
[http://dx.doi.org/10.1111/j.1600-0897.1996.tb00503.x] [PMID: 8739463]
[215]
Ebrahimi, M.; Akbari Asbagh, F. Pathogenesis and causes of premature ovarian failure: An update. Int. J. Fertil. Steril., 2011, 5(2), 54-65.
[PMID: 24963360]
[216]
Larsen, E.C.; Müller, J.; Schmiegelow, K.; Rechnitzer, C.; Andersen, A.N. Reduced ovarian function in long-term survivors of radiation- and chemotherapy-treated childhood cancer. J. Clin. Endocrinol. Metab., 2003, 88(11), 5307-5314.
[http://dx.doi.org/10.1210/jc.2003-030352] [PMID: 14602766]
[217]
Vijayalaxmi; Reiter, R.J.; Tan, D.X.; Herman, T.S.; Thomas, C.R., Jr Melatonin as a radioprotective agent: A review. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(3), 639-653.
[http://dx.doi.org/10.1016/j.ijrobp.2004.02.006] [PMID: 15183467]
[218]
Koc, M.; Taysi, S.; Emin Buyukokuroglu, M.; Bakan, N. The effect of melatonin against oxidative damage during total-body irradiation in rats. Radiat. Res., 2003, 160(2), 251-255.
[http://dx.doi.org/10.1667/3034] [PMID: 12859237]
[219]
Familiari, G.; Caggiati, A.; Nottola, S.A.; Ermini, M.; Benedetto, M.R.D.; Motta, P.M. Infertility: Ultrastructure of human ovarian primordial follicles after combination chemotherapy for Hodgkin’s disease. Hum. Reprod., 1993, 8(12), 2080-2087.
[http://dx.doi.org/10.1093/oxfordjournals.humrep.a137985] [PMID: 8150906]
[220]
Reiter, R.J.; Tan, D.; Sainz, R.M.; Mayo, J.C.; Lopez-Burillo, S. Melatonin: Reducing the toxicity and increasing the efficacy of drugs. J. Pharm. Pharmacol., 2010, 54(10), 1299-1321.
[http://dx.doi.org/10.1211/002235702760345374] [PMID: 12396291]
[221]
Huang, J.; Shan, W.; Li, N.; Zhou, B.; Guo, E.; Xia, M.; Lu, H.; Wu, Y.; Chen, J.; Wang, B.; Xi, L.; Ma, D.; Chen, G.; Li, K.; Sun, C. Melatonin provides protection against cisplatin-induced ovarian damage and loss of fertility in mice. Reprod. Biomed., 2021, 42(3), 505-519.
[http://dx.doi.org/10.1016/j.rbmo.2020.10.001] [PMID: 33388265]
[222]
Conway, G.S. Clinical manifestations of genetic defects affecting gonadotrophins and their receptors Clin. Endocrinol. (Oxf.), 1996, 45(6), 657-663.
[http://dx.doi.org/10.1046/j.1365-2265.1996.8680879.x] [PMID: 9039330]
[223]
Monnier-Barbarino, P.; Forges, T.; Faure, G.C.; Béné, M.C. Gonadal antibodies interfering with female reproduction. Best Pract. Res. Clin. Endocrinol. Metab., 2005, 19(1), 135-148.
[http://dx.doi.org/10.1016/j.beem.2004.11.011] [PMID: 15826927]
[224]
Gleicher, N.; Weghofer, A.; Barad, D.H. A pilot study of premature ovarian senescence: II. Different genotype and phenotype for genetic and autoimmune etiologies. Fertil. Steril., 2009, 91(5), 1707-1711.
[http://dx.doi.org/10.1016/j.fertnstert.2008.01.099] [PMID: 18384784]
[225]
Bondy, S.C.; Campbell, A. Melatonin and regulation of immune function: Impact on numerous diseases. Curr. Aging Sci., 2020, 13(2), 92-101.
[http://dx.doi.org/10.2174/1874609813666200711153223] [PMID: 32651969]
[226]
Voznesenskaya, T.; Makogon, N.; Bryzgina, T.; Sukhina, V.; Grushka, N.; Alexeyeva, I. Melatonin protects against experimental immune ovarian failure in mice. Reprod. Biol., 2007, 7(3), 207-220.
[PMID: 18059973]
[227]
Li, Y.; Liu, H.; Sun, J.; Tian, Y.; Li, C. Effect of melatonin on the peripheral T lymphocyte cell cycle and levels of reactive oxygen species in patients with premature ovarian failure. Exp. Ther. Med., 2016, 12(6), 3589-3594.
[http://dx.doi.org/10.3892/etm.2016.3833] [PMID: 28105091]
[228]
Song, Y.; Wu, H.; Wang, X.; Haire, A.; Zhang, X.; Zhang, J.; Wu, Y.; Lian, Z.; Fu, J.; Liu, G.; Wusiman, A. Melatonin improves the efficiency of super-ovulation and timed artificial insemination in sheep. PeerJ, 2019, 7, e6750.
[http://dx.doi.org/10.7717/peerj.6750] [PMID: 31086729]
[229]
Abdelnaby, E.A.; Abo El-Maaty, A.M. Melatonin and CIDR improved the follicular and luteal haemodynamics, uterine and ovarian arteries vascular perfusion, ovarian hormones and nitric oxide in cyclic cows. Reprod. Domest. Anim., 2021, 56(3), 498-510.
[http://dx.doi.org/10.1111/rda.13888] [PMID: 33403762]
[230]
Ogiwara, K.; Takahashi, T. A dual role for melatonin in medaka ovulation: Ensuring prostaglandin synthesis and actin cytoskeleton rearrangement in follicular cells1. Biol. Reprod., 2016, 94(3), 64.
[http://dx.doi.org/10.1095/biolreprod.115.133827] [PMID: 26864196]
[231]
Paul, S.; Sharma, A.V.; Mahapatra, P.D.; Bhattacharya, P.; Reiter, R.J.; Swarnakar, S. Role of melatonin in regulating matrix metalloproteinase-9 via tissue inhibitors of metalloproteinase-1 during protection against endometriosis. J. Pineal Res., 2008, 44(4), 439-449.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00547.x] [PMID: 18298469]
[232]
Badr, F.M.; El Habit, O.H.M.; Harraz, M.M. Radioprotective effect of melatonin assessed by measuring chromosomal damage in mitotic and meiotic cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 1999, 444(2), 367-372.
[http://dx.doi.org/10.1016/S1383-5718(99)00103-5] [PMID: 10521676]
[233]
Tamura, H.; Takasaki, A.; Miwa, I.; Taniguchi, K.; Maekawa, R.; Asada, H.; Taketani, T.; Matsuoka, A.; Yamagata, Y.; Shimamura, K.; Morioka, H.; Ishikawa, H.; Reiter, R.J.; Sugino, N. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J. Pineal Res., 2008, 44(3), 280-287.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00524.x] [PMID: 18339123]
[234]
Tamura, H.; Takasaki, A.; Taketani, T.; Tanabe, M.; Kizuka, F.; Lee, L.; Tamura, I.; Maekawa, R.; Aasada, H.; Yamagata, Y.; Sugino, N. The role of melatonin as an antioxidant in the follicle. J. Ovarian Res., 2012, 5(1), 5.
[http://dx.doi.org/10.1186/1757-2215-5-5] [PMID: 22277103]
[235]
Gutiérrez-Añez, J.C.; Henning, H.; Lucas-Hahn, A.; Baulain, U.; Aldag, P.; Sieg, B.; Hensel, V.; Herrmann, D.; Niemann, H. Melatonin improves rate of monospermic fertilization and early embryo development in a bovine IVF system. PLoS One, 2021, 16(9), e0256701.
[http://dx.doi.org/10.1371/journal.pone.0256701] [PMID: 34473747]
[236]
Barker, D.J. The fetal and infant origins of adult disease. BMJ, 1990, 301(6761), 1111.
[http://dx.doi.org/10.1136/bmj.301.6761.1111] [PMID: 2252919]
[237]
Conradt, E.; Adkins, D.E.; Crowell, S.E.; Raby, K.L.; Diamond, L.M.; Ellis, B. Incorporating epigenetic mechanisms to advance fetal programming theories. Dev. Psychopathol., 2018, 30(3), 807-824.
[http://dx.doi.org/10.1017/S0954579418000469] [PMID: 30068415]
[238]
Schlotz, W.; Phillips, D.I.W. Fetal origins of mental health: Evidence and mechanisms. Brain Behav. Immun., 2009, 23(7), 905-916.
[http://dx.doi.org/10.1016/j.bbi.2009.02.001] [PMID: 19217937]
[239]
Limesand, S.W.; Thornburg, K.L.; Harding, J.E. 30th anniversary for the developmental origins of endocrinology. J. Endocrinol., 2019, 242(1), E1-E4.
[http://dx.doi.org/10.1530/JOE-19-0227] [PMID: 31125977]
[240]
Van den Bergh, B.R.H.; van den Heuvel, M.I.; Lahti, M.; Braeken, M.; de Rooij, S.R.; Entringer, S.; Hoyer, D.; Roseboom, T.; Räikkönen, K.; King, S.; Schwab, M. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci. Biobehav. Rev., 2020, 117, 26-64.
[http://dx.doi.org/10.1016/j.neubiorev.2017.07.003] [PMID: 28757456]
[241]
Itani, N.; Salinas, C.E.; Villena, M.; Skeffington, K.L.; Beck, C.; Villamor, E.; Blanco, C.E.; Giussani, D.A. The highs and lows of programmed cardiovascular disease by developmental hypoxia: Studies in the chicken embryo. J. Physiol., 2018, 596(15), 2991-3006.
[http://dx.doi.org/10.1113/JP274111] [PMID: 28983923]
[242]
Vázquez, M.I.; Forcada, F.; Sosa, C.; Casao, A.; Sartore, I.; Fernández-Foren, A.; Meikle, A.; Abecia, J.A. Effect of exogenous melatonin on embryo viability and uterine environment in undernourished ewes. Anim. Reprod. Sci., 2013, 141(1-2), 52-61.
[http://dx.doi.org/10.1016/j.anireprosci.2013.07.007] [PMID: 23948208]
[243]
Lui, C.C.; Hsu, M.H.; Kuo, H.C.; Chen, C.C.; Sheen, J.M.; Yu, H.R.; Tiao, M.M.; Tain, Y.L.; Chang, K.A.; Huang, L.T. Effects of melatonin on prenatal dexamethasone-induced epigenetic alterations in hippocampal morphology and reelin and glutamic acid decarboxylase 67 levels. Dev. Neurosci., 2015, 37(2), 105-114.
[http://dx.doi.org/10.1159/000368768] [PMID: 25720733]
[244]
Baydas, G.; Koz, S.T.; Tuzcu, M.; Nedzvetsky, V.S. Melatonin prevents gestational hyperhomocysteinemia-associated alterations in neurobehavioral developments in rats. J. Pineal Res., 2008, 44(2), 181-188.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00506.x] [PMID: 18289170]
[245]
Sagrillo-Fagundes, L.; Maria Assuncao Salustiano, E.; Wong Yen, P.; Soliman, A.; Vaillancourt, C. Melatonin in pregnancy: Effects on brain development and cns programming disorders. Curr. Pharm. Des., 2016, 22(8), 978-986.
[http://dx.doi.org/10.2174/1381612822666151214104624] [PMID: 26654775]
[246]
Baydas, G.; Koz, S.T.; Tuzcu, M.; Etem, E.; Nedzvetsky, V.S. Melatonin inhibits oxidative stress and apoptosis in fetal brains of hyperhomocysteinemic rat dams. J. Pineal Res., 2007, 43(3), 225-231.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00465.x] [PMID: 17803518]
[247]
Tain, Y.L.; Lee, C.T.; Chan, J.Y.; Hsu, C.N. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal N(G)-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring. Am. J. Obstet. Gynecol., 2016, 215(5), e631-636.
[http://dx.doi.org/10.1016/j.ajog.2016.07.036]
[248]
Tain, Y.L.; Leu, S.; Wu, K.L.H.; Lee, W.C.; Chan, J.Y.H. Melatonin prevents maternal fructose intake-induced programmed hypertension in the offspring: Roles of nitric oxide and arachidonic acid metabolites. J. Pineal Res., 2014, 57(1), 80-89.
[http://dx.doi.org/10.1111/jpi.12145] [PMID: 24867192]
[249]
Rhind, S.M. Effects of maternal nutrition on fetal and neonatal reproductive development and function. Anim. Reprod. Sci., 2004, 82-83, 169-181.
[http://dx.doi.org/10.1016/j.anireprosci.2004.04.003] [PMID: 15271451]
[250]
Toppari, J.; Larsen, J.C.; Christiansen, P.; Giwercman, A.; Grandjean, P.; Guillette, L.J., Jr; Jégou, B.; Jensen, T.K.; Jouannet, P.; Keiding, N.; Leffers, H.; McLachlan, J.A.; Meyer, O.; Müller, J.; Rajpert-De Meyts, E.; Scheike, T.; Sharpe, R.; Sumpter, J.; Skakkebaek, N.E. Male reproductive health and environmental xenoestrogens. Environ. Health Perspect., 1996, 104(Suppl. 4), 741-803.
[http://dx.doi.org/10.1289/ehp.96104s4741] [PMID: 8880001]
[251]
Jensen, T.K.; Jørgensen, N.; Punab, M.; Haugen, T.B.; Suominen, J.; Zilaitiene, B.; Horte, A.; Andersen, A.G.; Carlsen, E.; Magnus, Ø.; Matulevicius, V.; Nermoen, I.; Vierula, M.; Keiding, N.; Toppari, J.; Skakkebaek, N.E. Association of in utero exposure to maternal smoking with reduced semen quality and testis size in adulthood: A cross-sectional study of 1,770 young men from the general population in five European countries. Am. J. Epidemiol., 2004, 159(1), 49-58.
[http://dx.doi.org/10.1093/aje/kwh002] [PMID: 14693659]
[252]
Damgaard, I.N.; Jensen, T.K.; Petersen, J.H.; Skakkebæk, N.E.; Toppari, J.; Main, K.M. Cryptorchidism and maternal alcohol consumption during pregnancy. Environ. Health Perspect., 2007, 115(2), 272-277.
[http://dx.doi.org/10.1289/ehp.9608] [PMID: 17384777]
[253]
Padmanabhan, V.; Sarma, H.N.; Savabieasfahani, M.; Steckler, T.L.; Veiga-Lopez, A. Developmental reprogramming of reproductive and metabolic dysfunction in sheep: Native steroids vs. environmental steroid receptor modulators. Int. J. Androl., 2010, 33(2), 394-404.
[http://dx.doi.org/10.1111/j.1365-2605.2009.01024.x] [PMID: 20070410]
[254]
Juul, A.; Almstrup, K.; Andersson, A.M.; Jensen, T.K.; Jørgensen, N.; Main, K.M.; Meyts, E.R-D.; Toppari, J.; Skakkebæk, N.E. Possible fetal determinants of male infertility. Nat. Rev. Endocrinol., 2014, 10(9), 553-562.
[http://dx.doi.org/10.1038/nrendo.2014.97] [PMID: 24935122]
[255]
Wohlfahrt-Veje, C.; Main, K.M.; Skakkebaek, N.E. Testicular dysgenesis syndrome: Foetal origin of adult reproductive problems. Clin. Endocrinol. (Oxf.), 2009, 71(4), 459-465.
[http://dx.doi.org/10.1111/j.1365-2265.2009.03545.x] [PMID: 19222487]
[256]
Skakkebaek, N.E. A brief review of the link between environment and male reproductive health: Lessons from studies of testicular germ cell cancer. Horm. Res. Paediatr., 2016, 86(4), 240-246.
[http://dx.doi.org/10.1159/000443400] [PMID: 26871895]
[257]
Abd-Allah, A.; El-Sayed, S.M.; Abdel-Wahab, M.H.; Hamada, F.M. Effect of melatonin on estrogen and progesterone receptors in relation to uterine contraction in rats. Pharmacol. Res., 2003, 47(4), 349-354.
[http://dx.doi.org/10.1016/S1043-6618(03)00014-8] [PMID: 12644393]
[258]
Olukole, S.G.; Lanipekun, D.O.; Ola-Davies, E.O.; Oke, B.O. Maternal exposure to environmentally relevant doses of bisphenol A causes reproductive dysfunction in F1 adult male rats: Protective role of melatonin. Environ. Sci. Pollut. Res. Int., 2019, 26(28), 28940-28950.
[http://dx.doi.org/10.1007/s11356-019-06153-3] [PMID: 31388950]
[259]
Abdel-Wahab, A.; Hassanin, K.M.A.; Ibrahim, S.S.; El-Kossi, D.M.M.H.; Abdel-Razik, A.R.H. Developmental programming: Physiological impacts of prenatal melatonin administration on reproductive capacity and serum triiodothyronine of adult female offspring rat born to moms exposed to bisphenol a during pregnancy. Reprod. Sci., 2021, 28(7), 1956-1966.
[http://dx.doi.org/10.1007/s43032-020-00452-8] [PMID: 33469879]
[260]
Sun, Z.Y.; Zhang, P.; Wang, J.J.; Liu, J.C.; Li, L.; Shen, W.; Zhai, Q.Y. Melatonin alleviates meiotic defects in fetal mouse oocytes induced by Di (2-ethylhexyl) phthalate in vitro. Aging (Albany NY), 2018, 10(12), 4175-4187.
[http://dx.doi.org/10.18632/aging.101715] [PMID: 30591620]
[261]
Díaz, E.; Castrillón, P.O.; Esquifino, A.I.; Marín, B.; Díaz, B. Prenatal melatonin exposure influences the maturation of gonadotropin and prolactin estradiol-benzoate feedback system. J. Steroid Biochem. Mol. Biol., 1999, 70(1-3), 81-88.
[http://dx.doi.org/10.1016/S0960-0760(99)00091-6] [PMID: 10529005]
[262]
Sebastiani, G.; Borrás-Novell, C.; Casanova, M.A.; Pascual Tutusaus, M.; Ferrero Martínez, S.; Gómez Roig, M.D.; García-Algar, O. The effects of alcohol and drugs of abuse on maternal nutritional profile during pregnancy. Nutrients, 2018, 10(8), 1008.
[http://dx.doi.org/10.3390/nu10081008] [PMID: 30072661]
[263]
Main, K.M.; Jensen, R.B.; Asklund, C.; Høi-Hansen, C.E.; Skakkebaek, N.E. Low birth weight and male reproductive function. Horm. Res. Paediatr., 2006, 65(Suppl. 3), 116-122.
[http://dx.doi.org/10.1159/000091516] [PMID: 16612124]
[264]
Langston-Cox, A.; Marshall, S.A.; Lu, D.; Palmer, K.R.; Wallace, E.M. Melatonin for the management of preeclampsia: A review. Antioxidants, 2021, 10(3), 376.
[http://dx.doi.org/10.3390/antiox10030376] [PMID: 33802558]
[265]
Dou, Y.; Lin, B.; Cheng, H.; Wang, C.; Zhao, M.; Zhang, J.; Wu, J. The reduction of melatonin levels is associated with the development of preeclampsia: A meta-analysis. Hypertens. Pregnancy, 2019, 38(2), 65-72.
[http://dx.doi.org/10.1080/10641955.2019.1581215] [PMID: 30794002]
[266]
Hardeland, R. Melatonin and inflammation-Story of a double-edged blade. J. Pineal Res., 2018, 65(4), e12525.
[http://dx.doi.org/10.1111/jpi.12525] [PMID: 30242884]
[267]
Tain, Y.L.; Huang, L.T.; Chan, J. Transcriptional regulation of programmed hypertension by melatonin: An epigenetic perspective. Int. J. Mol. Sci., 2014, 15(10), 18484-18495.
[http://dx.doi.org/10.3390/ijms151018484] [PMID: 25318052]
[268]
Korkmaz, A.; Reiter, R.J. Epigenetic regulation: A new research area for melatonin? J. Pineal Res., 2008, 44(1), 41-44.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00509.x] [PMID: 18078446]
[269]
Wu, T.H.; Kuo, H.C.; Lin, I.C.; Chien, S.J.; Huang, L.T.; Tain, Y.L. Melatonin prevents neonatal dexamethasone induced programmed hypertension: Histone deacetylase inhibition. J. Steroid. Biochem. Mol. Biol., 2014, 144(Pt B), 253-259.
[http://dx.doi.org/10.1016/j.jsbmb.2014.07.008]
[270]
Rexhaj, E.; Pireva, A.; Paoloni-Giacobino, A.; Allemann, Y.; Cerny, D.; Dessen, P.; Sartori, C.; Scherrer, U.; Rimoldi, S.F. Prevention of vascular dysfunction and arterial hypertension in mice generated by assisted reproductive technologies by addition of melatonin to culture media. Am. J. Physiol. Heart Circ. Physiol., 2015, 309(7), H1151-H1156.
[http://dx.doi.org/10.1152/ajpheart.00621.2014] [PMID: 26276822]
[271]
Qu, P.; Shen, C.; Du, Y.; Qin, H.; Luo, S.; Fu, S.; Dong, Y.; Guo, S.; Hu, F.; Xue, Y.; Liu, E. Melatonin protects rabbit Somatic Cell Nuclear Transfer (SCNT) embryos from electrofusion damage. Sci. Rep., 2020, 10(1), 2186.
[http://dx.doi.org/10.1038/s41598-020-59161-6] [PMID: 32042116]
[272]
Su, J.; Wang, Y.; Xing, X.; Zhang, L.; Sun, H.; Zhang, Y. Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos. J. Pineal Res., 2015, 59(4), 455-468.
[http://dx.doi.org/10.1111/jpi.12275] [PMID: 26331949]
[273]
Sorlí, J.V.; Barragán, R.; Coltell, O.; Portolés, O.; Pascual, E.C.; Ortega-Azorín, C.; González, J.I.; Estruch, R.; Saiz, C.; Pérez-Fidalgo, A.; Ordovas, J.M.; Corella, D. Chronological age interacts with the circadian melatonin receptor 1B gene variation, determining fasting glucose concentrations in mediterranean populations. additional analyses on type-2 diabetes risk. Nutrients, 2020, 12(11), 3323.
[http://dx.doi.org/10.3390/nu12113323] [PMID: 33138317]
[274]
Tain, Y.L.; Huang, L.T.; Hsu, C.N. Developmental programming of adult disease: Reprogramming by melatonin? Int. J. Mol. Sci., 2017, 18(2), 426.
[http://dx.doi.org/10.3390/ijms18020426] [PMID: 28212315]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy