Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Trends and Application of Analytical Methods for the Identification and Quantification of Dexamethasone in Drug Delivery System

Author(s): Joandra Maísa da Silva Leite*, Camila Beatriz Barros Araújo, Larissa Pereira Alves, Milena Raissa Bezerra Pereira, Gabryella Garcia Guedes, Lívia Maria Coelho de Carvalho Moreira, Beatriz Patrício Rocha, Joyce Cordeiro Borges, Eduardo Pereira de Azevedo, Felipe Hugo Alencar Fernandes, João Augusto Oshiro Junior and Bolívar Ponciano Goulart de Lima Damasceno

Volume 19, Issue 1, 2023

Published on: 25 October, 2022

Page: [1 - 19] Pages: 19

DOI: 10.2174/1573412918666221004122046

Price: $65

Abstract

Background: Dexamethasone (DEXA) is a potent synthetic corticosteroid derived from the cyclopentanoperhydrophenanthrene nucleus known for its anti-inflammatory and immunosuppressive activities. Due to its therapeutic effects, several analytical methods have been used for its quantitative determination and physicochemical characterization, as well as for the evaluation of pharmacological and toxicological properties.

Objective: This review aimed to describe the principles and methods commonly used to identify and quantify DEXA in drug delivery systems and biological samples. The methods herein discussed are high-performance liquid chromatography, nuclear magnetic resonance, x-ray diffraction, Fourier-transform infrared spectroscopy, differential scanning calorimetry, ultravioletvisible spectrophotometry and thin layer chromatography.

Conclusion: This review provided a wide variety of analytical methods that can be used for the quantification and identification of drugs, providing scientists with great support during the development of scientific research, as well as ensuring the quality of the manufacturing processes as well as the resulting products. Therefore, the use of such analytical methods has become critical throughout the process of developing pharmaceutical formulations containing DEXA.

Keywords: Dexamethasone, Analytical methods, Drug delivery systems, HPLC, Ultraviolet, Mass spectrometry.

Next »
Graphical Abstract

[1]
Jain, S.; Datta, M. Oral extended release of dexamethasone: Montmorillonite–PLGA nanocomposites as a delivery vehicle. Appl. Clay Sci., 2015, 104, 182-188.
[http://dx.doi.org/10.1016/j.clay.2014.11.028]
[2]
Nebsen, M.; Elsayed, G.M.; AbdelKawy, M. ELkhateeb, S.Z. Determination of ofloxacin and dexamethasone in Dexaflox eye drops through different ratio spectra manipulating methods. Bull. Fac. Pharm. Cairo Univ., 2013, 51(2), 175-184.
[http://dx.doi.org/10.1016/j.bfopcu.2013.04.004]
[3]
Smajdor, J.; Paczosa-Bator, B. Baś, B.; Piech, R. High sensitive voltammetric determination of betamethasone on an amalgam film electrode. J. Electrochem. Soc., 2018, 165(10), H646-H651.
[http://dx.doi.org/10.1149/2.0931810jes]
[4]
Arth, G.E.; Johnston, D.B.R.; Fried, J.; Spooncer, W.W.; Hoff, D.R.; Sarett, L.H. 16-methylated steroids. I. 16α-methylated analogs of cortisone, a new group of anti-inflammatory steroids. J. Am. Chem. Soc., 1958, 80(12), 3160-3161.
[http://dx.doi.org/10.1021/ja01545a061]
[5]
Arth, G.E.; Fried, J.; Johnston, D.B.R.; Hoff, D.R.; Sarett, L.H.; Silber, R.H.; Stoerk, H.C.; Winter, C.A. 16-methylated steroids. II. 16α-methyl analogs of cortisone, a new group of antiinflammatory steroids. 9α-halo derivatives. J. Am. Chem. Soc., 1958, 80(12), 3161-3163.
[http://dx.doi.org/10.1021/ja01545a063]
[6]
Walton, C.H. Clinical experience with dexamethasone. Can. Med. Assoc. J., 1959, 81, 724-726.
[PMID: 13842754]
[7]
Hart, F.D. Dexamethasone. Postgrad. Med. J., 1960, 36(411), 26-27.
[http://dx.doi.org/10.1136/pgmj.36.411.26] [PMID: 14400066]
[8]
Boland, E.W. Clinical observations with 16a-methyl corticosteroid compounds: Preliminary therapeutic trials with dexamethasone 16a-methyl 9a-fluroprednisolone) in patients with rheumatoid arthritis. Ann. Rheum. Dis., 1958, 17(4), 376-382.
[http://dx.doi.org/10.1136/ard.17.4.376] [PMID: 13606725]
[9]
Brown, E.B.; Seideman, T.; Seigelaub, A.B.; Popovitz, C. Statistical study of the therapeutic ratio of dexamethasone (decadron), a new corticosteroid. J. Allergy, 1959, 30(6), 484-491.
[http://dx.doi.org/10.1016/0021-8707(59)90002-4] [PMID: 13849191]
[10]
Bunim, J.J.; Black, R.L.; Lutwak, L.; Peterson, R.E.; Whedon, G.D. Studies on dexamethasone, a new synthetic steroid, in rheurheumatoid arthritis: A preliminary report; adrenal cortical, metabolic and early clinical effects. Arthritis Rheum., 1958, 1(4), 313-331.
[http://dx.doi.org/10.1002/art.1780010404] [PMID: 13560344]
[11]
Lorscheider, M.; Tsapis, N. ur-Rehman, M.; Gaudin, F.; Stolfa, I.; Abreu, S.; Mura, S.; Chaminade, P.; Espeli, M.; Fattal, E. Dexamethasone palmitate nanoparticles: An efficient treatment for rheumatoid arthritis. J. Control. Release, 2019, 296(January), 179-189.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.015] [PMID: 30659904]
[12]
Tan, G.; Yu, S.; Li, J.; Pan, W. Development and characterization of nanostructured lipid carriers based chitosan thermosensitive hydrogel for delivery of dexamethasone. Int. J. Biol. Macromol., 2017, 103, 941-947.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.132] [PMID: 28545971]
[13]
Yuan, Y.; Zhou, X.; Li, J.; Ye, S.; Ji, X.; Li, L.; Zhou, T.; Lu, W. Development and validation of a highly sensitive LC-MS/MS method for the determination of dexamethasone in nude mice plasma and its application to a pharmacokinetic study. Biomed. Chromatogr., 2015, 29(4), 578-583.
[http://dx.doi.org/10.1002/bmc.3316] [PMID: 25165023]
[14]
Du, W.; Zhang, B.; Guo, P.; Chen, G.; Chang, C.; Fu, Q. Facile preparation of magnetic molecularly imprinted polymers for the selective extraction and determination of dexamethasone in skincare cosmetics using HPLC. J. Sep. Sci., 2018, 41(11), 2441-2452.
[http://dx.doi.org/10.1002/jssc.201701195] [PMID: 29542253]
[15]
Smit-mcbride, Z.; Modjtahedi, S.P.; Morse, L.S. Dexamethasone’s Uses in Retinal Diseases; Nova Science Publishers, 2013, pp. 87-116.
[16]
Ministry of Health. National Commission for the Incorporation of Technologies in the Unified Health System - CONITEC. 2022.
[17]
Kogawa, A.C.; Salgado, H.R.N. Development of qualitative analytical methods for the analysis of darunavir tablets. J. Basic Appl. Pharm. Sci., 2013, 34(2), 207-213.
[18]
Fernandes, G.F.S.; Salgado, H.R.N.; Santos, J.L. A critical review of HPLC-based analytical methods for quantification of Linezolid. Crit. Rev. Anal. Chem., 2020, 50(3), 196-211.
[http://dx.doi.org/10.1080/10408347.2019.1605876] [PMID: 31017000]
[19]
Kanakapura, B.; Penmatsa, V.K. Analytical methods for determination of terbinafine hydrochloride in pharmaceuticals and biological materials. J. Pharm. Anal., 2016, 6(3), 137-149.
[http://dx.doi.org/10.1016/j.jpha.2016.01.003] [PMID: 29403974]
[20]
Beber, T.C.; Andrade, D.F.; Kann, B.; Fontana, M.C.; Coradini, K.; Windbergs, M.; Beck, R.C.R. Submicron polymeric particles prepared by vibrational spray-drying: Semisolid formulation and skin penetration/permeation studies. Eur. J. Pharm. Biopharm., 2014, 88(3), 602-613.
[http://dx.doi.org/10.1016/j.ejpb.2014.07.008] [PMID: 25078859]
[21]
Pharmacopeia, Brazilian, 6th ed; National Health Surveillance Agency: Brasília, 2019, 2.
[22]
Bianchi, F.; Mattarozzi, M.; Riboni, N.; Mora, P.; Gandolfi, S.A.; Careri, M. A rapid microextraction by packed sorbent liquid chromatography tandem mass spectrometry method for the determination of dexamethasone disodium phosphate and dexamethasone in aqueous humor of patients with uveitis. J. Pharm. Biomed. Anal., 2017, 142, 343-347.
[http://dx.doi.org/10.1016/j.jpba.2017.05.025] [PMID: 28538205]
[23]
Da Silva, G.R.; Lima, T.H.; Fernandes-Cunha, G.M.; Oréfice, R.L.; Da Silva-Cunha, A.; Zhao, M.; Behar-Cohen, F. Ocular biocompatibility of dexamethasone acetate loaded poly(-caprolactone) nanofibers. Eur. J. Pharm. Biopharm., 2019, 142, 20-30.
[http://dx.doi.org/10.1016/j.ejpb.2019.05.010] [PMID: 31129274]
[24]
Einmahl, S.; Zignani, M.; Varesio, E.; Heller, J.; Veuthey, J.L.; Tabatabay, C.; Gurny, R. Concomitant and controlled release of dexamethasone and 5-fluorouracil from poly(ortho ester). Int. J. Pharm., 1999, 185(2), 189-198.
[http://dx.doi.org/10.1016/S0378-5173(99)00149-0] [PMID: 10460914]
[25]
Parmar, A.; Sharma, S. Derivative UV-vis absorption spectra as an invigorated spectrophotometric method for spectral resolution and quantitative analysis: Theoretical aspects and analytical applications: A review. Trends Analyt. Chem., 2016, 77, 44-53.
[http://dx.doi.org/10.1016/j.trac.2015.12.004]
[26]
Starek, M. Review of the applications of different analytical techniques for coxibs research. Talanta, 2011, 85(1), 8-27.
[http://dx.doi.org/10.1016/j.talanta.2011.04.052] [PMID: 21645664]
[27]
Van Eeckhaut, A.; Mangelings, D. Toward greener analytical techniques for the absolute quantification of peptides in pharmaceutical and biological samples. J. Pharm. Biomed. Anal., 2015, 113, 181-188.
[http://dx.doi.org/10.1016/j.jpba.2015.03.023] [PMID: 25864956]
[28]
Gouda, A.A.; Kotb El-Sayed, M.I.; Amin, A.S.; El Sheikh, R. Spectrophotometric and spectrofluorometric methods for the determination of non-steroidal anti-inflammatory drugs: A review. Arab. J. Chem., 2013, 6(2), 145-163.
[http://dx.doi.org/10.1016/j.arabjc.2010.12.006]
[29]
Kumar, M.; Bhatia, R.; Rawal, R.K. Applications of various analytical techniques in quality control of pharmaceutical excipients. J. Pharm. Biomed. Anal., 2018, 157, 122-136.
[http://dx.doi.org/10.1016/j.jpba.2018.05.023] [PMID: 29787965]
[30]
Gupte, V.; Luthra, U. Analytical techniques for serratiopeptidase: A review. J. Pharm. Anal., 2017, 7(4), 203-207.
[http://dx.doi.org/10.1016/j.jpha.2017.03.005] [PMID: 29404039]
[31]
Esteki, M.; Shahsavari, Z.; Simal-Gandara, J. Food identification by high performance liquid chromatography fingerprinting and mathematical processing. Food Res. Int., 2019, 122, 303-317.
[http://dx.doi.org/10.1016/j.foodres.2019.04.025] [PMID: 31229084]
[32]
Lynch, K.B.; Chen, A.; Liu, S. Miniaturized high-performance liquid chromatography instrumentation. Talanta, 2018, 177, 94-103.
[http://dx.doi.org/10.1016/j.talanta.2017.09.016] [PMID: 29108588]
[33]
Xian, H.; Peng, H.; Wang, X.; Long, D.; Ni, R.; Chen, J.; Li, S.; Zhang, Z.; Peng, J. Preparation and evaluation a mixed-mode stationary phase with imidazolium and carboxyl group for high performance liquid chromatography. Microchem. J., 2019, 150, 104131.
[http://dx.doi.org/10.1016/j.microc.2019.104131]
[34]
Zhang, L.; Dai, Q.; Qiao, X.; Yu, C.; Qin, X.; Yan, H. Mixed-mode chromatographic stationary phases: Recent advancements and its applications for high-performance liquid chromatography. Trends Analyt. Chem., 2016, 82, 143-163.
[http://dx.doi.org/10.1016/j.trac.2016.05.011]
[35]
Hettiarachchi, K.; Hayes, M.; Desai, A.J.; Wang, J.; Ren, Z.; Greshock, T.J. Subminute micro-isolation of pharmaceuticals with ultra-high pressure liquid chromatography. J. Pharm. Biomed. Anal., 2019, 176, 112794.
[http://dx.doi.org/10.1016/j.jpba.2019.112794] [PMID: 31437749]
[36]
Wahab, M.F.; Dasgupta, P.K.; Kadjo, A.F.; Armstrong, D.W. Sampling frequency, response times and embedded signal filtration in fast, high efficiency liquid chromatography: A tutorial. Anal. Chim. Acta, 2016, 907, 31-44.
[http://dx.doi.org/10.1016/j.aca.2015.11.043] [PMID: 26803000]
[37]
Ahmed, D.A.; Abdel-Aziz, O.; Abdel-Ghany, M.; Weshahy, S.A. Stability indicating determination of Albendazole in bulk drug and pharmaceutical dosage form by chromatographic and spectrophotometric methods. Future J. Pharm. Sci, 2018, 4(2), 161-165.
[http://dx.doi.org/10.1016/j.fjps.2018.02.001]
[38]
Yabré, M.; Ferey, L.; Somé, I.; Gaudin, K. Greening reversed-phase liquid chromatography methods using alternative solvents for pharmaceutical analysis. Molecules, 2018, 23(5), 1065.
[http://dx.doi.org/10.3390/molecules23051065] [PMID: 29724076]
[39]
Shedania, Z.; Kakava, R.; Volonterio, A.; Farkas, T.; Chankvetadze, B. Separation of enantiomers of chiral sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using methanol and methanol-water mixtures as mobile phases. J. Chromatogr. A, 2018, 1557, 62-74.
[http://dx.doi.org/10.1016/j.chroma.2018.05.002] [PMID: 29748092]
[40]
Chen, Q.; Zielinski, D.; Chen, J.; Koski, A.; Werst, D.; Nowak, S. A validated, stability-indicating HPLC method for the determination of dexamethasone related substances on dexamethasone-coated drug-eluting stents. J. Pharm. Biomed. Anal., 2008, 48(3), 732-738.
[http://dx.doi.org/10.1016/j.jpba.2008.07.010] [PMID: 18722070]
[41]
Patel, S.; Garapati, C.; Chowdhury, P.; Gupta, H.; Nesamony, J.; Nauli, S.; Boddu, S.H.S. Development and evaluation of dexamethasone nanomicelles with potential for treating posterior uveitis after topical application. J. Ocul. Pharmacol. Ther., 2015, 31(4), 215-227.
[http://dx.doi.org/10.1089/jop.2014.0152] [PMID: 25839185]
[42]
Sharma, K.; Mullangi, R. A concise review of HPLC, LC-MS and LC-MS/MS methods for determination of azithromycin in various biological matrices. Biomed. Chromatogr., 2013, 27(10), 1243-1258.
[http://dx.doi.org/10.1002/bmc.2898] [PMID: 23553351]
[43]
Wu, Q.; Chen, L.; Gao, J.; Dong, S.; Li, H.; Di, D.; Zhao, L. Graphene quantum dots-functionalized C18 hydrophobic/hydrophilic stationary phase for high performance liquid chromatography. Talanta, 2019, 194, 105-113.
[http://dx.doi.org/10.1016/j.talanta.2018.10.005] [PMID: 30609508]
[44]
The United Pharmacopeia Convention States R. United States Pharmacopeia., 2009. Available from: https://www.usp/org/
[45]
European Pharmacopoeia 2007. Available from: http://www.edqm.eu/en/search-
[46]
Pharmaceutical and drug agency. Japanese Pharmacopoeia., 2016. Available from: https://www.pmda.go.jp/english/rs-sbstd/ standards- development/jp/0019.html
[47]
China Food and Drug Administration. Chinese Pharmacopoeia; , 2005. Available from https://www.usp.org/products/chinese
[48]
Ekstrand, C.; Bondesson, U.; Giving, E.; Hedeland, M.; Ingvast-Larsson, C.; Jacobsen, S.; Löfgren, M.; Moen, L.; Rhodin, M.; Saetra, T.; Ranheim, B. Disposition and effect of intra-articularly administered dexamethasone on lipopolysaccharide induced equine synovitis. Acta Vet. Scand., 2019, 61(1), 28.
[http://dx.doi.org/10.1186/s13028-019-0464-2] [PMID: 31221173]
[49]
Lehner, E.; Gündel, D.; Liebau, A.; Plontke, S.; Mäder, K. Intracochlear PLGA based implants for dexamethasone release: Challenges and solutions. Int. J. Pharm. X, 2019, 1, 100015.
[http://dx.doi.org/10.1016/j.ijpx.2019.100015] [PMID: 31517280]
[50]
Wen, Y.; Ban, J.; Mo, Z.; Zhang, Y.; An, P.; Liu, L.; Xie, Q.; Du, Y.; Xie, B.; Zhan, X.; Tan, L.; Chen, Y.; Lu, Z. A potential nanoparticle-loaded in situ gel for enhanced and sustained ophthalmic delivery of dexamethasone. Nanotechnology, 2018, 29(42), 425101.
[http://dx.doi.org/10.1088/1361-6528/aad7da] [PMID: 30074486]
[51]
Jia, M.; Deng, C.; Luo, J.; Zhang, P.; Sun, X.; Zhang, Z.; Gong, T. A novel dexamethasone-loaded liposome alleviates rheumatoid arthritis in rats. Int. J. Pharm., 2018, 540(1-2), 57-64.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.001] [PMID: 29408684]
[52]
Kim, S.N.; Ko, S.A.; Lee, S.H.; Huh, B.K.; Choy, Y.B. Amine-grafted SBA-15 for ophthalmic delivery of dexamethasone. J. Solid State Chem., 2018, 268, 102-107.
[http://dx.doi.org/10.1016/j.jssc.2018.08.036]
[53]
Qi, H.; Chen, Q.; Ren, H.; Wu, X.; Liu, X.; Lu, T. Electrophoretic deposition of dexamethasone-loaded gelatin nanospheres/chitosan coating and its dual function in anti-inflammation and osteogenesis. Colloids Surf. B Biointerfaces, 2018, 169, 249-256.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.029] [PMID: 29783150]
[54]
Bode, C.; Kranz, H.; Siepmann, F.; Siepmann, J. In-situ forming PLGA implants for intraocular dexamethasone delivery. Int. J. Pharm., 2018, 548(1), 337-348.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.013] [PMID: 29981408]
[55]
Karatt, T.K.; Nalakath, J.; Perwad, Z.; Albert, P.H.; Abdul Khader, K.K.; Syed Ali Padusha, M.; Laya, S. Mass spectrometric method for distinguishing isomers of dexamethasone via fragment mass ratio: An HRMS approach. J. Mass Spectrom., 2018, 53(11), 1046-1058.
[http://dx.doi.org/10.1002/jms.4279] [PMID: 30098588]
[56]
Goimil, L.; Jaeger, P.; Ardao, I.; Gómez-Amoza, J. L.; Concheiro, A.; Alvarez-Lorenzo, C.; García-González, C. A. Preparation and stability of dexamethasone-loaded polymeric scaffolds for bone regeneration processed by compressed CO2 foaming. J. CO2 Util. 2018, 24, 89-98.
[http://dx.doi.org/10.1016/j.jcou.2017.12.012]
[57]
Johannsdottir, S.; Jansook, P.; Stefansson, E.; Kristinsdottir, I.M.; Fulop, Z.; Asgrimsdottir, G.M.; Thorsteindsottir, M.; Eiriksson, F.F.; Loftsson, T. Topical drug delivery to the posterior segment of the eye: Dexamethasone concentrations in various eye tissues after topical administration for up to 15 days to rabbits. J. Drug Deliv. Sci. Technol., 2018, 45, 449-454.
[http://dx.doi.org/10.1016/j.jddst.2018.04.007]
[58]
Paun, I.A.; Zamfirescu, M.; Luculescu, C.R.; Acasandrei, A.M.; Mustaciosu, C.C.; Mihailescu, M.; Dinescu, M. Electrically responsive microreservoires for controllable delivery of dexamethasone in bone tissue engineering. Appl. Surf. Sci., 2017, 392, 321-331.
[http://dx.doi.org/10.1016/j.apsusc.2016.09.027]
[59]
Dukovski, B.J. Plantić, I.; Čunčić, I.; Krtalić, I.; Juretić, M.; Pepić, I.; Lovrić, J.; Hafner, A. Lipid/alginate nanoparticle-loaded in situ gelling system tailored for dexamethasone nasal delivery. Int. J. Pharm., 2017, 533(2), 480-487.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.065] [PMID: 28577969]
[60]
Martín-Saldaña, S.; Palao-Suay, R.; Aguilar, M.R.; Ramírez-Camacho, R.; San Román, J. Polymeric nanoparticles loaded with dexamethasone or α-tocopheryl succinate to prevent cisplatin-induced ototoxicity. Acta Biomater., 2017, 53, 199-210.
[http://dx.doi.org/10.1016/j.actbio.2017.02.019] [PMID: 28213099]
[61]
Alami-Milani, M.; Zakeri-Milani, P.; Valizadeh, H.; Salehi, R.; Jelvehgari, M. Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone. Iran. J. Basic Med. Sci., 2018, 21(2), 153-164.
[http://dx.doi.org/10.22038/ijbms.2017.26590.6513] [PMID: 29456812]
[62]
Yu, D.; Sun, C.; Zheng, Z.; Wang, X.; Chen, D.; Wu, H.; Wang, X.; Shi, F. Inner ear delivery of dexamethasone using injectable silk-polyethylene glycol (PEG) hydrogel. Int. J. Pharm., 2016, 503(1-2), 229-237.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.048] [PMID: 26972377]
[63]
Rodríguez Villanueva, J.; Bravo-Osuna, I.; Herrero-Vanrell, R.; Molina Martínez, I.T.; Guzmán Navarro, M. Optimising the controlled release of dexamethasone from a new generation of PLGA-based microspheres intended for intravitreal administration. Eur. J. Pharm. Sci., 2016, 92, 287-297.
[http://dx.doi.org/10.1016/j.ejps.2016.03.012] [PMID: 26987610]
[64]
Goodfriend, A.C.; Welch, T.R.; Nguyen, K.T.; Johnson, R.F.; Sebastian, V.; Reddy, S.V.; Forbess, J.; Nugent, A. Thermally processed polymeric microparticles for year-long delivery of dexamethasone. Mater. Sci. Eng. C, 2016, 58, 595-600.
[http://dx.doi.org/10.1016/j.msec.2015.09.003] [PMID: 26478349]
[65]
Gasmi, H.; Siepmann, F.; Hamoudi, M.C.; Danede, F.; Verin, J.; Willart, J.F.; Siepmann, J. Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. Int. J. Pharm., 2016, 514(1), 189-199.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.032] [PMID: 27543353]
[66]
Fornaguera, C.; Llinàs, M.; Solans, C.; Calderó, G. Design and in vitro evaluation of biocompatible dexamethasone-loaded nanoparticle dispersions, obtained from nano-emulsions, for inhalatory therapy. Colloids Surf. B Biointerfaces, 2015, 125, 58-64.
[http://dx.doi.org/10.1016/j.colsurfb.2014.11.006] [PMID: 25437064]
[67]
Chen, W.; Li, D. EI-Shanshory, A.; El-Newehy, M.; EI-Hamshary, H.A.; Al-Deyab, S.S.; He, C.; Mo, X. Dexamethasone loaded core–shell SF/PEO nanofibers via green electrospinning reduced endothelial cells inflammatory damage. Colloids Surf. B Biointerfaces, 2015, 126, 561-568.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.016] [PMID: 25481687]
[68]
Gu, B.; Burgess, D.J. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach. Int. J. Pharm., 2015, 495(1), 393-403.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.089] [PMID: 26325309]
[69]
Zhang, L.; Shen, W.; Luan, J.; Yang, D.; Wei, G.; Yu, L.; Lu, W.; Ding, J. Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel. Acta Biomater., 2015, 23, 271-281.
[http://dx.doi.org/10.1016/j.actbio.2015.05.005] [PMID: 26004219]
[70]
Vallejo-Heligon, S.G.; Klitzman, B.; Reichert, W.M. Characterization of porous, dexamethasone-releasing polyurethane coatings for glucose sensors. Acta Biomater., 2014, 10(11), 4629-4638.
[http://dx.doi.org/10.1016/j.actbio.2014.07.019] [PMID: 25065548]
[71]
Coll Ferrer, M.C.; Shuvaev, V.V.; Zern, B.J.; Composto, R.J.; Muzykantov, V.R.; Eckmann, D.M. Icam-1 targeted nanogels loaded with dexamethasone alleviate pulmonary inflammation. PLoS One, 2014, 9(7), e102329.
[http://dx.doi.org/10.1371/journal.pone.0102329] [PMID: 25019304]
[72]
Wang, C.; Hou, H.; Nan, K.; Sailor, M.J.; Freeman, W.R.; Cheng, L. Intravitreal controlled release of dexamethasone from engineered microparticles of porous silicon dioxide. Exp. Eye Res., 2014, 129, 74-82.
[http://dx.doi.org/10.1016/j.exer.2014.11.002] [PMID: 25446320]
[73]
Moya-Ortega, M.D.; Alves, T.F.G.; Alvarez-Lorenzo, C.; Concheiro, A.; Stefánsson, E.; Thorsteinsdóttir, M.; Loftsson, T. Dexamethasone eye drops containing γ-cyclodextrin-based nanogels. Int. J. Pharm., 2013, 441(1-2), 507-515.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.002] [PMID: 23149258]
[74]
Swaminathan, S.; Vavia, P.R.; Trotta, F.; Cavalli, R. Nanosponges encapsulating dexamethasone for ocular delivery: Formulation design, physicochemical characterization, safety and corneal permeability assessment. J. Biomed. Nanotechnol., 2013, 9(6), 998-1007.
[http://dx.doi.org/10.1166/jbn.2013.1594] [PMID: 23858964]
[75]
Yang, C.; Jiang, L.; Bu, S.; Zhang, L.; Xie, X.; Zeng, Q.; Zhu, D.; Zheng, Y. Intravitreal administration of dexamethasone-loaded PLGA-TPGS nanoparticles for the treatment of posterior segment diseases. J. Biomed. Nanotechnol., 2013, 9(9), 1617-1623.
[http://dx.doi.org/10.1166/jbn.2013.1646] [PMID: 23980509]
[76]
Li, L.; Ma, P.; Wei, J.; Qian, K.; Tao, L. LC-ESI-MS method for the determination of dexamethasone acetate in skin of nude mouse. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 933, 44-49.
[http://dx.doi.org/10.1016/j.jchromb.2013.06.024] [PMID: 23867829]
[77]
Ali, H.; Kalashnikova, I.; White, M.A.; Sherman, M.; Rytting, E. Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int. J. Pharm., 2013, 454(1), 149-157.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.010] [PMID: 23850397]
[78]
Chiang, Z.C.; Yu, S.H.; Chao, A.C.; Dong, G.C. Preparation and characterization of dexamethasone-immobilized chitosan scaffold. J. Biosci. Bioeng., 2012, 113(5), 654-660.
[http://dx.doi.org/10.1016/j.jbiosc.2012.01.002] [PMID: 22321377]
[79]
Fan, M.; Guo, Q.; Luo, J.; Luo, F.; Xie, P.; Tang, X.; Qian, Z. Preparation and in vitro characterization of dexamethasone-loaded poly(D,L -lactic acid) microspheres embedded in poly(ethylene glycol)–poly( ɛ-caprolactone)–poly(ethylene glycol) hydrogel for orthopedic tissue engineering. J. Biomater. Appl., 2013, 28(2), 288-297.
[http://dx.doi.org/10.1177/0885328212446097] [PMID: 22561978]
[80]
Zhang, M.; Moore, G.A.; Jensen, B.P.; Begg, E.J.; Bird, P.A. Determination of dexamethasone and dexamethasone sodium phosphate in human plasma and cochlear perilymph by liquid chromatography/tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(1), 17-24.
[http://dx.doi.org/10.1016/j.jchromb.2010.11.003] [PMID: 21112257]
[81]
Rawat, A.; Burgess, D.J. Effect of physical ageing on the performance of dexamethasone loaded PLGA microspheres. Int. J. Pharm., 2011, 415(1-2), 164-168.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.067] [PMID: 21664956]
[82]
Christianson, C.D.; Laine, D.F.; Zimmer, J.S.D.; Johnson, C.J.L.; Sheaff, C.N.; Carpenter, A.; Needham, S.R. Development and validation of an HPLC–MS/MS method for the analysis of dexamethasone from pig synovial fluid using dried matrix spotting. Bioanalysis, 2010, 2(11), 1829-1837.
[http://dx.doi.org/10.4155/bio.10.137] [PMID: 21083491]
[83]
Bhardwaj, U.; Burgess, D.J. Physicochemical properties of extruded and non-extruded liposomes containing the hydrophobic drug dexamethasone. Int. J. Pharm., 2010, 388(1-2), 181-189.
[http://dx.doi.org/10.1016/j.ijpharm.2010.01.003] [PMID: 20079409]
[84]
Li, C.; Wu, Y.; Yang, T.; Zhang, Y. Rapid simultaneous determination of dexamethasone and betamethasone in milk by liquid chromatography tandem mass spectrometry with isotope dilution. J. Chromatogr. A, 2010, 1217(3), 411-414.
[http://dx.doi.org/10.1016/j.chroma.2009.12.015] [PMID: 20015503]
[85]
Jansook, P.; Ritthidej, G.C.; Ueda, H.; Stefánsson, E.; Loftsson, T. yCD/HPyCD mixtures as solubilizer: solid-state characterization and sample dexamethasone eye drop suspension. J. Pharm. Pharm. Sci., 2010, 13(3), 336-350.
[http://dx.doi.org/10.18433/J3M88B] [PMID: 21092707]
[86]
Zhang, L.; Li, Y.; Zhang, C.; Wang, Y.; Song, C. Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int. J. Nanomedicine, 2009, 4, 175-183.
[http://dx.doi.org/10.2147/IJN.S6428] [PMID: 19774116]
[87]
Campos, I.M.F.; Santos, T.M.; Cunha, G.M.F.; Silva, K.M.M.N.; Domingues, R.Z.; da Silva Cunha Júnior, A.; de Souza Figueiredo, K.C. Preparation and release characteristics of dexamethasone acetate loaded organochlorine-free poly(lactide- co -glycolide) nanoparticles. J. Appl. Polym. Sci. 2014, 131(23) n/a
[http://dx.doi.org/10.1002/app.41199]
[88]
Silva, S.L.; Silva, A.M.S.; Ribeiro, J.C.; Martins, F.G.; Da Silva, F.A.; Silva, C.M. Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: A review. Anal. Chim. Acta, 2011, 707(1-2), 18-37.
[http://dx.doi.org/10.1016/j.aca.2011.09.010] [PMID: 22027116]
[89]
Urban, M.C.C.; Mainardes, R.M.; Gremião, M.P.D. Development and validation of HPLC method for analysis of dexamethasone acetate in microemulsions. Braz. J. Pharm. Sci., 2009, 45(1), 87-92.
[http://dx.doi.org/10.1590/S1984-82502009000100010]
[90]
Coursey, T.G.; Henriksson, J.T.; Marcano, D.C.; Shin, C.S.; Isenhart, L.C.; Ahmed, F.; De Paiva, C.S.; Pflugfelder, S.C.; Acharya, G. Dexamethasone nanowafer as an effective therapy for dry eye disease. J. Control. Release, 2015, 213, 168-174.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.007] [PMID: 26184051]
[91]
Seyfoddin, A.; Chan, A.; Chen, W.T.; Rupenthal, I.D.; Waterhouse, G.I.N.; Svirskis, D. Electro-responsive macroporous polypyrrole scaffolds for triggered dexamethasone delivery. Eur. J. Pharm. Biopharm., 2015, 94, 419-426.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.018] [PMID: 26141345]
[92]
Martín-Sabroso, C.; Tavares-Fernandes, D.F.; Espada-García, J.I.; Torres-Suárez, A.I. Validation protocol of analytical procedures for quantification of drugs in polymeric systems for parenteral administration: Dexamethasone phosphate disodium microparticles. Int. J. Pharm., 2013, 458(1), 188-196.
[http://dx.doi.org/10.1016/j.ijpharm.2013.09.026] [PMID: 24120930]
[93]
Astolfi, L.; Guaran, V.; Marchetti, N.; Olivetto, E.; Simoni, E.; Cavazzini, A.; Jolly, C.; Martini, A. Cochlear implants and drug delivery: In vitro evaluation of dexamethasone release. J. Biomed. Mater. Res. B Appl. Biomater., 2014, 102(2), 267-273.
[http://dx.doi.org/10.1002/jbm.b.33004] [PMID: 23997036]
[94]
Loos, G.; Van Schepdael, A.; Cabooter, D. Quantitative mass spectrometry methods for pharmaceutical analysis. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2016, 374(2079), 20150366.
[http://dx.doi.org/10.1098/rsta.2015.0366] [PMID: 27644982]
[95]
Chong, Y.K.; Ho, C.C.; Leung, S.Y.; Lau, S.K.P.; Woo, P.C.Y. Clinical mass spectrometry in the bioinformatics era: A Hitchhiker’s guide. Comput. Struct. Biotechnol. J., 2018, 16, 316-334.
[http://dx.doi.org/10.1016/j.csbj.2018.08.003] [PMID: 30237866]
[96]
Ikegawa, S.; Hasegawa, M.; Okihara, R.; Shimidzu, C.; Chiba, H.; Iida, T.; Mitamura, K. Simultaneous determination of twelve tetrahydrocorticosteroid glucuronides in human urine by liquid chromatography/electrospray ionization-linear ion trap mass spectrometry. Anal. Chem., 2009, 81(24), 10124-10135.
[http://dx.doi.org/10.1021/ac9018632] [PMID: 19874001]
[97]
Mitamura, K.; Mabuchi, T.; Nagae, K.; Nakajima, M.; Matsumoto, R.; Fujioka, S.; Sato, K. Satoh née Okihara, R.; Iida, T.; Ogawa, S.; Hofmann, A.F.; Ikegawa, S. Synthesis of multiply deuterated 3- and 21-monosulfates of allo-tetrahydrocorticosteroids as internal standards for mass spectrometry. Steroids, 2012, 77(13), 1423-1437.
[http://dx.doi.org/10.1016/j.steroids.2012.08.007] [PMID: 22960650]
[98]
Okihara, R.; Mitamura, K.; Hasegawa, M.; Mori, M.; Muto, A.; Kakiyama, G.; Ogawa, S.; Iida, T.; Shimada, M.; Mano, N.; Ikegawa, S. Potential corticoid metabolites: chemical synthesis of 3- and 21-monosulfates and their double-conjugates of tetrahydrocorticosteroids in the 5alpha- and 5beta-series. Chem. Pharm. Bull. , 2010, 58(3), 344-353.
[http://dx.doi.org/10.1248/cpb.58.344] [PMID: 20190439]
[99]
Ikegawa, S.; Nagae, K.; Mabuchi, T.; Okihara, R.; Hasegawa, M.; Minematsu, T.; Iida, T.; Mitamura, K. Synthesis of 3 and 21-monosulfates of [2,2,3β,4,4- 2H 5]-tetrahydrocorticosteroids in the 5β-series as internal standards for mass spectrometry. Steroids, 2017, 76(12), 1232-1240.
[http://dx.doi.org/10.1016/j.steroids.2011.05.014]
[100]
Mlynárik, V. Introduction to nuclear magnetic resonance. Anal. Biochem., 2017, 529, 4-9.
[101]
Tishmack, P.A.; Bugay, D.E.; Byrn, S.R. Solid-state nuclear magnetic resonance spectroscopy pharmaceutical applications. J. Pharm. Sci., 2003, 92(3), 441-474.
[http://dx.doi.org/10.1002/jps.10307] [PMID: 12587108]
[102]
Silva, R.P.; Ambrósio, M.F.S.; Piovesan, L.A.; Freitas, M.C.R.; Aguiar, D.L.M.; Horta, B.A.C.; Epprecht, E.K.; San Gil, R.A.S.; Visentin, L.C. New polymorph form of dexamethasone acetate. J. Pharm. Sci., 2018, 107(2), 672-681.
[http://dx.doi.org/10.1016/j.xphs.2017.10.001] [PMID: 29031975]
[103]
Weiss, G.L.; Rainville, J.R.; Zhao, Q.; Tasker, J.G. Purity and stability of the membrane-limited glucocorticoid receptor agonist dexamethasone-BSA. Steroids, 2019, 142, 2-5.
[http://dx.doi.org/10.1016/j.steroids.2017.09.004] [PMID: 28939328]
[104]
Yu, A.; Shi, H.; Liu, H.; Bao, Z.; Dai, M.; Lin, D.; Lin, D.; Xu, X.; Li, X.; Wang, Y. Mucoadhesive dexamethasone-glycol chitosan nanoparticles for ophthalmic drug delivery. Int. J. Pharm., 2020, 575, 118943.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118943] [PMID: 31830575]
[105]
Thakral, N.K.; Zanon, R.L.; Kelly, R.C.; Thakral, S. Applications of powder X-Ray diffraction in small molecule pharmaceuticals: Achievements and aspirations. J. Pharm. Sci., 2018, 107(12), 2969-2982.
[http://dx.doi.org/10.1016/j.xphs.2018.08.010] [PMID: 30145209]
[106]
Pramanik, A.; Sahoo, R.N.; Nanda, A.; Mohapatra, R.; Singh, R.; Mallick, S. Ocular permeation and sustained anti-inflammatory activity of dexamethasone from kaolin nanodispersion hydrogel system. Curr. Eye Res., 2018, 43(6), 828-838.
[http://dx.doi.org/10.1080/02713683.2018.1446534] [PMID: 29521542]
[107]
Villegas, M.; Cid, A.G.; Briones, C.A.; Romero, A.I.; Pistán, F.A.; Gonzo, E.E.; Gottifredi, J.C.; Bermúdez, J.M. Films based on the biopolymer poly(3-hydroxybutyrate) as platforms for the controlled release of dexamethasone. Saudi Pharm. J., 2019, 27(5), 694-701.
[http://dx.doi.org/10.1016/j.jsps.2019.04.004] [PMID: 31297024]
[108]
Kamyar, A.; Khakbiz, M.; Zamanian, A.; Yasaei, M.; Yarmand, B. Synthesis of a novel dexamethasone intercalated layered double hydroxide nanohybrids and their deposition on anodized titanium nanotubes for drug delivery purposes. J. Solid State Chem., 2019, 271, 144-153.
[http://dx.doi.org/10.1016/j.jssc.2018.12.043]
[109]
Mousavi Nejad, Z.; Torabinejad, B.; Davachi, S.M.; Zamanian, A.; Saeedi Garakani, S.; Najafi, F.; Nezafati, N. Synthesis, physicochemical, rheological and in vitro characterization of double-crosslinked hyaluronic acid hydrogels containing dexamethasone and PLGA/dexamethasone nanoparticles as hybrid systems for specific medical applications. Int. J. Biol. Macromol., 2019, 126, 193-208.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.181] [PMID: 30583002]
[110]
Rodrigues, L.B.; Leite, H.F.; Yoshida, M.I.; Saliba, J.B.; Junior, A.S.C.; Faraco, A.A.G. In vitro release and characterization of chitosan films as dexamethasone carrier. Int. J. Pharm., 2009, 368(1-2), 1-6.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.047] [PMID: 18955123]
[111]
Holanda, B.B.C.; Bannach, G.; Ramos Silva, M.; Eusébio, M.E.S.; Castro, R.A.E. Polymorphism of gemfibrozil: Investigation by thermal and spectroscopic methods. Thermochim. Acta, 2019, 675(1), 113-118.
[http://dx.doi.org/10.1016/j.tca.2019.03.026]
[112]
Pandey, K.U.; Dalvi, S.V. Understanding stability relationships among three curcumin polymorphs. Adv. Powder Technol., 2019, 30(2), 266-276.
[http://dx.doi.org/10.1016/j.apt.2018.11.002]
[113]
Pindelska, E.; Sokal, A.; Kolodziejski, W. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques. Adv. Drug Deliv. Rev., 2017, 117, 111-146.
[http://dx.doi.org/10.1016/j.addr.2017.09.014] [PMID: 28931472]
[114]
Delage, S.; Couvrat, N.; Sanselme, M.; Cartigny, Y.; Coquerel, G. Stability of solid phases in the dexamethasone acetate/water system. MATEC Web of Conferences 2013.
[http://dx.doi.org/10.1051/matecconf/20130301036]
[115]
Li, Y.; Chow, P.S.; Tan, R.B.H. Quantification of polymorphic impurity in an enantiotropic polymorph system using differential scanning calorimetry, X-ray powder diffraction and Raman spectroscopy. Int. J. Pharm., 2011, 415(1-2), 110-118.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.058] [PMID: 21645601]
[116]
McGregor, C.; Bines, E. The use of high-speed differential scanning calorimetry (Hyper-DSC™) in the study of pharmaceutical polymorphs. Int. J. Pharm., 2008, 350(1-2), 48-52.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.015] [PMID: 17890030]
[117]
The Royal Society of Chemistry. The Merck Index: An Encyclope- dia of Chemicals, Drugs, and Biologicals; Merck Sharp & Dohme Corp., 2013.
[118]
Li, D.; Guo, G.; Fan, R.; Liang, J.; Deng, X.; Luo, F.; Qian, Z. PLA/F68/Dexamethasone implants prepared by hot-melt extrusion for controlled release of anti-inflammatory drug to implantable medical devices: I. Preparation, characterization and hydrolytic degradation study. Int. J. Pharm., 2013, 441(1-2), 365-372.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.019] [PMID: 23178216]
[119]
Borba, P.A.A.; Riekes, M.K.; Pereira, R.N.; Stulzer, H.K.; Vecchia, D.D. Development and validation of an analytical method by UV spectrophotometry for quantification of carvedilol. Quim. Nova, 2013, 36(4), 582-586.
[http://dx.doi.org/10.1590/S0100-40422013000400017]
[120]
Goimil, L.; Santos-Rosales, V.; Delgado, A.; Évora, C.; Reyes, R.; Lozano-Pérez, A. A.; Aznar-Cervantes, S. D.; Cenis, J. L.; Gómez-Amoza, J. L.; Concheiro, A. ScCO2 - foamed silk fibroin aerogel/ poly(ϵ-caprolactone) scaffolds containing dexamethasone for bone regeneration. J. CO2 Util., 2019, 31, 51-64.
[http://dx.doi.org/10.1016/j.jcou.2019.02.016]
[121]
Fan, M.; Ma, Y.; Zhang, Z.; Mao, J.; Tan, H.; Hu, X. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering. Mater. Sci. Eng. C, 2015, 56, 311-317.
[http://dx.doi.org/10.1016/j.msec.2015.04.004] [PMID: 26249595]
[122]
Ansari, S.; Karkhaneh, A.; Bonakdar, S.; Haghighipour, N. Simultaneous effects of hydrostatic pressure and dexamethasone release from electrospun fibers on inflammation-induced chondrocytes. Eur. Polym. J., 2019, 118, 244-253.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.06.003]
[123]
Costa, P.F.; Puga, A.M.; Díaz-Gomez, L.; Concheiro, A.; Busch, D.H.; Alvarez-Lorenzo, C. Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration. Int. J. Pharm., 2015, 496(2), 541-550.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.055] [PMID: 26520408]
[124]
Moghimipour, E.; Salimi, A.; Karami, M.; Isazadeh, S. Preparation and characterization of dexamethasone microemulsion based on pseudoternary phase diagram. Jundishapur J. Nat. Pharm. Prod., 2013, 8(3), 105-112.
[http://dx.doi.org/10.17795/jjnpp-9373] [PMID: 24624198]
[125]
Chaikomon, K.; Chattong, S.; Chaiya, T.; Tiwawech, D.; Sritana-anant, Y.; Sereemaspun, A.; Manotham, K. Doxorubicin-conjugated dexamethasone induced MCF-7 apoptosis without entering the nucleus and able to overcome MDR-1-induced resistance. Drug Des. Devel. Ther., 2018, 12, 2361-2369.
[http://dx.doi.org/10.2147/DDDT.S168588] [PMID: 30122894]
[126]
Permatasari, D.A.I.; Kurniasri, N.; Mahardika, M.P. Qualitative and quantitative analysis of dexamethasone in rheumatic pain herbal medicine using Thin-Layer Chromatography (TLC) – densitometry. Journal of Fundamental and Applied Pharmaceutical Science, 2021, 2(1), 10-22.
[http://dx.doi.org/10.18196/jfaps.v2i1.12450]
[127]
Pham, D.T.; Nguyen, N.N.T. Development and pre-clinical study of anti-allergic cream containing dexamethasone and chlorpheniramine. Turkish Journal of Pharmaceutical Sciences, 2018, 15(2), 171-177.
[http://dx.doi.org/10.4274/tjps.91885] [PMID: 32454657]
[128]
Li, L.; Liang, X.; Xu, T.; Xu, F.; Dong, W. Rapid detection of six glucocorticoids added illegally to dietary supplements by combining TLC with spot-concentrated raman scattering. Molecules, 2018, 23(7), 1504.
[http://dx.doi.org/10.3390/molecules23071504] [PMID: 29933599]

© 2024 Bentham Science Publishers | Privacy Policy