Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Green Recipes for Pyrimidine

Author(s): Pradnya Patil, Afrin Ansari, Savita. J. Tauro and Sahaya Nadar*

Volume 20, Issue 6, 2023

Published on: 27 December, 2022

Page: [678 - 705] Pages: 28

DOI: 10.2174/1570179420666220930154257

Price: $65

Abstract

Pyrimidines serve as key structural components in chemical frameworks and biological processes. Several pyrimidine analogues have been produced over the years by means of traditional methods that necessitated large amounts of solvents, reagents, and, most importantly, additional time, which has led them to become prohibitive. These procedures are now being replaced with more cost-effective adaptive methodologies that incorporate one-pot synthesis and greener approaches involving various green solvents and catalysts. The current review covers a number of green synthetic techniques, including ultrasound-assisted synthesis, visible light irradiation synthesis, solvent-free synthesis, catalyst-free synthesis, microwave-assisted synthesis, and green catalyst synthesis for the synthesis of pyrimidine derivatives. Accordingly, it integrates different strategies to synthesize heterocyclic pyrimidine analogues in a well-organized manner.

Keywords: Pyrimidine, Green chemistry, Microwave Irradiation, Ultrasound assisted, Visible light Irradiation, Green Catalyst Synthesis.

« Previous
Graphical Abstract

[1]
Nadar, S.; Khan, T. Pyrimidine: an elite heterocyclic leitmotif in drug discovery-synthesis and biological activity. In: Chem. Biol. Drug Des; Wiley Online Library: Unites States, 2021. [Epub Ahead of Print]
[http://dx.doi.org/10.1111/cbdd.14001]
[2]
Pyrimidine- an overview | Sciencedirect topics. Available from: https://www.sciencedirect.com/topics/chemistry/pyrimidine (Accessed on: 2022-01-27).
[3]
Bhat, A.R.; Dongre, R.S.; Naikoo, G.A.; Hassan, I.U.; Ara, T. Proficient synthesis of bioactive annulated pyrimidine derivatives: A review. J. Taibah Univ. Sci., 2017, 11(6), 1047-1069.
[http://dx.doi.org/10.1016/j.jtusci.2017.05.005]
[4]
Sharma, S.; Anand, N. Miscellaneous Antiprotozoals. In: Pharmacochemistry Library; Elsevier: Amsterdam, Netherlands, 1997; Vol. 25, p. 468-488.
[http://dx.doi.org/10.1016/S0165-7208(97)80043-8]
[5]
Brown, D.J. Pyrimidines and Their Benzo Derivatives. In: Comprehensive Heterocyclic Chemistry; Elsevier: Amsterdam, Netherlands, 1984; pp. 57-155.
[http://dx.doi.org/10.1016/B978-008096519-2.00035-7]
[6]
Asmar, F.; Søgaard, A.; Grønbæk, K. DNA Methylation and Hydroxymethylation in Cancer. In: Epigenetic Cancer Therapy; Elsevier, Amsterdam, Netherlands, 2015; pp. 9-30.
[http://dx.doi.org/10.1016/B978-0-12-800206-3.00002-1]
[7]
Iyer, R.P.; Beaucage, S.L. Oligonucleotide Synthesis. In: Comprehensive Natural Products Chemistry; Elsevier: Amsterdam, Netherlands, 1999; pp. 105-152.
[http://dx.doi.org/10.1016/B978-0-08-091283-7.00126-0]
[8]
Ackerman, S.; Horton, W. Effects of Environmental Factors on DNA. In: Green Chemistry; Elsevier: Amsterdam, Netherlands, 2018; pp. 109-128.
[http://dx.doi.org/10.1016/B978-0-12-809270-5.00005-4]
[9]
Eicher, T.J. Toxic Encephalopathies I: Cortical and Mixed Encephalopathies. In: Clinical Neurotoxicology; Elsevier, Amsterdam, Netherlands, 2009; pp. 69-87.
[http://dx.doi.org/10.1016/B978-032305260-3.50013-7]
[10]
Yongyuth, Y.; Bongkoch, T.; Sumalee, K. Antimalarial pyrimidine derivatives and methods of making and using them. U.S. Patent 7371758B2, 2008.
[11]
Burgdorf, L.; Kuhn, D.; Ross, T.; Deutsch, C. Pyridopyrimidine derivatives as protein kinase inhibitors. W.O. Patent 2014023385A1, 2014.
[12]
Gaston, D.; Schoentjes, B; Versele, M.; Didier, B. Macrocylic pyrimidine derivatives. C.A. Patent 2942636A1, 2015.
[13]
Heinrich, T.; Esdar, C.; Greiner, H. Pyrimidine derivative as fak inhibitors. E.P. Patent 2606034B1, 2016.
[14]
Matthew, B.; Ashley, F.; Mark, F.; Andrea, G.; Timothy, J. Pyrrolo [2,3 -d]pyrimidine derivatives as inhibitors of Janus- Related Kinases (jak). WO2014128591A1, 2014.
[15]
Baiazitov, R.; Cao, L.; Davis, W.; Du, W.; Lee, C. Substituted reverse pyrimidine BMI-1 inhibitors. U.S. Patent 20200024260, 2015.
[16]
Gowan, D.; Raboisson, P.; Werner, E.; Jonckers, T. Pyrimidine derivatives for the treatment of viral infections. K.R. Patent 20190015766A, 2012.
[17]
Gangjee, A. Substituted cyclopenta pyrimidine bicyclic compounds having antimitotic and/or antitumor activity and methods of use thereof. U.S. Patent 10577377B2, 2020.
[18]
Chiyou, N.; Park, M.; Shao, B.; Tafesse; Yao, J. Pyrimidine carboxamides as sodium channel blockers. E.P. Patent 3293184B1, 2018.
[19]
Dorsch, D.; Blum, A.; Buchstaller, H. 4-(Imidazo[1,2-A]pyridin-3-yl) -pyrimidine derivatives. W.O. Patent 2021013864, 2021.
[20]
Brahmachari, G.; Nurjamal, K. Ultrasound-assisted and trisodium citrate dihydrate-catalyzed green protocol for efficient and one-pot synthesis of substituted chromeno[3′,4′:5,6]pyrano[2,3-d]pyrimidines at ambient conditions. Tetrahedron Lett., 2019, 60(29), 1904-1908.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.028]
[21]
Dige, N.C.; Mahajan, P.G.; Raza, H.; Hassan, M.; Vanjare, B.D.; Hong, H.; Hwan Lee, K.; latip, J.; Seo, S.Y. Ultrasound mediated efficient synthesis of new 4-oxoquinazolin-3(4H)-yl)furan-2-carboxamides as potent tyrosinase inhibitors: Mechanistic approach through chemoinformatics and molecular docking studies. Bioorg. Chem., 2019, 92, 103201.
[http://dx.doi.org/10.1016/j.bioorg.2019.103201] [PMID: 31445195]
[22]
Krištafor, S.; Bistrović, A.; Plavec, J.; Makuc, D.; Martinović, T.; Kraljević, P.S.; Raić, M.S. One-pot click synthesis of 1,2,3-triazole-embedded unsaturated uracil derivatives and hybrids of 1,5- and 2,5-disubstituted tetrazoles and pyrimidines. Tetrahedron Lett., 2015, 56(10), 1222-1228.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.152]
[23]
Deng, Y.P.; Gan, Q.H.; Gao, X.; Jiang, X.Q.; Wang, S.F. A green and efficient method for one-step synthesis of novel oxazolo[3,2-c]pyrimidine derivatives in lactic acid. Tetrahedron, 2021, 97, 132276.
[http://dx.doi.org/10.1016/j.tet.2021.132276]
[24]
Gecht, M.; Kantin, G.; Dar’in, D.; Krasavin, M. A novel approach to biologically relevant oxazolo[5,4-d]pyrimidine-5,7-diones via readily available diazobarbituric acid derivatives. Tetrahedron Lett., 2019, 60(44), 151120.
[http://dx.doi.org/10.1016/j.tetlet.2019.151120]
[25]
Bhat, A.R.; Naikoo, G.A.; Hassan, I.U.; Dongra, R.S.; Ara, T. Ultrasound assisted one pot expeditious synthesis of new pyrido[2,3- d]pyrimidine analogues using mild and inexpensive 4-Dimethylaminopyridine (DMAP) catalyst. Beni. Suef Univ. J. Basic Appl. Sci., 2017, 6(3), 238-246.
[http://dx.doi.org/10.1016/j.bjbas.2017.04.005]
[26]
Mahmoodi, N.O.; Shoja, S.; Tabatabaeian, K.; Sharifzadeh, B. Ultrasound-promoted one-pot five-components synthesis of biologically active novel bis((6-alkyl or phenyl-2-phenylpyrimidine-4-yl) oxy) alkane or methyl benzene derivatives. Ultrason. Sonochem., 2015, 23, 31-36.
[http://dx.doi.org/10.1016/j.ultsonch.2014.09.001] [PMID: 25219874]
[27]
Verma, P.; Pal, S.; Chauhan, S.; Mishra, A.; Sinha, I.; Singh, S.; Srivastava, V. Starch functionalized magnetite nanoparticles: A green, biocatalyst for one-pot multicomponent synthesis of imidazopyrimidine derivatives in aqueous medium under ultrasound irradiation. J. Mol. Struct., 2020, 1203, 127410.
[http://dx.doi.org/10.1016/j.molstruc.2019.127410]
[28]
Taheri, L.R.; Rahimi, J.; Maleki, A. Synergistic catalytic effect between ultrasound waves and pyrimidine-2,4-diamine-functionalized magnetic nanoparticles: Applied for synthesis of 1,4-dihydropyridine pharmaceutical derivatives. Ultrason. Sonochem., 2019, 59, 104737.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104737] [PMID: 31473427]
[29]
Safari, J.; Tavakoli, M.; Ghasemzadeh, M.A. Ultrasound-promoted an efficient method for the one-pot synthesis of indeno fused pyrido[2,3-d]pyrimidines catalyzed by H3PW12O40 functionalized chitosan@Co3O4 as a novel and green catalyst. J. Organomet. Chem., 2019, 880, 75-82.
[http://dx.doi.org/10.1016/j.jorganchem.2018.10.028]
[30]
Sudhan, P.N.; Ghashang, M.; Mansoor, S.S. Efficient synthesis of a novel series of indeno fused pyrido[2,3-d]pyrimidines using β-cyclodextrin-propyl sulfonic acid as an eco-friendly catalyst. Beni. Suef Univ. J. Basic Appl. Sci., 2016, 5(4), 340-349.
[http://dx.doi.org/10.1016/j.bjbas.2016.11.004]
[31]
Nemati, F.; Saeedirad, R. Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for green and efficient synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water. Chin. Chem. Lett., 2013, 24(5), 370-372.
[http://dx.doi.org/10.1016/j.cclet.2013.02.018]
[32]
Reddy, D.H.K.; Lee, S.M. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv. Colloid Interface Sci., 2013, 201-202, 68-93.
[http://dx.doi.org/10.1016/j.cis.2013.10.002] [PMID: 24182685]
[33]
Maleki, A.; Aghaei, M. Ultrasonic assisted synergetic green synthesis of polycyclic imidazo(thiazolo)pyrimidines by using Fe3O4@clay core-shell. Ultrason. Sonochem., 2017, 38, 585-589.
[http://dx.doi.org/10.1016/j.ultsonch.2016.08.024] [PMID: 27545571]
[34]
Darehkordi, A.; Ghazi, S. An efficient ultrasonic-assisted synthesis of ethyl-5-(aryl)-2-(2-alkokxy-2-oxoethylidene)-7-methyl-3-oxo-3, 5-dihydro-2H-thiazolo [3, 2-a] pyrimidine-6-carboxylate derivatives. Arab. J. Chem., 2019, 12(8), 2175-2182.
[http://dx.doi.org/10.1016/j.arabjc.2015.01.010]
[35]
Mosslemin, M.H.; Nateghi, M.R. Rapid and efficient synthesis of fused heterocyclic pyrimidines under ultrasonic irradiation. Ultrason. Sonochem., 2010, 17(1), 162-167.
[http://dx.doi.org/10.1016/j.ultsonch.2009.07.002] [PMID: 19679502]
[36]
Abdullah, H.S.T.S.H.B.; Kan, S.Y.; Chia, P.W. Microwave- and Ultrasound-Assisted Heterocyclics Synthesis in Aqueous Media. In: Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, Netherlands, 2020; pp. 319-355.
[http://dx.doi.org/10.1016/B978-0-12-819542-0.00010-5]
[37]
Zhuang, J.; Zhang, J.; Pang, J.; Wang, A.; Wang, X.; Zhu, W. Fabrication of pyrimidine/g-C3N4 nanocomposites for efficient photocatalytic activity under visible-light illumination. Dyes Pigments, 2019, 163, 634-640.
[http://dx.doi.org/10.1016/j.dyepig.2018.12.046]
[38]
Abdollahi, B.M.H.; Shirini, F.; Tajik, H.; Ghasemzadeh, M.A. A facile and regioselective synthesis of some new pyrimido[4,5-d][1,2,4]triazolo[1,5-a]pyrimidinediones catalyzed by Zn(BDC)-MOF under ultrasound irradiation. J. Mol. Struct., 2019, 1195, 302-308.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.132]
[39]
Mohamadpour, F. Visible light irradiation promoted catalyst-free and solvent-free synthesis of pyrano[2,3-d]pyrimidine scaffolds at room temperature. J. Saudi Chem. Soc., 2020, 24(8), 636-641.
[http://dx.doi.org/10.1016/j.jscs.2020.06.006]
[40]
Li, Z.; Song, G.; He, J.; Du, Y.; Yang, J. Catalyst-free sulfa-Michael addition of pyrimidine-2-thiol to nitroolefins. J. Sulfur Chem., 2017, 38(6), 686-698.
[http://dx.doi.org/10.1080/17415993.2017.1369541]
[41]
Sonawane, R.P. Green synthesis of pyrimidine derivative. Int. Lett. Chem. Phys. Astron., 2013, 21, 64-68.
[http://dx.doi.org/10.18052/www.scipress.com/ILCPA.21.64]
[42]
Guo, W. Base mediated direct C–H amination for pyrimidines synthesis from amidines and cinnamaldehydes using oxygen as green oxidants. Chin. Chem. Lett., 2016, 27(1), 47-50.
[http://dx.doi.org/10.1016/j.cclet.2015.09.012]
[43]
Motamedi, A.; Sattari, E.; Mirzaei, P.; Armaghan, M.; Bazgir, A. An efficient and green synthesis of phthalide-fused pyrazole and pyrimidine derivatives. Tetrahedron Lett., 2014, 55(15), 2366-2368.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.101]
[44]
Shiva, R.K. AnkiReddy, S.; Sabitha, G.; Siva, K.V.; Sriram, D.; Bharathi, R.K.; Rao, S.S. Synthesis and biological evaluation of 1H-pyrrolo[2,3-d]pyrimidine-1,2,3-triazole derivatives as novel anti-tubercular agents. Bioorg. Med. Chem. Lett., 2019, 29(2), 284-290.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.036] [PMID: 30497913]
[45]
Abdollahi, B.M.H.; Shirini, F.; Tajik, H.; Ghasemzadeh, M.A. MIL-53(Fe): Introduction of a new catalyst for the synthesis of Pyrimido[4,5-d]pyrimidine derivatives under solvent-free conditions. J. Mol. Struct., 2019, 1197, 318-325.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.065]
[46]
Tella, A.C.; Eke, U.B.; Owalude, S.O. Solvent-free mechanochemical synthesis and X-ray studies of Cu(II) and Ni(II) complexes of 5-(3,4,5-trimethoxybenzyl)pyrimidine-2,4-diamine (trimethoprim) in a ball-mill. J. Saudi Chem. Soc., 2016, 20, S376-S381.
[http://dx.doi.org/10.1016/j.jscs.2012.12.013]
[47]
Tang, C.; Zhang, Q.; Li, D.; Zhang, J.; Shi, P.; Li, S.; Wu, J.; Tian, Y. Synthesis, crystal structures, two-photon absorption and biological imaging application of two novel bent-shaped pyrimidine derivatives. Dyes Pigments, 2013, 99(1), 20-28.
[http://dx.doi.org/10.1016/j.dyepig.2013.04.016]
[48]
Zohdi, H.F.; Rateb, N.M.; Elnagdy, S.M. Green synthesis and antimicrobial evaluation of some new trifluoromethyl-substituted hexahydropyrimidines by grinding. Eur. J. Med. Chem., 2011, 46(11), 5636-5640.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.036] [PMID: 22000920]
[49]
Reddy, M.V.; Byeon, K.R.; Park, S.H.; Kim, D.W. Polyethylene glycol methacrylate-grafted dicationic imidazolium-based ionic liquid: Heterogeneous catalyst for the synthesis of aryl-benzo[4,5]imidazo[1,2- a]pyrimidine amines under solvent-free conditions. Tetrahedron, 2017, 73(35), 5289-5296.
[http://dx.doi.org/10.1016/j.tet.2017.07.025]
[50]
Sudhan, S.P.N.; Ahmed, R.N.; Kiyani, H.; Mansoor, S.S. Ionic liquid 1-butyl-3-methylimidazolium bromide: A green reaction media for the efficient synthesis of 3-methyl-1,4-diphenyl-1,4,5,7-tetrahydropyrazolo[3,4- d]pyrimidine-6-ones/thiones using phthalimide- N -sulfonic acid as catalyst. J. Saudi Chem. Soc., 2018, 22(3), 269-278.
[http://dx.doi.org/10.1016/j.jscs.2016.07.001]
[51]
Naik, N.S.; Shastri, L.A.; Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Joshi, S.D.; Sunagar, V. Synthesis of novel aryl and coumarin substituted pyrazolo[1,5-a]pyrimidine derivatives as potent anti-inflammatory and anticancer agents. Chem. Data Coll., 2020, 30, 100550.
[http://dx.doi.org/10.1016/j.cdc.2020.100550]
[52]
Farahmand, T.; Hashemian, S.; Sheibani, A. Efficient one-pot synthesis of pyrano[2,3-d]pyrimidinone and pyrido [2,3-d] pyrimidine derivatives by using of Mn-ZIF-8@ZnTiO3 nanocatalyst. J. Mol. Struct., 2020, 1206, 127667.
[http://dx.doi.org/10.1016/j.molstruc.2019.127667]
[53]
Rawat, M.; Rawat, D.S. Copper oxide nanoparticle catalysed synthesis of imidazo[1,2-a]pyrimidine derivatives, their optical properties and selective fluorescent sensor towards zinc ion. Tetrahedron Lett., 2018, 59(24), 2341-2346.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.005]
[54]
Maleki, A.; Niksefat, M.; Rahimi, J.; Azadegan, S. Facile synthesis of tetrazolo[1,5-a]pyrimidine with the aid of an effective gallic acid nanomagnetic catalyst. Polyhedron, 2019, 167, 103-110.
[http://dx.doi.org/10.1016/j.poly.2019.04.015]
[55]
Ye, T.; Han, Y.; Wang, R.; Yan, P.; Chen, S.; Hou, Y.; Zhao, Y. Design, synthesis and biological evaluation of novel 2,4-bismorpholinothieno[3,2-d]pyrimidine and 2-morpholinothieno[3,2-d]pyrimidinone derivatives as potent antitumor agents. Bioorg. Chem., 2020, 99, 103796.
[http://dx.doi.org/10.1016/j.bioorg.2020.103796] [PMID: 32283346]
[56]
Luo, G.; Ma, Y.; Liang, X.; Xie, G.; Luo, Y.; Zha, D.; Wang, S.; Yu, L.; Zheng, X.; Wu, W.; Zhang, C. Design, synthesis and antitumor evaluation of novel 5-methylpyrazolo[1,5-a]pyrimidine derivatives as potential c-Met inhibitors. Bioorg. Chem., 2020, 104, 104356.
[http://dx.doi.org/10.1016/j.bioorg.2020.104356] [PMID: 33142417]
[57]
Ghorbani, V.R.; Toghraei, S.Z.; Amiri, M.; Karimi, N.R.; Salimi, Z.; Ghavidel, M. One-pot synthesis of tetrazolo[1,5-a]pyrimidines under solvent-free conditions. Mol. Divers., 2013, 17(2), 307-318.
[http://dx.doi.org/10.1007/s11030-013-9435-0] [PMID: 23588896]
[58]
Javadian, H.; Ruiz, M.; Taghvai, M.; Sastre, A.M. Novel magnetic nanocomposite of calcium alginate carrying poly(pyrimidine-thiophene-amide) as a novel green synthesized polyamide for adsorption study of neodymium, terbium, and dysprosium rare-earth ions. Colloids Surf. A Physicochem. Eng. Asp., 2020, 603, 125252.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125252]
[59]
Upare, A.; Sathyanarayana, P.; Kore, R.; Sharma, K.; Bathula, S.R. Catalyst free synthesis of mono- and disubstituted pyrimidines from O-acyl oximes. Tetrahedron Lett., 2018, 59(25), 2430-2433.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.023]
[60]
Lopes, J.P.B.; Câmara, V.S.; Russowsky, D.; Nogara, P.A.; Da Rocha, J.B.T.; Da Silveira, S.F.; Rodembusch, F.S.; Ceschi, M.A. Tacrine-pyrimidine photoactive molecular hybrids: Synthesis, photophysics, docking and BSA interaction study. J. Mol. Liq., 2019, 287, 110983.
[http://dx.doi.org/10.1016/j.molliq.2019.110983]
[61]
Xu, Q.; Yu, M.; Guo, Y.; Gu, Y.; Han, J.; Chen, J.; Deng, H.; Shao, M.; Zhang, H.; Cao, W. Facile catalyst-free synthesis of perfluoroalkylated cis-spiropyrimidine-5,1′-quinolizines and pyrano[2,3-d]pyrimidines. J. Fluor. Chem., 2019, 228, 109411.
[http://dx.doi.org/10.1016/j.jfluchem.2019.109411]
[62]
Farag, A.M.; Fahim, A.M. Synthesis, biological evaluation and DFT calculation of novel pyrazole and pyrimidine derivatives. J. Mol. Struct., 2019, 1179, 304-314.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.008]
[63]
Toan, D.N.; Thanh, N.D.; Truong, M.X.; Van, D.T. Quinoline-pyrimidine hybrid compounds from 3-acetyl-4-hydroxy-1-methylquinolin-2(1H)-one: Study on synthesis, cytotoxicity, ADMET and molecular docking. Arab. J. Chem., 2020, 13(11), 7860-7874.
[http://dx.doi.org/10.1016/j.arabjc.2020.09.018]
[64]
Maury, S.K.; Kumari, S.; Kushwaha, A.K.; Kamal, A.; Singh, H.K.; Kumar, D.; Singh, S. Grinding induced catalyst free, multicomponent synthesis of Indoloindole pyrimidine. Tetrahedron Lett., 2020, 61(41), 152383.
[http://dx.doi.org/10.1016/j.tetlet.2020.152383]
[65]
Li, C.; Zhang, F. Efficient synthesis of novel furo[2,3-d]pyrimidine derivatives under catalyst-free conditions. Tetrahedron Lett., 2017, 58(16), 1572-1575.
[http://dx.doi.org/10.1016/j.tetlet.2017.03.019]
[66]
Abdellatif, K.R.A.; Bakr, R.B. New advances in synthesis and clinical aspects of pyrazolo[3,4-d]pyrimidine scaffolds. Bioorg. Chem., 2018, 78, 341-357.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.032] [PMID: 29627655]
[67]
Khanna, G.; Saluja, P.; Khurana, J.M. Catalyst free ethylene glycol promoted synthesis of spiro[indene-2,2′-naphthalene]-4′-carbonitriles and spiro[naphthalene-2,5′-pyrimidine]-4-carbonitriles via one-pot three-component reaction. Tetrahedron Lett., 2016, 57(52), 5852-5855.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.050]
[68]
Mohlala, R.L.; Coyanis, E.M.; Fernandes, M.A.; Bode, M.L. Synthesis of highly functionalised 5-membered ring fused pyrimidine derivatives using an isocyanide-based one-pot, three component reaction. Tetrahedron Lett., 2020, 61(17), 151796.
[http://dx.doi.org/10.1016/j.tetlet.2020.151796]
[69]
Novanna, M.; Kannadasan, S.; Shanmugam, P. Phosphotungstic acid mediated, microwave assisted solvent-free green synthesis of highly functionalized 2ˈ-spiro and 2, 3-dihydro quinazolinone and 2-methylamino benzamide derivatives from aryl and heteroaryl 2-amino amides. Tetrahedron Lett., 2019, 60(2), 201-206.
[http://dx.doi.org/10.1016/j.tetlet.2018.12.011]
[70]
Singh, A.; Ansari, K.R.; Chauhan, D.S.; Quraishi, M.A.; Kaya, S. Anti-corrosion investigation of pyrimidine derivatives as green and sustainable corrosion inhibitor for N80 steel in highly corrosive environment: Experimental and AFM/XPS study. Sustain. Chem. Pharm., 2020, 16, 100257.
[http://dx.doi.org/10.1016/j.scp.2020.100257]
[71]
Venkatesh, T.; Bodke, Y.D. J, A.R.S. Facile CAN catalyzed one pot synthesis of novel indol-5,8-pyrimido[4,5-d]pyrimidine derivatives and their pharmacological study. Chem. Data Coll., 2020, 25, 100335.
[http://dx.doi.org/10.1016/j.cdc.2019.100335]
[72]
Verbitskiy, E.V.; Baskakova, S.A.; Belyaev, D.V.; Vakhrusheva, D.V.; Eremeeva, N.I.; Rusinov, G.L.; Charushin, V.N. Renaissance of 4-(5-nitrofuran-2-yl)-5-arylamino substituted pyrimidines: Microwave-assisted synthesis and antitubercular activity. Mendeleev Commun., 2021, 31(2), 210-212.
[http://dx.doi.org/10.1016/j.mencom.2021.03.021]
[73]
Zhao, B.; Xu, Y.; Deng, Q.G.; Liu, Z.; Wang, L.Y.; Gao, Y. One-pot, three component synthesis of novel 5H-[1,3,4]thiadiazolo[3,2-a]pyrimidine-6-carboxylate derivatives by microwave irradiation. Tetrahedron Lett., 2014, 55(33), 4521-4524.
[http://dx.doi.org/10.1016/j.tetlet.2014.06.073]
[74]
Gogoi, J.; Gogoi, P.; Bezbaruah, P.; Boruah, R.C. Microwave-assisted Pd-catalyzed synthesis of fused steroidal and non-steroidal pyrimidines from β-halo-α,β-unsaturated aldehydes. Tetrahedron Lett., 2013, 54(52), 7136-7139.
[http://dx.doi.org/10.1016/j.tetlet.2013.10.094]
[75]
Saikia, P.; Gogoi, S.; Boruah, R.C. A facile synthesis of steroidal and nonsteroidal pyrimidines under microwave irradiation. Tetrahedron Lett., 2015, 56(16), 2106-2109.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.027]
[76]
Sarmah, M.M.; Sarma, R.; Prajapati, D.; Hu, W. Efficient synthesis of dihydropyrido[4,3-d]pyrimidines by microwave-promoted three-component aza-diels–alder reaction. Tetrahedron Lett., 2013, 54(3), 267-271.
[http://dx.doi.org/10.1016/j.tetlet.2012.11.018]
[77]
Zakeri, M.; Nasef, M.M.; Abouzari, L.E. Eco-safe and expeditious approaches for synthesis of quinazoline and pyrimidine-2-amine derivatives using ionic liquids aided with ultrasound or microwave irradiation. J. Mol. Liq., 2014, 199, 267-274.
[http://dx.doi.org/10.1016/j.molliq.2014.09.018]
[78]
Xavier, A.L.; Simas, A.M.; Falcão, E.P.S.; Dos Anjos, J.V. Antinociceptive pyrimidine derivatives: Aqueous multicomponent microwave assisted synthesis. Tetrahedron Lett., 2013, 54(26), 3462-3465.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.099]
[79]
Yıldırım, M.; Çelikel, D.; Dürüst, Y.; Knight, D.W.; Kariuki, B.M. A rapid and efficient protocol for the synthesis of novel nitrothiazolo[3,2-c]pyrimidines via microwave-mediated Mannich cyclisation. Tetrahedron, 2014, 70(12), 2122-2128.
[http://dx.doi.org/10.1016/j.tet.2014.02.003]
[80]
Li, B.; Etheve, Q.M.; Yen, P.E.; Garbay, C.; Chen, H. Microwave-assisted synthesis of 2,5-disubstituted pyrimidine derivatives via buchwald-hartwig amination. Tetrahedron Lett., 2020, 61(3), 151406.
[http://dx.doi.org/10.1016/j.tetlet.2019.151406]
[81]
Chougale, U.B.; Kharade, P.R.; Chavan, H.V.; Dhongade, S.R. Microwave assisted synthesis of some novel thiazine derivatives and prediction of their bioactivity. Mater. Today Proc., 2020, 23, 301-308.
[http://dx.doi.org/10.1016/j.matpr.2020.02.028]
[82]
Chandrasekaran, B.; Cherukupalli, S.; Karunanidhi, S.; Kajee, A.; Aleti, R.R.; Sayyad, N.; Kushwaha, B.; Merugu, S.R.; Mlisana, K.P.; Karpoormath, R. Design and synthesis of novel heterofused pyrimidine analogues as effective antimicrobial agents. J. Mol. Struct., 2019, 1183, 246-255.
[http://dx.doi.org/10.1016/j.molstruc.2019.01.105]
[83]
Ryan, S.J.; Yang, Q. Development of a practical synthesis of a pyrimidine derivative with fungicidal activity. Org. Process Res. Dev., 2019, 23(10), 2157-2165.
[http://dx.doi.org/10.1021/acs.oprd.9b00130]
[84]
Khatavi, S.Y.; Kamanna, K. Facile and greener method synthesis of pyrano[2,3-d]pyrimidine-2,4,7-triones: Electrochemical and biological activity evaluation studies. J. Mol. Struct., 2022, 1250, 131708.
[http://dx.doi.org/10.1016/j.molstruc.2021.131708]
[85]
Momeni, S.; Nematollahi, D. Electrolyte-free paired electrosynthesis of some pyrimidine derivatives using flow electrochemistry as a powerful technology. J. Electroanal. Chem., 2020, 857, 113746.
[http://dx.doi.org/10.1016/j.jelechem.2019.113746]
[86]
Thanh, N.D.; Hai, D.S.; Ha, N.T.T.; Tung, D.T.; Le, C.T.; Van, H.T.K.; Toan, V.N.; Toan, D.N.; Dang, L.H. Synthesis, biological evaluation and molecular docking study of 1,2,3-1H-triazoles having 4H-pyrano[2,3-d]pyrimidine as potential Mycobacterium tuberculosis protein tyrosine phosphatase B inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(2), 164-171.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.009] [PMID: 30551903]
[87]
Pathan, N.B.; Rahatgaonkar, A.M. Solid supported microwave induced synthesis of imidazole–pyrimidine hybrids: Antimicrobial evaluation and docking study as 14DM-CPY51 inhibitors. Arab. J. Chem., 2016, 9, S100-S108.
[http://dx.doi.org/10.1016/j.arabjc.2011.02.013]
[88]
Naik, S.D.; Hosamani, K.M.; Vootla, S.K. Microwave synthesis, biological screening and computational studies of pyrimidine based novel coumarin scaffolds. Chem. Data Coll., 2018, 15-16, 207-222.
[http://dx.doi.org/10.1016/j.cdc.2018.06.002]
[89]
Acosta, P.; Insuasty, B.; Ortiz, A.; Abonia, R.; Sortino, M.; Zacchino, S.A.; Quiroga, J. Solvent-free microwave-assisted synthesis of novel pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines with potential antifungal activity. Arab. J. Chem., 2016, 9(3), 481-492.
[http://dx.doi.org/10.1016/j.arabjc.2015.03.002]
[90]
Horchani, M.; Hajlaoui, A.; Harrath, A.H.; Mansour, L.; Ben, J.H.; Romdhane, A. New pyrazolo-triazolo-pyrimidine derivatives as antibacterial agents: Design and synthesis, molecular docking and DFT studies. J. Mol. Struct., 2020, 1199, 127007.
[http://dx.doi.org/10.1016/j.molstruc.2019.127007]
[91]
Shahnavaz, Z.; Khaligh, N.G.; Zaharani, L.; Johan, M.R.; Hamizi, N.A. The structure elucidation of new ionic liquid and its application for the synthesis of a series of novel triazolo[1,5-a]pyrimidine scaffolds. J. Mol. Struct., 2020, 1219, 128592.
[http://dx.doi.org/10.1016/j.molstruc.2020.128592]
[92]
Singleton, J.D.; Dass, R.; Neubert, N.R.; Smith, R.M.; Webber, Z.; Hansen, M.D.H.; Peterson, M.A. Synthesis and biological evaluation of novel pyrazolo[1,5-a]pyrimidines: Discovery of a selective inhibitor of JAK1 JH2 pseudokinase and VPS34. Bioorg. Med. Chem. Lett., 2020, 30(2), 126813.
[http://dx.doi.org/10.1016/j.bmcl.2019.126813] [PMID: 31831383]
[93]
Krämer, A.; Kurz, C.G.; Berger, B.T.; Celik, I.E.; Tjaden, A.; Greco, F.A.; Knapp, S.; Hanke, T. Optimization of pyrazolo[1,5-a]pyrimidines lead to the identification of a highly selective casein kinase 2 inhibitor. Eur. J. Med. Chem., 2020, 208, 112770.
[http://dx.doi.org/10.1016/j.ejmech.2020.112770] [PMID: 32883634]
[94]
Farahi, M.; Karami, B.; Banaki, Z. Improved microwave-assisted catalyst-free synthesis of 9-aryl-5,9-dihydropyrimido[4,5-d][1,2,4] triazolo[1,5-a]pyrimidine-6,8(4H,7H)-dione derivatives. Chin. Chem. Lett., 2015, 26(9), 1065-1067.
[http://dx.doi.org/10.1016/j.cclet.2015.05.035]
[95]
Nagalakshmamma, V.; Venkataswamy, M.; Pasala, C.; Umamaheswari, A.; Thyagaraju, K.; Nagaraju, C.; Chalapathi, P.V. Design, synthesis, anti-tobacco mosaic viral and molecule docking simulations of urea/thiourea derivatives of 2-(piperazine-1-yl)-pyrimidine and 1-(4-Fluoro/4-Chloro phenyl)-piperazine and 1-(4-Chloro phenyl)-piperazine – A study. Bioorg. Chem., 2020, 102, 104084.
[http://dx.doi.org/10.1016/j.bioorg.2020.104084] [PMID: 32693309]
[96]
Yadav, M.B.; Lim, K.T.; Kim, J.S.; Jeong, Y.T. One-pot four-component synthesis of methyl 4-(4-chlorophenyl)-5,7-dioxo-1-phenyl-1,4,5,6,7,8-hexahydropyrazolo [4′,3′:5,6] pyrano [2,3-d] pyrimidine-3-carboxylate; a green approach. Tetrahedron Lett., 2021, 65, 152754.
[http://dx.doi.org/10.1016/j.tetlet.2020.152754]
[97]
Nasri, S.; Rahimi, F.; Karimi, M.; Bayat, M. Regio- and diastereoselective synthesis of new functionalized indolo[2,3-b]indole-pyrimidine based on C–N bond formation via a four-component reaction. Tetrahedron Lett., 2018, 59(23), 2272-2276.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.012]
[98]
El Sayed, M.T.; Hussein, H.A.R.; Elebiary, N.M.; Hassan, G.S.; Elmessery, S.M.; Elsheakh, A.R.; Nayel, M.; Abdel, A.H.A. Tyrosine kinase inhibition effects of novel Pyrazolo[1,5-a]pyrimidines and Pyrido[2,3-d]pyrimidines ligand: Synthesis, biological screening and molecular modeling studies. Bioorg. Chem., 2018, 78, 312-323.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.009] [PMID: 29625271]
[99]
Shipilovskikh, S.A.; Rubtsov, A.E. One-pot synthesis of thieno[3,2- e ]pyrrolo[1,2- a]pyrimidine derivative scaffold: A valuable source of PARP-1 inhibitors. J. Org. Chem., 2019, 84(24), 15788-15796.
[http://dx.doi.org/10.1021/acs.joc.9b00711] [PMID: 31769674]
[100]
He, L.L.; Qi, Q.; Wang, X.; Li, Y.; Zhu, Y.; Wang, X.F.; Xu, L. Synthesis of two novel pyrazolo[1,5-a]pyrimidine compounds with anti-bacterial activity and biophysical insights into their interactions with plasma protein. Bioorg. Chem., 2020, 99, 103833.
[http://dx.doi.org/10.1016/j.bioorg.2020.103833] [PMID: 32305694]
[101]
Han, Y.; Tian, Y.; Wang, R.; Fu, S.; Jiang, J.; Dong, J.; Qin, M.; Hou, Y.; Zhao, Y. Design, synthesis and biological evaluation of thieno[3,2-d]pyrimidine derivatives containing aroyl hydrazone or aryl hydrazide moieties for PI3K and mTOR dual inhibition. Bioorg. Chem., 2020, 104, 104197.
[http://dx.doi.org/10.1016/j.bioorg.2020.104197] [PMID: 32927132]
[102]
Ts Mavrova, A.; Dimov, S.; Yancheva, D.; Kolarević, A.; Ilić, B.S.; Kocić, G.; Šmelcerović, A. Synthesis and DNase I inhibitory properties of some 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines. Bioorg. Chem., 2018, 80, 693-705.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.009]
[103]
Quiroga, J.; Romo, P.E.; Ortiz, A.; Isaza, J.H.; Insuasty, B.; Abonia, R.; Nogueras, M.; Cobo, J. Synthesis, structures, electrochemical studies and antioxidant activity of 5-aryl-4-oxo-3,4,5,8-tetrahydropyrido[2,3-d]pyrimidine-7-carboxylic acids. J. Mol. Struct., 2016, 1120, 294-301.
[http://dx.doi.org/10.1016/j.molstruc.2016.05.045]
[104]
Tabassum, S.; Sunaja Devi, K.R.; Govindaraju, S. Nano ZnO@PEG catalyzed one-pot green synthesis of pyrano[2,3-d]pyrimidines in ethanol via one-pot multicomponent approach. Mater. Today Proc., 2021, 45, 3716-3721.
[http://dx.doi.org/10.1016/j.matpr.2020.12.677]
[105]
Wang, C.; Bai, X.; Wang, R.; Zheng, X.; Ma, X.; Chen, H.; Ai, Y.; Bai, Y.; Liu, Y. Synthesis of imatinib by C–N coupling reaction of primary amide and bromo-substituted pyrimidine amine. Org. Process Res. Dev., 2019, 23(9), 1918-1925.
[http://dx.doi.org/10.1021/acs.oprd.9b00227]
[106]
Mejía, G.M.; Olivero, V.J.; Quiroga, J.; Romo, P.; Castaño, S.; Fierro, L. Prediction of the potential biological activity of novel spiropyrazolo[3,4-b]pyridines and spiropyrazolo[3,4-b]pyridine-5,5′-pyrimidines by a ligand–protein inverse-docking approach. J. Mol. Graph. Model., 2020, 97, 107581.
[http://dx.doi.org/10.1016/j.jmgm.2020.107581] [PMID: 32199275]
[107]
Lakkaniga, N.R.; Gunaganti, N.; Zhang, L.; Belachew, B.; Frett, B.; Leung, Y.K.; Li, H. Pyrrolo[2,3-d ]pyrimidine derivatives as inhibitors of RET: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2020, 206, 112691.
[http://dx.doi.org/10.1016/j.ejmech.2020.112691] [PMID: 32823007]
[108]
Sroor, F.M.; Basyouni, W.M.; Tohamy, W.M.; Abdelhafez, T.H.; Elawady, M.K. Novel pyrrolo[2,3-d ]pyrimidine derivatives: Design, synthesis, structure elucidation and in vitro anti-BVDV activity. Tetrahedron, 2019, 75(51), 130749.
[http://dx.doi.org/10.1016/j.tet.2019.130749]
[109]
Shah, K.; Lin, X.; Queener, S.F.; Cody, V.; Pace, J.; Gangjee, A. Targeting species specific amino acid residues: Design, synthesis and biological evaluation of 6-substituted pyrrolo[2,3-d]pyrimidines as dihydrofolate reductase inhibitors and potential anti-opportunistic infection agents. Bioorg. Med. Chem., 2018, 26(9), 2640-2650.
[http://dx.doi.org/10.1016/j.bmc.2018.04.032] [PMID: 29691153]
[110]
Bakhshali, D.R.; Ghasemzadeh, M.A.; Safaei, G.J. Green synthesis and immobilization of TiO2 NPs using ILs-based on imidazole and investigation of its catalytic activity for the efficient synthesis of pyrimido[4,5-d]pyrimidines. J. Mol. Struct., 2020, 1206, 127698.
[http://dx.doi.org/10.1016/j.molstruc.2020.127698]
[111]
Sana, S.; Reddy, V.G.; Bhandari, S.; Reddy, T.S.; Tokala, R.; Sakla, A.P.; Bhargava, S.K.; Shankaraiah, N. Exploration of carbamide derived pyrimidine-thioindole conjugates as potential VEGFR-2 inhibitors with anti-angiogenesis effect. Eur. J. Med. Chem., 2020, 200, 112457.
[http://dx.doi.org/10.1016/j.ejmech.2020.112457] [PMID: 32422489]
[112]
Shekarlab, N.; Ghorbani, V.R.; Alavinia, S. Nickel (II) coordination on cross-linked poly triazine-urea-sulfonamide grafted onto Mg-Al LDHs: As a green catalytic system for the synthesis of tetrazolo[1,5-a] pyrimidines. J. Organomet. Chem., 2021, 949, 121971.
[http://dx.doi.org/10.1016/j.jorganchem.2021.121971]
[113]
Amin, L.H.T.; Shawer, T.Z.; El-Naggar, A.M.; El-Sehrawi, H.M.A. Design, synthesis, anticancer evaluation and docking studies of new pyrimidine derivatives as potent thymidylate synthase inhibitors. Bioorg. Chem., 2019, 91, 103159.
[http://dx.doi.org/10.1016/j.bioorg.2019.103159] [PMID: 31382056]
[114]
Singh, M.; Fatma, S.; Ankit, P.; Singh, S.B.; Singh, J. Boric acid in aqueous micellar medium: An effective and recyclable catalytic system for the synthesis of aryl-7,8-dihydro[1,2,4]triazolo[4,3-a]pyrimidine-6-carbonitriles. Tetrahedron Lett., 2014, 55(2), 525-527.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.090]
[115]
Fekri, L.Z.; Nikpassand, M.; Khakshoor, S.N. Green, effective and chromatography free synthesis of benzoimidazo[1,2-a]pyrimidine and tetrahydrobenzo [4,5]imidazo [1,2-d]quinazolin-1(2H)-one and their pyrazolyl moiety using Fe3O4@SiO2@ -proline reusable catalyst in aqueous media. J. Organomet. Chem., 2019, 894, 18-27.
[http://dx.doi.org/10.1016/j.jorganchem.2019.05.004]
[116]
Castillo, J.C.; Estupiñan, D.; Nogueras, M.; Cobo, J.; Portilla, J. 6-(Aryldiazenyl)pyrazolo[1,5- a]pyrimidines as strategic intermediates for the synthesis of pyrazolo[5,1- b]purines. J. Org. Chem., 2016, 81(24), 12364-12373.
[http://dx.doi.org/10.1021/acs.joc.6b02431] [PMID: 27978735]
[117]
Bori, J.; Mahata, S.; Manivannan, V. A new route for the synthesis of 2,4-bis(2-pyridyl)-6-(pyridyl)pyrimidines: Synthesis and characterization of Co(II), Ni(II) complexes of 2,4,6-tris(2-pyridyl)pyrimidine. Inorg. Chim. Acta, 2020, 506, 119506.
[http://dx.doi.org/10.1016/j.ica.2020.119506]
[118]
Moghaddampour, I.M.; Shirini, F.; Langarudi, M.S.N. Agar-entrapped sulfonated DABCO: Agelly acidic catalyst for the acceleration of one-pot synthesis of 1,2,4-triazoloquinazolinone and some pyrimidine derivatives. J. Mol. Struct., 2021, 1226, 129336.
[http://dx.doi.org/10.1016/j.molstruc.2020.129336] [PMID: 33012844]
[119]
Petek, N.; Štefane, B.; Novinec, M.; Svete, J. Synthesis and biological evaluation of 7-(aminoalkyl)pyrazolo[1,5-a]pyrimidine derivatives as cathepsin K inhibitors. Bioorg. Chem., 2019, 84, 226-238.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.029] [PMID: 30502634]
[120]
Beheshti, S.; Safarifard, V.; Morsali, A. Isoreticular interpenetrated pillared-layer microporous metal-organic framework as a highly effective catalyst for three-component synthesis of pyrano[2,3-d]pyrimidines. Inorg. Chem. Commun., 2018, 94, 80-84.
[http://dx.doi.org/10.1016/j.inoche.2018.06.002]
[121]
Hoang, G.L.; Streit, A.D.; Ellman, J.A. Three-component coupling of aldehydes, aminopyrazoles, and sulfoxonium ylides via Rhodium(III)-catalyzed imidoyl C–H activation: Synthesis of pyrazolo[1,5- a]pyrimidines. J. Org. Chem., 2018, 83(24), 15347-15360.
[http://dx.doi.org/10.1021/acs.joc.8b02606] [PMID: 30525637]
[122]
Jolodar, O.G.; Shirini, F.; Seddighi, M. Efficient synthesis of pyrano[2,3- d ]pyrimidinone and pyrido[2,3- d ]pyrimidine derivatives in presence of novel basic ionic liquid catalyst. Chin. J. Catal., 2017, 38(7), 1245-1251.
[http://dx.doi.org/10.1016/S1872-2067(17)62827-4]
[123]
Mamaghani, M.; Shirini, F.; Bassereh, E.; Hossein Nia, R. 1,2-Dimethyl- N -butanesulfonic acid imidazolium hydrogen sulfate as efficient ionic liquid catalyst in the synthesis of indeno fused pyrido[2,3- d]pyrimidines. J. Saudi Chem. Soc., 2016, 20(5), 570-576.
[http://dx.doi.org/10.1016/j.jscs.2014.12.003]
[124]
Mirak, M.M.S.; Rad, M.K. A novel amphipathic low-melting complex salt: An efficient homogeneous catalyst for synthesis of pyran-annulated heterocyclic scaffolds and pyrido[2,3-d]pyrimidines. J. Mol. Liq., 2020, 307, 112989.
[http://dx.doi.org/10.1016/j.molliq.2020.112989]
[125]
Rao, B.V.; Manmode, S.; Hotha, S. Propargyl 1,2-orthoesters for a catalytic and stereoselective synthesis of pyrimidine nucleosides. J. Org. Chem., 2015, 80(3), 1499-1505.
[http://dx.doi.org/10.1021/jo502413z] [PMID: 25539179]
[126]
Maleki, A.; Niksefat, M.; Rahimi, J.; Taheri, L.R. Multicomponent synthesis of pyrano[2,3-d]pyrimidine derivatives via a direct one-pot strategy executed by novel designed copperated Fe3O4@polyvinyl alcohol magnetic nanoparticles. Mater. Today Chem., 2019, 13, 110-120.
[http://dx.doi.org/10.1016/j.mtchem.2019.05.001]
[127]
Haghighat, M.; Shirini, F.; Golshekan, M. Efficiency of NaHSO4 modified periodic mesoporous organosilica magnetic nanoparticles as a new magnetically separable nanocatalyst in the synthesis of [1,2,4]triazolo quinazolinone/pyrimidine derivatives. J. Mol. Struct., 2018, 1171, 168-178.
[http://dx.doi.org/10.1016/j.molstruc.2018.05.112]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy