Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

General Review Article

Overview of Inorganic Nanoparticles: An Expanding Horizon in Tumor Therapeutics

Author(s): Lalit Kumar*, Shivani Verma, Puneet Utreja and Dinesh Kumar

Volume 18, Issue 3, 2023

Published on: 20 October, 2022

Page: [343 - 363] Pages: 21

DOI: 10.2174/1574892817666221005094423

Price: $65

conference banner
Abstract

Background: Cancer is characterized by uncontrolled cell division in the human body damaging normal tissues. There are almost a hundred types of cancers studied to date that are conventionally treated with chemotherapy, radiation therapy, and surgery. Conventional methods have drawbacks like non-specific distribution of drugs, low concentration of drugs in tumors, and adverse effects like cardiotoxicity. Therefore, inorganic nanoparticles are explored nowadays to achieve better results in cancer treatment.

Objective: The objective of this review paper was to summarize the role of inorganic nanoparticles in cancer treatment by revealing their preclinical status and patents.

Methods: Literature survey for the present work was conducted by exploring various search engines like PubMed, Google Scholar, and Google patents.

Results: Inorganic nanoparticles come under the advanced category of nanomedicine explored in cancer therapeutics. The structural properties of inorganic nanoparticles make them excellent candidates for targeting, imaging, and eradication of cancer cells. Besides this, they also show high biocompatibility and minimum systemic toxicity.

Conclusion: This review paper concludes that inorganic nanoparticles may be better alternatives to conventional approaches for the treatment of cancer. However, their presence in global pharmaceutical markets will be governed by the development of novel scale-up techniques and clinical evaluation.

Keywords: Biocompatibility, Cancer, Conventional, Inorganic nanoparticles, Nanomedicine, Preclinical

[1]
Contera S, Bernardino de la Serna J, Tetley TD. Biotechnology, nanotechnology and medicine. Emerg Top Life Sci 2020; 4(6): 551-4.
[http://dx.doi.org/10.1042/ETLS20200350 ] [PMID: 33295610]
[2]
Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr Drug Metab 2019; 20(6): 416-29.
[http://dx.doi.org/10.2174/1389200219666180918111528 ] [PMID: 30227814]
[3]
Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discov Today 2010; 15(19-20): 842-50.
[http://dx.doi.org/10.1016/j.drudis.2010.08.006 ] [PMID: 20727417]
[4]
Cuenca AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SR. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 2006; 107(3): 459-66.
[http://dx.doi.org/10.1002/cncr.22035 ] [PMID: 16795065]
[5]
Kim KY. Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine 2007; 3(2): 103-10.
[http://dx.doi.org/10.1016/j.nano.2006.12.002 ] [PMID: 17442621]
[6]
Arayne MS, Sultana N. Review: Nanoparticles in drug delivery for the treatment of cancer. Pak J Pharm Sci 2006; 19(3): 258-68.
[PMID: 16935836]
[7]
Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004; 56(11): 1649-59.
[http://dx.doi.org/10.1016/j.addr.2004.02.014 ] [PMID: 15350294]
[8]
Bharali DJ, Mousa SA. Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise. Pharmacol Ther 2010; 128(2): 324-35.
[http://dx.doi.org/10.1016/j.pharmthera.2010.07.007 ] [PMID: 20705093]
[9]
Shapira A, Livney YD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug re-sistance. Drug Resist Updat 2011; 14(3): 150-63.
[http://dx.doi.org/10.1016/j.drup.2011.01.003 ] [PMID: 21330184]
[10]
Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res 2011; 44(10): 1029-38.
[http://dx.doi.org/10.1021/ar200019c ] [PMID: 21545096]
[11]
de Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596 ] [PMID: 18686775]
[12]
Mu Q, Wang H, Zhang M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin Drug Deliv 2017; 14(1): 123-36.
[http://dx.doi.org/10.1080/17425247.2016.1208650 ] [PMID: 27401941]
[13]
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018 ] [PMID: 25813885]
[14]
Oyarzun-Ampuero F, Guerrero A, Hassan-Lopez N. et al. Organic and inorganic nanoparticles for prevention and diagnosis of gastric cancer. Curr Pharm Des 2015; 21(29): 4145-54.
[http://dx.doi.org/10.2174/1381612821666150901095538 ] [PMID: 26323433]
[15]
Aghebati-Maleki A, Dolati S, Ahmadi M. et al. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol 2020; 235(3): 1962-72.
[http://dx.doi.org/10.1002/jcp.29126 ] [PMID: 31441032]
[16]
Palazzolo S, Bayda S, Hadla M. et al. The clinical translation of organic nanomaterials for cancer therapy: A focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr Med Chem 2018; 25(34): 4224-68.
[http://dx.doi.org/10.2174/0929867324666170830113755 ] [PMID: 28875844]
[17]
Bayda S, Hadla M, Palazzolo S. et al. Inorganic nanoparticles for cancer therapy: A transition from lab to clinic. Curr Med Chem 2018; 25(34): 4269-303.
[http://dx.doi.org/10.2174/0929867325666171229141156 ] [PMID: 29284391]
[18]
Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release 2011; 155(3): 344-57.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.004 ] [PMID: 21723891]
[19]
Li L, Liu H. Biodegradable inorganic nanoparticles: An opportunity for improved cancer therapy? Nanomedicine 2017; 12(9): 959-61.
[http://dx.doi.org/10.2217/nnm-2017-0057 ] [PMID: 28440705]
[20]
Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 2018; 19(7): 1979.
[http://dx.doi.org/10.3390/ijms19071979 ] [PMID: 29986450]
[21]
Shevtsov M, Zhou Y, Khachatryan W, Multhoff G, Gao H. Recent advances in gold nanoformulations for cancer therapy. Curr Drug Metab 2018; 19(9): 768-80.
[http://dx.doi.org/10.2174/1389200219666180611080736 ] [PMID: 29886825]
[22]
Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic Photo Thermal Therapy (PPTT) using gold nanoparticles. Lasers Med Sci 2008; 23(3): 217-28.
[http://dx.doi.org/10.1007/s10103-007-0470-x ] [PMID: 17674122]
[23]
Liu S, Lämmerhofer M. Functionalized gold nanoparticles for sample preparation: A review. Electrophoresis 2019; 40(18-19): elps.201900111.
[http://dx.doi.org/10.1002/elps.201900111] [PMID: 31056767]
[24]
Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 2009; 38(6): 1759-82.
[http://dx.doi.org/10.1039/b806051g ] [PMID: 19587967]
[25]
Apyari VV, Arkhipova VV, Dmitrienko SG, Zolotov YA. Using gold nanoparticles in spectrophotometry. J Anal Chem 2014; 69(1): 1-11.
[http://dx.doi.org/10.1134/S1061934814010031]
[26]
Sengani M, Grumezescu AM, Rajeswari VD. Recent trends and methodologies in gold nanoparticle synthesis – A prospective review on drug delivery aspect. OpenNano 2017; 2: 37-46.
[http://dx.doi.org/10.1016/j.onano.2017.07.001]
[27]
Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R. Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells Nanomed Biotechnol 2018; 46(S1): 1210-20.
[http://dx.doi.org/10.1080/21691401.2018.1449118]
[28]
Murphy CJ, Sau TK, Gole AM. et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B 2005; 109(29): 13857-70.
[http://dx.doi.org/10.1021/jp0516846 ] [PMID: 16852739]
[29]
Marangoni V, Cancino-Bernardi J, Zucolotto V. Synthesis, physico-chemical properties, and biomedical applications of gold nanorods—a review. J Biomed Nanotechnol 2016; 12(6): 1136-58.
[http://dx.doi.org/10.1166/jbn.2016.2218 ] [PMID: 27319210]
[30]
Mousavi SM, Zarei M, Hashemi SA. et al. Gold nanostarsdiagnosis, bioimaging and biomedical applications. Drug Metab Rev 2020; 52(2): 299-318.
[http://dx.doi.org/10.1080/03602532.2020.1734021 ] [PMID: 32150480]
[31]
Xia Y, Li W, Cobley CM. et al. Gold nanocages: From synthesis to theranostic applications. Acc Chem Res 2011; 44(10): 914-24.
[http://dx.doi.org/10.1021/ar200061q ] [PMID: 21528889]
[32]
Song S, Gui L, Feng Q. et al. TAT-modified gold nanoparticles enhance the antitumor activity of PAD4 inhibitors. Int J Nanomedicine 2020; 15: 6659-71.
[http://dx.doi.org/10.2147/IJN.S255546 ] [PMID: 32982225]
[33]
Du Y, Xia L, Jo A. et al. Synthesis and evaluation of doxorubicinloaded gold nanoparticles for tumor-targeted drug delivery. Bioconjug Chem 2018; 29(2): 420-30.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00756 ] [PMID: 29261297]
[34]
Renner AM, Ilyas S, Schlößer HA. et al. Receptor-mediated in vivo targeting of breast cancer cells with 17α-ethynylestradiolconjugated silica-coated gold nanoparticles. Langmuir 2020; 36(48): 14819-28.
[http://dx.doi.org/10.1021/acs.langmuir.0c02820 ] [PMID: 33210924]
[35]
Li X, Xiong Z, Xu X. et al. 99m Tc-labeled multifunctional lowgeneration dendrimer-entrapped gold nanoparticles for targeted SPECT/CT dual-mode imaging of tumors. ACS Appl Mater Interfaces 2016; 8(31): 19883-91.
[http://dx.doi.org/10.1021/acsami.6b04827 ] [PMID: 27434031]
[36]
Cheng X, Sun R, Yin L, Chai Z, Shi H, Gao M. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv Mater 2017; 29(6): 1604894.
[http://dx.doi.org/10.1002/adma.201604894 ] [PMID: 27921316]
[37]
Huang N, Liu Y, Fang Y. et al. Gold nanoparticles induce tumor vessel normalization and impair metastasis by inhibiting endothelial smad2/3 signaling. ACS Nano 2020; 14(7): 7940-58.
[http://dx.doi.org/10.1021/acsnano.9b08460 ] [PMID: 32413258]
[38]
Wang H, Wang L, Gao Y, Ding Y. The effect of drug position on the properties of paclitaxel-conjugated gold nanoparticles for liver tumor treatment. Chin Chem Lett 2021; 32(3): 1041-5.
[http://dx.doi.org/10.1016/j.cclet.2020.08.044]
[39]
Alhussan A, Bromma K, Perez MM. et al. Docetaxel-mediated uptake and retention of gold nanoparticles in tumor cells and in cancer-associated fibroblasts. Cancers 2021; 13(13): 3157.
[http://dx.doi.org/10.3390/cancers13133157 ] [PMID: 34202574]
[40]
Piktel E, Ościłowska I, Suprewicz Ł. et al. ROS-mediated apoptosis and autophagy in ovarian cancer cells treated with peanutshaped gold nanoparticles. Int J Nanomedicine 2021; 16: 1993-2011.
[http://dx.doi.org/10.2147/IJN.S277014 ] [PMID: 33727811]
[41]
Go G, Lee CS, Yoon YM, Lim JH, Kim TH, Lee SH. PrPC aptamer conjugated–gold nanoparticles for targeted delivery of doxorubicin to colorectal cancer cells. Int J Mol Sci 2021; 22(4): 1976.
[http://dx.doi.org/10.3390/ijms22041976 ] [PMID: 33671292]
[42]
Bratschitsch R, Leitenstorfer A. Artificial atoms for quantum optics. Nat Mater 2006; 5(11): 855-6.
[http://dx.doi.org/10.1038/nmat1768 ] [PMID: 17077848]
[43]
Pleskova S, Mikheeva E, Gornostaeva E. Using of quantum dots in biology and medicine. Adv Exp Med Biol 2018; 1048: 323-34.
[http://dx.doi.org/10.1007/978-3-319-72041-8_19 ] [PMID: 29453547]
[44]
Wagner AM, Knipe JM, Orive G, Peppas NA. Quantum dots in biomedical applications. Acta Biomater 2019; 94: 44-63.
[http://dx.doi.org/10.1016/j.actbio.2019.05.022 ] [PMID: 31082570]
[45]
Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim HW, Mozafari M. Quantum dots: A review from concept to clinic. Biotechnol J 2020; 15(12): 2000117.
[http://dx.doi.org/10.1002/biot.202000117 ] [PMID: 32845071]
[46]
Lee KS, Prasad PN, Huyet G, Tan CH. Feature issue introduction: Quantum dots for photonic applications. Opt Express 2012; 20(10): 10721-3.
[http://dx.doi.org/10.1364/OE.20.010721 ] [PMID: 22565697]
[47]
Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem 2013; 6(1): 143-62.
[http://dx.doi.org/10.1146/annurev-anchem-060908-155136 ] [PMID: 23527547]
[48]
Liu N, Tang M. Toxicity of different types of quantum dots to mammalian cells in vitro: An update review. J Hazard Mater 2020; 399: 122606.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122606 ] [PMID: 32516645]
[49]
Xu G, Zeng S, Zhang B, Swihart MT, Yong KT, Prasad PN. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem Rev 2016; 116(19): 12234-327.
[http://dx.doi.org/10.1021/acs.chemrev.6b00290 ] [PMID: 27657177]
[50]
Matea C, Mocan T, Tabaran F. et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 2017; 12: 5421-31.
[http://dx.doi.org/10.2147/IJN.S138624 ] [PMID: 28814860]
[51]
Geszke-Moritz M, Moritz M. Quantum dots as versatile probes in medical sciences: Synthesis, modification and properties. Mater Sci Eng C 2013; 33(3): 1008-21.
[http://dx.doi.org/10.1016/j.msec.2013.01.003 ] [PMID: 23827537]
[52]
Schiffman JD, Balakrishna RG. Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sens Actuators B Chem 2018; 258: 1191-214.
[http://dx.doi.org/10.1016/j.snb.2017.11.189]
[53]
Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed Pharmacother 2017; 87: 209-22.
[http://dx.doi.org/10.1016/j.biopha.2016.12.108 ] [PMID: 28061404]
[54]
Farshbaf M, Davaran S, Rahimi F, Annabi N, Salehi R, Akbarzadeh A. Carbon quantum dots: Recent progresses on synthesis, surface modification and applications. Artif Cells Nanomed Biotechnol 2018; 46(7): 1331-48.
[http://dx.doi.org/10.1080/21691401.2017.1377725 ] [PMID: 28933188]
[55]
Alizadeh-Ghodsi M, Pourhassan-Moghaddam M, Zavari-Nematabad A, Walker B, Annabi N, Akbarzadeh A. State-of-theart and trends in synthesis, properties, and application of quantum dots-based nanomaterials. Part Part Syst Charact 2019; 36(2): 1800302.
[http://dx.doi.org/10.1002/ppsc.201800302]
[56]
He X, Ma N. An overview of recent advances in quantum dots for biomedical applications. Colloids Surf B Biointerfaces 2014; 124: 118-31.
[http://dx.doi.org/10.1016/j.colsurfb.2014.06.002 ] [PMID: 24962692]
[57]
Ke Y. Recent patents on quantum dot engineering for biomedical application. Recent Pat Biomed Eng 2012; 5(3): 223-34.
[http://dx.doi.org/10.2174/1874764711205030223]
[58]
Meshik X, Farid S, Choi M. et al. Biomedical applications of quantum dots, nucleic acid-based aptamers, and nanostructures in biosensors. Crit Rev Biomed Eng 2015; 43(4): 277-96.
[http://dx.doi.org/10.1615/CritRevBiomedEng.2016016448 ] [PMID: 27480460]
[59]
Zhou D. Quantum dot–nucleic acid/aptamer bioconjugate-based fluorimetric biosensors. Biochem Soc Trans 2012; 40(4): 635-9.
[http://dx.doi.org/10.1042/BST20120059 ] [PMID: 22817707]
[60]
Wu P, Zhao T, Tian Y, Wu L, Hou X. Protein-directed synthesis of Mn-doped ZnS quantum dots: A dual-channel biosensor for two proteins. Chemistry 2013; 19(23): 7473-9.
[http://dx.doi.org/10.1002/chem.201204035 ] [PMID: 23576296]
[61]
Nightingale AM, de Mello JC. Microscale synthesis of quantum dots. J Mater Chem 2010; 20(39): 8454-63.
[http://dx.doi.org/10.1039/c0jm01221a]
[62]
Campbell E, Hasan MT, Gonzalez-Rodriguez R. et al. Graphene quantum dot formulation for cancer imaging and redox-based drug delivery. Nanomedicine 2021; 37: 102408.
[http://dx.doi.org/10.1016/j.nano.2021.102408 ] [PMID: 34015513]
[63]
Samimi S, Ardestani MS, Dorkoosh FA. Preparation of carbon quantum dots- quinic acid for drug delivery of gemcitabine to breast cancer cells. J Drug Deliv Sci Technol 2021; 61: 102287.
[http://dx.doi.org/10.1016/j.jddst.2020.102287]
[64]
Luo M, Cheng W, Zeng X, Mei L, Liu G, Deng W. Folic acidfunctionalized black phosphorus quantum dots for targeted chemophotothermal combination cancer therapy. Pharmaceutics 2019; 11(5): 242.
[http://dx.doi.org/10.3390/pharmaceutics11050242 ] [PMID: 31117238]
[65]
Mahani M, Pourrahmani-Sarbanani M, Yoosefian M, Divsar F, Mousavi SM, Nomani A. Doxorubicin delivery to breast cancer cells with transferrin-targeted carbon quantum dots: An in vitro and in silico study. J Drug Deliv Sci Technol 2021; 62: 102342.
[http://dx.doi.org/10.1016/j.jddst.2021.102342]
[66]
Felix DM, Rebelo ALM, Duarte MF. et al. Graphene quantum dots decorated with imatinib for leukemia treatment. J Drug Deliv Sci Technol 2021; 61: 102117.
[http://dx.doi.org/10.1016/j.jddst.2020.102117 ] [PMID: 34457042]
[67]
Takke A, Shende P. Monodispersed magnetographene quantum dot nanocomposites for delivery of silibinin. Colloids Surf A Physicochem Eng Asp 2021; 628: 127349.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127349]
[68]
Ghanbari N, Salehi Z, Khodadadi AA, Shokrgozar MA, Saboury AA. Glucosamine-conjugated graphene quantum dots as versatile and pH-sensitive nanocarriers for enhanced delivery of curcumin targeting to breast cancer. Mater Sci Eng C 2021; 121: 111809.
[http://dx.doi.org/10.1016/j.msec.2020.111809 ] [PMID: 33579453]
[69]
Shou X, Liu Y, Wu D. et al. Black phosphorus quantum dots doped multifunctional hydrogel particles for cancer immunotherapy. Chem Eng J 2021; 408: 127349.
[http://dx.doi.org/10.1016/j.cej.2020.127349]
[70]
Javadian S, Najafi K, Sadrpoor SM, Ektefa F, Dalir N, Nikkhah M. Graphene quantum dots based magnetic nanoparticles as a promising delivery system for controlled doxorubicin release. J Mol Liq 2021; 331: 115746.
[http://dx.doi.org/10.1016/j.molliq.2021.115746]
[71]
Liu Z, Xie Z, Wu X. et al. pH-responsive black phosphorus quantum dots for tumor-targeted photodynamic therapy. Photodiagn Photodyn Ther 2021; 35: 102429.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102429 ] [PMID: 34237475]
[72]
Rode A, Sharma S, Mishra DK. Carbon nanotubes: Classification, method of preparation and pharmaceutical application. Curr Drug Deliv 2018; 15(5): 620-9.
[http://dx.doi.org/10.2174/1567201815666171221124711 ] [PMID: 29268686]
[73]
Sharma P, Kumar Mehra N, Jain K, Jain NK. Biomedical applications of carbon nanotubes: A critical review. Curr Drug Deliv 2016; 13(6): 796-817.
[http://dx.doi.org/10.2174/1567201813666160623091814 ] [PMID: 27339036]
[74]
Saito N, Usui Y, Aoki K. et al. Carbon nanotubes: Biomaterial applications. Chem Soc Rev 2009; 38(7): 1897-903.
[http://dx.doi.org/10.1039/b804822n ] [PMID: 19551170]
[75]
Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A. Carbon nanotubes in biomedical applications: Factors, mechanisms, and remedies of toxicity. J Med Chem 2016; 59(18): 8149-67.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01770 ] [PMID: 27142556]
[76]
Gomez-Gualdrón DA, Burgos JC, Yu J, Balbuena PB. Carbon nanotubes. Prog Mol Biol Transl Sci 2011; 104: 175-245.
[http://dx.doi.org/10.1016/B978-0-12-416020-0.00005-X ] [PMID: 22093220]
[77]
Raphey VR, Henna TK, Nivitha KP, Mufeedha P, Sabu C, Pramod K. Advanced biomedical applications of carbon nanotube. Mater Sci Eng C 2019; 100: 616-30.
[http://dx.doi.org/10.1016/j.msec.2019.03.043 ] [PMID: 30948098]
[78]
Meredith JR, Jin C, Narayan RJ, Aggarwal R. Biomedical applications of carbon-nanotube composites. Front Biosci 2013; 5(2): 610-21.
[http://dx.doi.org/10.2741/E643 ] [PMID: 23277017]
[79]
Rastogi V, Yadav P, Bhattacharya SS. et al. Carbon nanotubes: An emerging drug carrier for targeting cancer cells. J Drug Deliv 2014; 2014: 1-23.
[http://dx.doi.org/10.1155/2014/670815 ] [PMID: 24872894]
[80]
Solhjoo A, Sobhani Z, Sufali A, Rezaei Z, Khabnadideh S, Sakhteman A. Exploring pH dependent delivery of 5-fluorouracil from functionalized multi-walled carbon nanotubes. Colloids Surf B Biointerfaces 2021; 205: 111823.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111823 ] [PMID: 34098368]
[81]
Wang C, Li W. Preparation, characterization, and in vitro and vivo antitumor activity of oridonin-conjugated multiwalled carbon nanotubes functionalized with carboxylic group. J Nanomater 2016; 2016(5): 1-7.
[82]
Singhai NJ, Maheshwari R, Jain NK, Ramteke S. Chondroitin sulphate and α-tocopheryl succinate tethered multiwalled carbon nanotubes for dual-action therapy of triple-negative breast cancer. J Drug Deliv Sci Technol 2020; 60: 102080.
[http://dx.doi.org/10.1016/j.jddst.2020.102080]
[83]
Phan QT, Patil MP, Tu TTK, Le CMQ, Kim GD, Lim KT. Polyampholyte-grafted single walled carbon nanotubes prepared via a green process for anticancer drug delivery application. Polymer 2020; 193: 122340.
[http://dx.doi.org/10.1016/j.polymer.2020.122340]
[84]
Wahab R, Khan F, Siddiqui MA, Ahmad J, Saquib Q, Al-Khedhairy AA. Cytotoxic assessment of liver cancer cells (HepG2) with raw, functionalized multiwalled carbon nanotubes and their comparison with nanohydroxyapatite. J King Saud Univ Sci 2021; 33(5): 101444.
[http://dx.doi.org/10.1016/j.jksus.2021.101444]
[85]
Berber MR, Elkhenany H, Hafez IH, El-Badawy A, Essawy M, El-Badri N. Efficient tailoring of platinum nanoparticles supported on multiwalled carbon nanotubes for cancer therapy. Nanomedicine 2020; 15(8): 793-808.
[http://dx.doi.org/10.2217/nnm-2019-0445 ] [PMID: 32207376]
[86]
Assali M, Kittana N, Dayyeh S, Khiar N. Dual covalent functionalization of single-walled carbon nanotubes for effective targeted cancer therapy. Nanotechnology 2021; 32(20): 205101.
[http://dx.doi.org/10.1088/1361-6528/abe48c ] [PMID: 33561838]
[87]
Luo X, Wang H, Ji D. Carbon nanotubes (CNT)-loaded ginsenosides Rb3 suppresses the PD-1/PD-L1 pathway in triple-negative breast cancer. Aging 2021; 13(13): 17177-89.
[http://dx.doi.org/10.18632/aging.203131 ] [PMID: 34111025]
[88]
Zhao Y, Zhao T, Cao Y. et al. Temperature-sensitive lipid-coated carbon nanotubes for synergistic photothermal therapy and gene therapy. ACS Nano 2021; 15(4): 6517-29.
[http://dx.doi.org/10.1021/acsnano.0c08790 ] [PMID: 33749240]
[89]
McKernan P, Virani NA, Faria GNF. et al. Targeted single-walled carbon nanotubes for photothermal therapy combined with immune checkpoint inhibition for the treatment of metastatic breast cancer. Nanoscale Res Lett 2021; 16(1): 9.
[http://dx.doi.org/10.1186/s11671-020-03459-x ] [PMID: 33411055]
[90]
Zhi D, Yang T, Yang J, Fu S, Zhang S. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater 2020; 102: 13-34.
[http://dx.doi.org/10.1016/j.actbio.2019.11.027 ] [PMID: 31759124]
[91]
Laurent S, Mahmoudi M. Superparamagnetic iron oxide nanoparticles: Promises for diagnosis and treatment of cancer. Int J Mol Epidemiol Genet 2011; 2(4): 367-90.
[PMID: 22199999]
[92]
Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 2011; 63(1-2): 24-46.
[http://dx.doi.org/10.1016/j.addr.2010.05.006 ] [PMID: 20685224]
[93]
Santhosh PB, Ulrih NP. Multifunctional superparamagnetic iron oxide nanoparticles: Promising tools in cancer theranostics. Cancer Lett 2013; 336(1): 8-17.
[http://dx.doi.org/10.1016/j.canlet.2013.04.032 ] [PMID: 23664890]
[94]
Kandasamy G, Maity D. Recent advances in Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 2015; 496(2): 191-218.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.058 ] [PMID: 26520409]
[95]
Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. Nanomedicine 2016; 12(2): 287-307.
[http://dx.doi.org/10.1016/j.nano.2015.10.019 ] [PMID: 26707817]
[96]
Lam T, Pouliot P, Avti PK, Lesage F, Kakkar AK. Superparamagnetic iron oxide based nanoprobes for imaging and theranostics. Adv Colloid Interface Sci 2013; 199-200: 95-113.
[http://dx.doi.org/10.1016/j.cis.2013.06.007 ] [PMID: 23891347]
[97]
Kievit FM, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 2011; 44(10): 853-62.
[http://dx.doi.org/10.1021/ar2000277 ] [PMID: 21528865]
[98]
Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P. Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B 2008; 112(46): 14470-81.
[http://dx.doi.org/10.1021/jp803016n ] [PMID: 18729404]
[99]
Sun S, Zeng H, Robinson DB. et al. Monodisperse MFe 2 O 4 (M = Fe, Co, Mn) Nanoparticles. J Am Chem Soc 2004; 126(1): 273-9.
[http://dx.doi.org/10.1021/ja0380852 ] [PMID: 14709092]
[100]
Narita A, Naka K, Chujo Y. Facile control of silica shell layer thickness on hydrophilic iron oxide nanoparticles via reverse micelle method. Colloids Surf A Physicochem Eng Asp 2009; 336(1-3): 46-56.
[http://dx.doi.org/10.1016/j.colsurfa.2008.11.013]
[101]
Hedayatnasab Z, Dabbagh A, Abnisa F, Wan DWMA. Polycaprolactone-coated superparamagnetic iron oxide nanoparticles for in vitro magnetic hyperthermia therapy of cancer. Eur Polym J 2020; 133: 109789.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109789]
[102]
Reczyńska K, Marszałek M, Zarzycki A. et al. Superparamagnetic iron oxide nanoparticles modified with silica layers as potential agents for lung cancer treatment. Nanomaterials 2020; 10(6): 1076.
[http://dx.doi.org/10.3390/nano10061076 ] [PMID: 32486431]
[103]
Hedayatnasab Z, Dabbagh A, Abnisa F, Karimian H, Abu Kasim NH, Wan Daud WMA. Synthesis, characterization and in vitro analysis of superparamagnetic iron oxide nanoparticles for targeted hyperthermia therapy. Chem Pap 2021; 75(2): 669-79.
[http://dx.doi.org/10.1007/s11696-020-01265-4]
[104]
Lu S, Li X, Zhang J, Peng C, Shen M, Shi X. Dendrimer-stabilized gold nanoflowers embedded with ultrasmall iron oxide nanoparticles for multimode imaging-guided combination therapy of tumors. Adv Sci 2018; 5(12): 1801612.
[http://dx.doi.org/10.1002/advs.201801612 ] [PMID: 30581720]
[105]
Li X, Lu S, Xiong Z. et al. Light‐addressable nanoclusters of ultrasmall iron oxide nanoparticles for enhanced and dynamic magnetic resonance imaging of arthritis. Adv Sci 2019; 6(19): 1901800.
[http://dx.doi.org/10.1002/advs.201901800 ] [PMID: 31592427]
[106]
Gui G, Fan Z, Ning Y, Yuan C, Zhang B, Xu Q. Optimization, characterization and in vivo evaluation of paclitaxel-loaded folateconjugated superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2021; 16: 2283-95.
[http://dx.doi.org/10.2147/IJN.S287434 ] [PMID: 33776433]
[107]
Hwang YH, Kim YJ, Lee DY. Hepatic and renal cellular cytotoxic effects of heparin-coated superparamagnetic Iron oxide nanoparticles. Biomater Res 2021; 25(1): 36.
[http://dx.doi.org/10.1186/s40824-021-00241-7 ] [PMID: 34736539]
[108]
Nalluri LP, Popuri SR, Lee CH, Terbish N. Synthesis of biopolymer coated functionalized superparamagnetic iron oxide nanoparticles for the pH-sensitive delivery of anti-cancer drugs epirubicin and temozolomide. Int J Polym Mater 2021; 70(15): 1039-52.
[http://dx.doi.org/10.1080/00914037.2020.1785449]
[109]
Li TF, Xu HZ, Xu YH. et al. Efficient delivery of chlorin e6 by polyglycerol-coated iron oxide nanoparticles with conjugated doxorubicin for enhanced photodynamic therapy of melanoma. Mol Pharm 2021; 18(9): 3601-15.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00510 ] [PMID: 34388342]
[110]
Jahanbani J, Ghotbi M, Shahsavari F, Seydi E, Rahimi S, Pourahmad J. Selective anticancer activity of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) against oral tongue cancer using in vitro methods: The key role of oxidative stress on cancerous mitochondria. J Biochem Mol Toxicol 2020; 34(10): e22557.
[http://dx.doi.org/10.1002/jbt.22557 ] [PMID: 32583933]
[111]
Xie Y, Chen Y, Sun M, Ping Q. A mini review of biodegradable calcium phosphate nanoparticles for gene delivery. Curr Pharm Biotechnol 2014; 14(10): 918-25.
[http://dx.doi.org/10.2174/1389201014666131226145441 ] [PMID: 24372244]
[112]
Jun W, Lin L, Yurong C, Juming Y. Recent advances of calcium phosphate nanoparticles for controlled drug delivery. Mini Rev Med Chem 2013; 13(10): 1501-7.
[http://dx.doi.org/10.2174/13895575113139990059 ] [PMID: 22697516]
[113]
Degli Esposti L, Carella F, Adamiano A, Tampieri A, Iafisco M. Calcium phosphate-based nanosystems for advanced targeted nanomedi-cine. Drug Dev Ind Pharm 2018; 44(8): 1223-38.
[http://dx.doi.org/10.1080/03639045.2018.1451879 ] [PMID: 29528248]
[114]
Huang JL, Chen HZ, Gao XL. Lipid-coated calcium phosphate nanoparticle and beyond: A versatile platform for drug delivery. J Drug Target 2018; 26(5-6): 398-406.
[http://dx.doi.org/10.1080/1061186X.2017.1419360 ] [PMID: 29258343]
[115]
Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci 2020; 279: 102157.
[http://dx.doi.org/10.1016/j.cis.2020.102157 ] [PMID: 32330734]
[116]
Huang D, He B, Mi P. Calcium phosphate nanocarriers for drug delivery to tumors: Imaging, therapy and theranostics. Biomater Sci 2019; 7(10): 3942-60.
[http://dx.doi.org/10.1039/C9BM00831D ] [PMID: 31414096]
[117]
Lin Y, Wang X, Huang X, Zhang J, Xia N, Zhao Q. Calcium phosphate nanoparticles as a new generation vaccine adjuvant. Expert Rev Vaccines 2017; 16(9): 895-906.
[http://dx.doi.org/10.1080/14760584.2017.1355733 ] [PMID: 28712326]
[118]
Sharma S, Verma A, Teja BV. et al. An insight into functionalized calcium based inorganic nanomaterials in biomedicine: Trends and transitions. Colloids Surf B Biointerfaces 2015; 133: 120-39.
[http://dx.doi.org/10.1016/j.colsurfb.2015.05.014 ] [PMID: 26094145]
[119]
Li Q, Fu D, Zhang J. et al. Dual stimuli-responsive polypeptide-calcium phosphate hybrid nanoparticles for co-delivery of multiple drugs in cancer therapy. Colloids Surf B Biointerfaces 2021; 200: 111586.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111586 ] [PMID: 33529927]
[120]
Bai S, Sun Y, Cheng Y. et al. MCP mediated active targeting calcium phosphate hybrid nanoparticles for the treatment of orthotopic drug-resistant colon cancer. J Nanobiotechnology 2021; 19(1): 367.
[http://dx.doi.org/10.1186/s12951-021-01115-9 ] [PMID: 34789268]
[121]
Arora R, Samim M, Parkash C. Evaluation of anti-inflammatory and anti-cancer activity of calcium phosphate encapsulated resveratrol in mouse skin cancer model. Biomed Pharmacol J 2021; 14(1): 113-22.
[http://dx.doi.org/10.13005/bpj/2105]
[122]
Rivas M, Turon P, Alemán C, Puiggalí J, del Valle LJ. Incorporation of functionalized calcium phosphate nanoparticles in living cells. J Cluster Sci 2021; (11): 1-5.
[http://dx.doi.org/10.1007/s10876-021-02182-6]
[123]
Kara G, Parlar A, Cakmak MC, Cokol M, Denkbas EB, Bakan F. Silencing of survivin and cyclin B1 through siRNA-loaded arginine modified calcium phosphate nanoparticles for non-small-cell lung cancer therapy. Colloids Surf B Biointerfaces 2020; 196: 111340.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111340 ] [PMID: 32956996]
[124]
Movahedi F, Gu W, Soares CP, Xu ZP. Encapsulating anti-parasite benzimidazole drugs into lipid-coated calcium phosphate nanoparticles to efficiently induce skin cancer cell apoptosis. Frontiers in Nanotechnology 2021; 3: 693837.
[http://dx.doi.org/10.3389/fnano.2021.693837]
[125]
Zhang K, Zhang A, Wang X. The efficacy of small interfering RNA-loaded chitosan-coated calcium phosphate nanoparticles for the treat-ment of cervical cancer. Nanosci Nanotechnol Lett 2020; 12(6): 738-43.
[126]
Sethuraman V, Janakiraman K, Krishnaswami V, Natesan S, Kandasamy R. pH responsive delivery of lumefantrine with calcium phos-phate nanoparticles loaded lipidic cubosomes for the site specific treatment of lung cancer. Chem Phys Lipids 2019; 224: 104763.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.03.016 ] [PMID: 30951710]
[127]
Fu LH, Hu YR, Qi C. et al. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced antitumor therapy. ACS Nano 2019; 13(12): 13985-94.
[http://dx.doi.org/10.1021/acsnano.9b05836 ] [PMID: 31833366]
[128]
Tang J, Li B, Howard CB. et al. Multifunctional lipid-coated calcium phosphate nanoplatforms for complete inhibition of large triple nega-tive breast cancer via targeted combined therapy. Biomaterials 2019; 216: 119232.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119232 ] [PMID: 31195300]
[129]
Yang Y, Yu C. Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine 2016; 12(2): 317-32.
[http://dx.doi.org/10.1016/j.nano.2015.10.018 ] [PMID: 26706409]
[130]
Yang Y, Zhang M, Song H, Yu C. Silica-based nanoparticles for biomedical applications: from nanocarriers to biomodulators. Acc Chem Res 2020; 53(8): 1545-56.
[http://dx.doi.org/10.1021/acs.accounts.0c00280 ] [PMID: 32667182]
[131]
Couleaud P, Morosini V, Frochot C, Richeter S, Raehm L, Durand JO. Silica-based nanoparticles for photodynamic therapy applications. Nanoscale 2010; 2(7): 1083-95.
[http://dx.doi.org/10.1039/c0nr00096e ] [PMID: 20648332]
[132]
Moodley T, Singh M. Current stimuli-responsive mesoporous silica nanoparticles for cancer therapy. Pharmaceutics 2021; 13(1): 71.
[http://dx.doi.org/10.3390/pharmaceutics13010071 ] [PMID: 33430390]
[133]
Feng Y, Panwar N, Tng DJH, Tjin SC, Wang K, Yong KT. The application of mesoporous silica nanoparticle family in cancer theranostics. Coord Chem Rev 2016; 319: 86-109.
[http://dx.doi.org/10.1016/j.ccr.2016.04.019]
[134]
Lee S, Yun HS, Kim SH. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials 2011; 32(35): 9434-43.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.042 ] [PMID: 21889200]
[135]
Rosenholm JM, Mamaeva V, Sahlgren C, Lindén M. Nanoparticles in targeted cancer therapy: Mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine 2012; 7(1): 111-20.
[http://dx.doi.org/10.2217/nnm.11.166 ] [PMID: 22191780]
[136]
Holkar CR, Jadhav AJ, Karekar SE, Pandit AB, Pinjari DV. Recent developments in synthesis of nanomaterials utilized in polymer based composites for food packaging applications. J Food Bioeng Nanoprocess 2016; 1(1): 80-105.
[137]
Singh LP, Bhattacharyya SK, Kumar R. et al. Sol-Gel processing of silica nanoparticles and their applications. Adv Colloid Interface Sci 2014; 214: 17-37.
[http://dx.doi.org/10.1016/j.cis.2014.10.007 ] [PMID: 25466691]
[138]
Stanley R, Nesaraj AS. Effect of surfactants on the wet chemical synthesis of silica nanoparticles. Int J Appl Sci Eng 2014; 12(1): 9-21.
[139]
Jal PK, Sudarshan M, Saha A, Patel S, Mishra BK. Synthesis and characterization of nanosilica prepared by precipitation method. Colloids Surf A Physicochem Eng Asp 2004; 240(1-3): 173-8.
[http://dx.doi.org/10.1016/j.colsurfa.2004.03.021]
[140]
Zhang Z, Huang C, Zhang L. et al. pH-sensitive and bubble-generating mesoporous silica-based nanoparticles for enhanced tumor combination therapy. Acta Pharm Sin B 2021; 11(2): 520-33.
[http://dx.doi.org/10.1016/j.apsb.2020.08.013 ] [PMID: 33643828]
[141]
Kim MK, Ki DH, Na YG. et al. Optimization of mesoporous silica nanoparticles through statistical design of experiment and the applica-tion for the anticancer drug. Pharmaceutics 2021; 13(2): 184.
[http://dx.doi.org/10.3390/pharmaceutics13020184 ] [PMID: 33572523]
[142]
Li X, Xing L, Zheng K. et al. Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photo-thermal therapy. ACS Appl Mater Interfaces 2017; 9(7): 5817-27.
[http://dx.doi.org/10.1021/acsami.6b15185 ] [PMID: 28118704]
[143]
Li X, Xing L, Hu Y. et al. An RGD-modified hollow silica@Au core/shell nanoplatform for tumor combination therapy. Acta Biomater 2017; 62: 273-83.
[http://dx.doi.org/10.1016/j.actbio.2017.08.024 ] [PMID: 28823719]
[144]
Xing L, Li X, Xing Z. et al. Silica/gold nanoplatform combined with a thermosensitive gel for imaging-guided interventional therapy in PDX of pancreatic cancer. Chem Eng J 2020; 382: 122949.
[http://dx.doi.org/10.1016/j.cej.2019.122949]
[145]
Shakeran Z, Keyhanfar M, Varshosaz J, Sutherland DS. Biodegradable nanocarriers based on chitosan-modified mesoporous silica nano-particles for delivery of methotrexate for application in breast cancer treatment. Mater Sci Eng C 2021; 118: 111526.
[http://dx.doi.org/10.1016/j.msec.2020.111526 ] [PMID: 33255079]
[146]
He H, Meng S, Li H. et al. Nanoplatform based on GSH-responsive mesoporous silica nanoparticles for cancer therapy and mitochondrial targeted imaging. Mikrochim Acta 2021; 188(5): 154.
[http://dx.doi.org/10.1007/s00604-021-04810-4 ] [PMID: 33821295]
[147]
Ovejero Paredes K, Díaz-García D, García-Almodóvar V. et al. Multifunctional silica-based nanoparticles with controlled release of organ-otin metallodrug for targeted theranosis of breast cancer. Cancers (Basel) 2020; 12(1): 187.
[http://dx.doi.org/10.3390/cancers12010187 ] [PMID: 31940937]
[148]
Lyles ZK, Tarannum M, Mena C, Inada NM, Bagnato VS, Vivero-Escoto JL. Biodegradable silica‐based nanoparticles with improved and safe delivery of protoporphyrin IX for the in vivo photodynamic therapy of breast cancer. Adv Ther (Weinh) 2020; 3(7): 2000022.
[http://dx.doi.org/10.1002/adtp.202000022]
[149]
Li X, Sun H, Li H. et al. Multi‐responsive biodegradable cationic nanogels for highly efficient treatment of tumors. Adv Funct Mater 2021; 31(26): 2100227.
[http://dx.doi.org/10.1002/adfm.202100227 ] [PMID: 34230825]
[150]
Li X, Kong L, Hu W. et al. Safe and efficient 2D molybdenum disulfide platform for cooperative imaging-guided photothermal-selective chemotherapy: A preclinical study. J Adv Res 2022; 37: 255-66.
[http://dx.doi.org/10.1016/j.jare.2021.08.004 ] [PMID: 35499043]
[151]
Liu YQ, Qin LY, Li HJ. et al. Application of lanthanide-doped upconversion nanoparticles for cancer treatment: A review. Nanomedicine 2021; 16(24): 2207-42.
[http://dx.doi.org/10.2217/nnm-2021-0214 ] [PMID: 34533048]
[152]
Tian G, Zhang X, Gu Z, Zhao Y. Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy. Adv Mater 2015; 27(47): 7692-712.
[http://dx.doi.org/10.1002/adma.201503280 ] [PMID: 26505885]
[153]
Wang C, Cheng L, Liu Z. Research spotlight: Upconversion nanoparticles for potential cancer theranostics. Ther Deliv 2011; 2(10): 1235-9.
[http://dx.doi.org/10.4155/tde.11.93 ] [PMID: 22826879]
[154]
Chen X, Tang Y, Liu A. et al. NIR-to-red upconversion nanoparticles with minimized heating effect for synchronous multidrug resistance tumor imaging and therapy. ACS Appl Mater Interfaces 2018; 10(17): 14378-88.
[http://dx.doi.org/10.1021/acsami.8b00409 ] [PMID: 29648442]
[155]
Liu X, Rong P. Recent advances of manganese-based hybrid nanomaterials for cancer precision medicine. Front Oncol 2021; 11: 707618.
[http://dx.doi.org/10.3389/fonc.2021.707618 ] [PMID: 34722253]
[156]
A R Yao Y. Guo X, et al. Precise cancer anti-acid therapy monitoring using pH-Sensitive MnO2 @BSA nanoparticles by magnetic resonance imaging. ACS Appl Mater Interfaces 2021; 13(16): 18604-18.
[http://dx.doi.org/10.1021/acsami.1c04310] [PMID: 33856200]
[157]
Wang P, Liang C, Zhu J. et al. Manganese-based nanoplatform as metal ion-enhanced ROS generator for combined chemodynam-ic/photodynamic therapy. ACS Appl Mater Interfaces 2019; 11(44): 41140-7.
[http://dx.doi.org/10.1021/acsami.9b16617 ] [PMID: 31603650]
[158]
Lianhua C, Dapeng Y, Shuliang L, Nan G. Folic acid targeted drug-loaded nano-gold particle and application thereof. Chinese Patent CN108355140B, 2021.
[159]
Jingwei X, Xia C, Zhou J, Yu X, Peng Yong Z. Polydopamine-coated gold nano-composite, preparation method thereof and application thereof in multi-modal tumor diagnosis and treatment. Chinese Patent CN112641946A, 2021.
[160]
Jin C. Graphite alkyne nanosheet-based multifunctional drug-loading system and preparation method and application thereof. Chinese Patent CN108295257B, 2020.
[161]
Chen WR. Immunologically modified carbon nanotubes for cancer treatment. US Patent US8664198B2, 2014.
[162]
Daldrup-Link HE. Immuno-therapy for cancer treatment using iron oxide nanoparticles. US Patent US20130344003A1, 2013.
[163]
Janinganesan S, Eppel K, Arnogrefe M, Gitter S, Forkel BA. Calcium phosphate nanoparticles used as a carrier system for photodynamic therapy. Japanese patent JP5138818B2, 2013.
[164]
Liong M, Lu J, Tamanoi F, Zink JI, Nel AE. Mesoporous silica nanoparticles for biomedical applications. US Patent US10668024B2, 2020.
[165]
Lintao C, Ruijing L, Lanlan L, Zhiqun H, Huamei H, Mingbin Z. Gold nanocage-manganese dioxide composite nanoparticle and preparation method and application thereof. Chinese Patent CN107670040B, 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy