Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Computer Aided Reverse Vaccinology: A Game-changer Approach for Vaccine Development

Author(s): Poornima Srivastava and Chakresh Kumar Jain*

Volume 26, Issue 10, 2023

Published on: 10 November, 2022

Page: [1813 - 1821] Pages: 9

DOI: 10.2174/1386207325666220930124013

Price: $65

Abstract

One of the most dynamic approaches in biotechnology is reverse vaccinology, which plays a huge role in today’s developing vaccines. It has the capability of exploring and identifying the most potent vaccine candidate in a limited period of time. The first successful novel approach of reverse vaccinology was observed in Neisseria meningitidis serogroup B, which has revolutionised the whole field of computational biology. In this review, we have summarized the application of reverse vaccinology for different infectious diseases, discussed epitope prediction and various available bioinformatic tools, and explored the advantages, limitations and necessary elements of this approach. Some of the modifications in the reverse vaccinology approach, like pan-genome and comparative reverse vaccinology, are also outlined. Vaccines for illnesses like AIDS and hepatitis C have not yet been developed. Computer Aided Reverse vaccinology has the potential to be a game-changer in this area. The use of computational tools, pipelines and advanced soft-computing methods, such as artificial intelligence and deep learning, and exploitation of available omics data in integration have paved the way for speedy and effective vaccine designing. Is reverse vaccinology a viable option for developing vaccines against such infections, or is it a myth? Vaccine development gained momentum after the spread of various infections, resulting in numerous deaths; these vaccines are developed using the traditional technique, which includes inactivated microorganisms. As a result, reverse vaccinology may be a far superior technique for creating an effective vaccine.

Keywords: Computer-aided reverse vaccinology, epitope prediction, comparative reverse vaccinology, pan genomic reverse vaccinology, DNA microarray

Next »
Graphical Abstract

[1]
Sieber, C.C.; Kiesswetter, E.; Kwetkat, A.; Heppner, H.J.; Schoene, D.; Freiberger, E. Prevention: Public healthcare, nutrition, physical activity, vaccination. In: Practical Issues in Geriatrics; Springer International Publishing: Cham, 2018; pp. 237-262.
[2]
He, Y.; Xiang, Z.; Mobley, H.L.T. Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vac-cine development. J. Biomed. Biotechnol., 2010, 2010, 297505.
[http://dx.doi.org/10.1155/2010/297505] [PMID: 20671958]
[3]
Mora, M.; Veggi, D.; Santini, L.; Pizza, M.; Rappuoli, R. Reverse vaccinology. Drug Discov. Today, 2003, 8(10), 459-464.
[http://dx.doi.org/10.1016/S1359-6446(03)02689-8] [PMID: 12801798]
[4]
Soni, R.; Tiwari, A.; Kanampalliwar, A.; Girdhar, A. Reverse vaccinology: Basics and applications. J. Vaccines Vaccin., 2013, 4(6), 1-5.
[http://dx.doi.org/10.4172/2157-7560.1000194]
[5]
Li, J.; Qiu, J.; Huang, Z.; Liu, T.; Pan, J.; Zhang, Q.; Liu, Q. Reverse vaccinology approach for the identifications of potential vaccine can-didates against Salmonella. Int. J. Med. Microbiol. Suppl., 2021, 311(5), 151508.
[http://dx.doi.org/10.1016/j.ijmm.2021.151508]
[6]
Rappuoli, R.; Pizza, M.; Del Giudice, G.; De Gregorio, E. Vaccines, new opportunities for a new society. Proc. Natl. Acad. Sci. USA, 2014, 111(34), 12288-12293.
[http://dx.doi.org/10.1073/pnas.1402981111] [PMID: 25136130]
[7]
Rappuoli, R. Vaccines, emerging viruses, and how to avoid disaster. BMC Biol., 2014, 12(1), 100.
[http://dx.doi.org/10.1186/s12915-014-0100-6] [PMID: 25432510]
[8]
Delany, I.; Rappuoli, R.; Seib, K.L.; Vaccines, R. Vaccines, reverse vaccinology, and bacterial pathogenesis. Cold Spring Harb. Perspect. Med., 2013, 3(5), a012476.
[http://dx.doi.org/10.1101/cshperspect.a012476] [PMID: 23637311]
[9]
Seib, K.L.; Zhao, X.; Rappuoli, R. Developing vaccines in the era of genomics: A decade of reverse vaccinology. Clin. Microbiol. Infect., 2012, 18(Suppl. 5), 109-116.
[http://dx.doi.org/10.1111/j.1469-0691.2012.03939.x] [PMID: 22882709]
[10]
Michalik, M.; Djahanshiri, B.; Leo, J.C.; Linke, D. Reverse vaccinology: The pathway from genomes and Epitope predictions to tailored recombinant vaccines. Methods Mol. Biol., 2016, 1403, 87-106.
[http://dx.doi.org/10.1007/978-1-4939-3387-7_4] [PMID: 27076126]
[11]
de la Fuente, J.; Kopáček, P.; Lew-Tabor, A.; Maritz-Olivier, C. Strategies for new and improved vaccines against ticks and tick-borne diseases. Parasite Immunol., 2016, 38(12), 754-769.
[http://dx.doi.org/10.1111/pim.12339] [PMID: 27203187]
[12]
Kaboré, N.F.; Poda, G.E.A.; Barro, M.; Cessouma, R.; Héma, A.; Ouedraogo, A.S.; Sawadogo, A.B.; Nacro, B. Impact of vaccination on admissions for Haemophilus influenzae b meningitis from 2004 to 2008 in Bobo Dioulasso, Burkina Faso. Med. Sante Trop., 2012, 22(4), 425-429.
[http://dx.doi.org/10.1684/mst.2012.0122] [PMID: 23360620]
[13]
Ginsberg, L. Difficult and recurrent meningitis. J. Neurol. Neurosurg. Psychiatry, 2004, 75(90001)(Suppl. 1), i16-i21.
[http://dx.doi.org/10.1136/jnnp.2003.034272] [PMID: 14978146]
[14]
Heinson, A.I.; Gunawardana, Y.; Moesker, B.; Hume, C.C.D.; Vataga, E.; Hall, Y.; Stylianou, E.; McShane, H.; Williams, A.; Niranjan, M.; Woelk, C.H. Enhancing the biological relevance of machine learning classifiers for reverse vaccinology. Int. J. Mol. Sci., 2017, 18(2), 312.
[http://dx.doi.org/10.3390/ijms18020312] [PMID: 28157153]
[15]
Ramaswamy, V.; Cresence, V.M.; Rejitha, J.S.; Lekshmi, M.U.; Dharsana, K.S.; Prasad, S.P.; Vijila, H.M. Listeria-review of epidemiology and pathogenesis. J. Microbiol. Immunol. Infect., 2007, 40(1), 4-13.
[PMID: 17332901]
[16]
Gore, D.; Pachkawade, M. In silico reverse vaccinology approach for vaccine lead search in Listeria monocytogenes. Biocompx., 2012, 1, 15-e22.
[17]
Cherkasskiy, B.L. A national register of historic and contemporary anthrax foci. J. Appl. Microbiol., 1999, 87(2), 192-195.
[http://dx.doi.org/10.1046/j.1365-2672.1999.00868.x] [PMID: 10475946]
[18]
Cohn, D.V. The life and times of Louis Pasteur; School of Dentistry; , 1996. Available from: https://www.pasteurbrewing.com/the-life-and-times-of-louis-pasteur/
[19]
Mikesell, P.; Bruce, E.; Ivins, J.; Ristroph, D.; Michael, H.; Thomas, M. Plasmids, pasteur, and anthrax. Div. Bacteriol. Pathol., 1983, 49(7), 320-322.
[20]
Kashikar, P.; Chandan, D. Insilico design and development of vaccine by reverse vaccinology approach for anthrax. J. Adv. Bioinform. Appl. Res., 2012, 3, 262-266.
[21]
Domingues, L.N.; Bendele, K.G.; Halos, L.; Moreno, Y.; Epe, C.; Figueiredo, M.; Liebstein, M.; Guerrero, F.D. Identification of anti-horn fly vaccine antigen candidates using a reverse vaccinology approach. Parasit. Vectors, 2021, 14(1), 442.
[http://dx.doi.org/10.1186/s13071-021-04938-5] [PMID: 34479607]
[22]
Adler, B.; de la Peña Moctezuma, A. Leptospira and leptospirosis. Vet. Microbiol., 2010, 140(3-4), 287-296.
[http://dx.doi.org/10.1016/j.vetmic.2009.03.012] [PMID: 19345023]
[23]
Ellis, W.A. Animal leptospirosis. Curr. Top. Microbiol. Immunol., 2015, 387, 99-137.
[http://dx.doi.org/10.1007/978-3-662-45059-8_6] [PMID: 25388134]
[24]
Costa, F.; Hagan, J.E.; Calcagno, J.; Kane, M.; Torgerson, P.; Martinez-Silveira, M.S.; Stein, C.; Abela-Ridder, B.; Ko, A.I. Global morbidi-ty and mortality of leptospirosis: A systematic review. PLoS Negl. Trop. Dis., 2015, 9(9), e0003898.
[http://dx.doi.org/10.1371/journal.pntd.0003898] [PMID: 26379143]
[25]
Dellagostin, O.A.; Grassmann, A.A.; Rizzi, C.; Schuch, R.A.; Jorge, S.; Oliveira, T.L.; McBride, A.J.; Hartwig, D.D. Reverse vaccinology: An approach for identifying leptospiral vaccine candidates. Int. J. Mol. Sci., 2017, 18(1), 158.
[http://dx.doi.org/10.3390/ijms18010158] [PMID: 28098813]
[26]
Nayyar, G.M.L.; Breman, J.G.; Newton, P.N.; Herrington, J. Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa. Lancet Infect. Dis., 2012, 12(6), 488-496.
[http://dx.doi.org/10.1016/S1473-3099(12)70064-6] [PMID: 22632187]
[27]
Geels, M.J.; Imoukhuede, E.B.; Imbault, N.; van Schooten, H.; McWade, T.; Troye-Blomberg, M.; Dobbelaer, R.; Craig, A.G.; Leroy, O. European vaccine initiative: Lessons from developing malaria vaccines. Expert Rev. Vaccines, 2011, 10(12), 1697-1708.
[http://dx.doi.org/10.1586/erv.11.158] [PMID: 22085173]
[28]
Cole, J.N.; Henningham, A.; Gillen, C.M.; Ramachandran, V.; Walker, M.J. Human pathogenic streptococcal proteomics and vaccine de-velopment. Proteomics Clin. Appl., 2008, 2(3), 387-410.
[http://dx.doi.org/10.1002/prca.200780048] [PMID: 21136841]
[29]
Yang, Z.; Bogdan, P.; Nazarian, S. An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study. Sci. Rep., 2021, 11(1), 3238.
[http://dx.doi.org/10.1038/s41598-021-81749-9] [PMID: 33547334]
[30]
Kreiter, S.; Vormehr, M.; van de Roemer, N.; Diken, M.; Löwer, M.; Diekmann, J.; Boegel, S.; Schrörs, B.; Vascotto, F.; Castle, J.C.; Tad-mor, A.D.; Schoenberger, S.P.; Huber, C.; Türeci, Ö.; Sahin, U. Erratum: Mutant MHC class II epitopes drive therapeutic immune re-sponses to cancer. Nature, 2015, 523(7560), 370.
[http://dx.doi.org/10.1038/nature14567] [PMID: 26040715]
[31]
Kar, P.; Ruiz-Perez, L.; Arooj, M.; Mancera, R.L. Current methods for the prediction of T-cell epitopes. Pept. Sci. (Hoboken), 2018, 110(2), e24046.
[http://dx.doi.org/10.1002/pep2.24046]
[32]
Purcell, A.W.; McCluskey, J.; Rossjohn, J. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discov., 2007, 6(5), 404-414.
[http://dx.doi.org/10.1038/nrd2224] [PMID: 17473845]
[33]
Lew-Tabor, A.E.; Rodriguez Valle, M. Erratum to A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Tick Borne Dis., 2016, 7(4), 573-585.
[http://dx.doi.org/10.1016/j.ttbdis.2016.07.008] [PMID: 27491290]
[34]
Davies, M.N.; Flower, D.R. Harnessing bioinformatics to discover new vaccines. Drug Discov. Today, 2007, 12(9-10), 389-395.
[http://dx.doi.org/10.1016/j.drudis.2007.03.010] [PMID: 17467575]
[35]
El-Manzalawy, Y.; Honavar, V. Recent advances in B-cell epitope prediction methods. Immunome Res., 2010, 6(Suppl. 2), S2.
[36]
Kulkarni-Kale, U.; Bhosle, S.; Kolaskar, A.S. CEP: A conformational epitope prediction server. Nucleic Acids Res., 2005, 33, W168-W171.
[http://dx.doi.org/10.1093/nar/gki460]
[37]
Schreiber, A.; Humbert, M.; Benz, A.; Dietrich, U. 3D-Epitope-Explorer (3DEX): Localization of conformational epitopes within three-dimensional structures of proteins. J. Comput. Chem., 2005, 26(9), 879-887.
[http://dx.doi.org/10.1002/jcc.20229] [PMID: 15834923]
[38]
Kolaskar, A.S.; Kulkarni-Kale, U. Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glyco-protein of Japanese encephalitis virus. Virology, 1999, 261(1), 31-42.
[http://dx.doi.org/10.1006/viro.1999.9859] [PMID: 10441554]
[39]
Ansari, H.R.; Raghava, G.P. Identification of conformational B-cell Epitopes in an antigen from its primary sequence. Immunome Res., 2010, 6(1), 6.
[http://dx.doi.org/10.1186/1745-7580-6-6] [PMID: 20961417]
[40]
Kim, Y.; Ponomarenko, J.; Zhu, Z.; Tamang, D.; Wang, P.; Greenbaum, J. Immune epitope database analysis resource. Nucleic Acids Res., 2012, 40, W525-W530.
[http://dx.doi.org/10.1093/nar/gks438]
[41]
Sollner, J.; Grohmann, R.; Rapberger, R.; Perco, P.; Lukas, A.; Mayer, B. Analysis and prediction of protective continuous B-cell epitopes on pathogen proteins. Immunome Res., 2008, 4(1), 1.
[http://dx.doi.org/10.1186/1745-7580-4-1] [PMID: 18179690]
[42]
Flower, D.R. Immunoinformatics and the in silico prediction of immunogenicity. An introduction. Methods Mol. Biol., 2007, 409, 1-15.
[http://dx.doi.org/10.1007/978-1-60327-118-9_1] [PMID: 18449989]
[43]
Alix, A.J. Predictive estimation of protein linear epitopes by using the program PEOPLE. Vaccine, 1999, 18(3-4), 311-314.
[http://dx.doi.org/10.1016/S0264-410X(99)00329-1] [PMID: 10506656]
[44]
Saha, S.; Raghava, G.P.S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 2006, 65(1), 40-48.
[http://dx.doi.org/10.1002/prot.21078] [PMID: 16894596]
[45]
Odorico, M.; Pellequer, J-L. BEPITOPE: Predicting the location of continuous epitopes and patterns in proteins. J. Mol. Recognit., 2003, 16(1), 20-22.
[http://dx.doi.org/10.1002/jmr.602] [PMID: 12557235]
[46]
Sette, A.; Fikes, J. Epitope-based vaccines: An update on epitope identification, vaccine design and delivery. Curr. Opin. Immunol., 2003, 15(4), 461-470.
[http://dx.doi.org/10.1016/S0952-7915(03)00083-9] [PMID: 12900280]
[47]
Sunita; Sajid, A.; Singh, Y.; Shukla, P. Computational tools for modern vaccine development. Hum. Vaccin. Immunother., 2020, 16(3), 723-735.
[http://dx.doi.org/10.1080/21645515.2019.1670035] [PMID: 31545127]
[48]
De Groot, A.S. Immunomics: Discovering new targets for vaccines and therapeutics. Drug Discov. Today, 2006, 11(5-6), 203-209.
[http://dx.doi.org/10.1016/S1359-6446(05)03720-7] [PMID: 16580597]
[49]
De Groot, A.S.; Berzofsky, J.A. From genome to vaccine--new immunoinformatics tools for vaccine design. Methods, 2004, 34(4), 425-428.
[http://dx.doi.org/10.1016/j.ymeth.2004.06.004] [PMID: 15542367]
[50]
Doytchinova, I.A.; Guan, P.; Flower, D.R. EpiJen: A server for multistep T cell epitope prediction. BMC Bioinformatics, 2006, 7(1), 131.
[http://dx.doi.org/10.1186/1471-2105-7-131] [PMID: 16533401]
[51]
Dias, D.S.; Ribeiro, P.A.F.; Martins, V.T.; Lage, D.P.; Costa, L.E.; Chávez-Fumagalli, M.A.; Ramos, F.F.; Santos, T.T.O.; Ludolf, F.; Oliveira, J.S.; Mendes, T.A.O.; Silva, E.S.; Galdino, A.S.; Duarte, M.C.; Roatt, B.M.; Menezes-Souza, D.; Teixeira, A.L.; Coelho, E.A.F. Vaccination with a CD4+ and CD8+ T-cell epitopes-based recombinant chimeric protein derived from Leishmania infantum proteins con-fers protective immunity against visceral leishmaniasis. Transl. Res., 2018, 200, 18-34.
[http://dx.doi.org/10.1016/j.trsl.2018.05.001] [PMID: 29908151]
[52]
Moutaftsi, M.; Peters, B.; Pasquetto, V.; Tscharke, D.C.; Sidney, J.; Bui, H.H.; Grey, H.; Sette, A. A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat. Biotechnol., 2006, 24(7), 817-819.
[http://dx.doi.org/10.1038/nbt1215] [PMID: 16767078]
[53]
Gutiérrez, A.H.; Loving, C.; Moise, L.; Terry, F.E.; Brockmeier, S.L.; Hughes, H.R.; Martin, W.D.; De Groot, A.S. In vivo validation of predicted and conserved T cell epitopes in a swine influenza model. PLoS One, 2016, 11(7), e0159237.
[http://dx.doi.org/10.1371/journal.pone.0159237] [PMID: 27411061]
[54]
Glanville, J.; Huang, H.; Nau, A.; Hatton, O.; Wagar, L.E.; Rubelt, F.; Ji, X.; Han, A.; Krams, S.M.; Pettus, C.; Haas, N.; Arlehamn, C.S.L.; Sette, A.; Boyd, S.D.; Scriba, T.J.; Martinez, O.M.; Davis, M.M. Identifying specificity groups in the T cell receptor repertoire. Nature, 2017, 547(7661), 94-98.
[http://dx.doi.org/10.1038/nature22976] [PMID: 28636589]
[55]
Galeano, E. Supporting technologies for the development of new vaccines.,
[56]
Van Regenmortel, M.H.V. Limitations to the structure-based design of HIV-1 vaccine immunogens. J. Mol. Recognit., 2011, 24(5), 741-753.
[http://dx.doi.org/10.1002/jmr.1116] [PMID: 21812050]
[57]
Kong, L.; Sattentau, Q.J. Antigenicity and immunogenicity in HIV-1 antibody-based vaccine design. J. AIDS Clin. Res., 2012, S8(S8), 3.
[http://dx.doi.org/10.4172/2155-6113.S8-003] [PMID: 23227445]
[58]
Bruno, L.; Cortese, M.; Rappuoli, R.; Merola, M. Lessons from reverse vaccinology for viral vaccine design. Curr. Opin. Virol., 2015, 11, 89-97.
[http://dx.doi.org/10.1016/j.coviro.2015.03.001] [PMID: 25829256]
[59]
Weekes, M.P.; Tomasec, P.; Huttlin, E.L.; Fielding, C.A.; Nusinow, D.; Stanton, R.J.; Wang, E.C.Y.; Aicheler, R.; Murrell, I.; Wilkinson, G.W.G.; Lehner, P.J.; Gygi, S.P. Quantitative temporal viromics: An approach to investigate host-pathogen interaction. Cell, 2014, 157(6), 1460-1472.
[http://dx.doi.org/10.1016/j.cell.2014.04.028] [PMID: 24906157]
[60]
Masignani, V.; Comanducci, M.; Giuliani, M.M.; Bambini, S.; Adu-Bobie, J.; Aricò, B.; Brunelli, B.; Pieri, A.; Santini, L.; Savino, S.; Serru-to, D.; Litt, D.; Kroll, S.; Welsch, J.A.; Granoff, D.M.; Rappuoli, R.; Pizza, M. Vaccination against Neisseria meningitidis using three vari-ants of the lipoprotein GNA1870. J. Exp. Med., 2003, 197(6), 789-799.
[http://dx.doi.org/10.1084/jem.20021911] [PMID: 12642606]
[61]
Seib, K.L.; Brunelli, B.; Brogioni, B.; Palumbo, E.; Bambini, S.; Muzzi, A.; DiMarcello, F.; Marchi, S.; van der Ende, A.; Aricó, B.; Savino, S.; Scarselli, M.; Comanducci, M.; Rappuoli, R.; Giuliani, M.M.; Pizza, M. Characterization of diverse subvariants of the meningococcal factor H (fH) binding protein for their ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies. Infect. Immun., 2011, 79(2), 970-981.
[http://dx.doi.org/10.1128/IAI.00891-10] [PMID: 21149595]
[62]
Brehony, C.; Wilson, D.J.; Maiden, M.C.J. Variation of the factor H-binding protein of Neisseria meningitidis. Microbiology, 2009, 155(Pt 12), 4155-4169.
[http://dx.doi.org/10.1099/mic.0.027995-0] [PMID: 19729409]
[63]
Kodama, Y.; Kaminuma, E.; Saruhashi, S.; Ikeo, K.; Sugawara, H.; Tateno, Y.; Nakamura, Y. Biological databases at DNA Data Bank of Japan in the era of next-generation sequencing technologies. Adv. Exp. Med. Biol., 2010, 680, 125-135.
[http://dx.doi.org/10.1007/978-1-4419-5913-3_15] [PMID: 20865494]
[64]
Yu, C-S.; Chen, Y-C.; Lu, C-H.; Hwang, J-K. Prediction of protein subcellular localization. Proteins, 2006, 64(3), 643-651.
[http://dx.doi.org/10.1002/prot.21018] [PMID: 16752418]
[65]
Chou, K-C.; Shen, H-B. Large-scale predictions of gram-negative bacterial protein subcellular locations. J. Proteome Res., 2006, 5(12), 3420-3428.
[http://dx.doi.org/10.1021/pr060404b] [PMID: 17137343]
[66]
Shen, H.B.; Chou, K.C. Gpos-PLoc: An ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins. Protein Eng. Des. Sel., 2007, 20(1), 39-46.
[http://dx.doi.org/10.1093/protein/gzl053] [PMID: 17244638]
[67]
Chang, J-M.; Su, E.C-Y.; Lo, A.; Chiu, H-S.; Sung, T-Y.; Hsu, W-L. PSLDoc: Protein subcellular localization prediction based on gapped-dipeptides and probabilistic latent semantic analysis. Proteins, 2008, 72(2), 693-710.
[http://dx.doi.org/10.1002/prot.21944] [PMID: 18260102]
[68]
Su, E.C-Y.; Chiu, H-S.; Lo, A.; Hwang, J-K.; Sung, T-Y.; Hsu, W-L. Protein subcellular localization prediction based on compartment-specific features and structure conservation. BMC Bioinformatics, 2007, 8(1), 330.
[http://dx.doi.org/10.1186/1471-2105-8-330] [PMID: 17825110]
[69]
Matsuda, S.; Vert, J-P.; Saigo, H.; Ueda, N.; Toh, H.; Akutsu, T. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci., 2005, 14(11), 2804-2813.
[http://dx.doi.org/10.1110/ps.051597405] [PMID: 16251364]
[70]
Gardy, J.L.; Laird, M.R.; Chen, F.; Rey, S.; Walsh, C.J.; Ester, M.; Brinkman, F.S. PSORTb v.2.0: Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics, 2005, 21(5), 617-623.
[http://dx.doi.org/10.1093/bioinformatics/bti057] [PMID: 15501914]
[71]
Korber, B.; LaBute, M.; Yusim, K. Immunoinformatics comes of age. PLOS Comput. Biol., 2006, 2(6), e71.
[http://dx.doi.org/10.1371/journal.pcbi.0020071] [PMID: 16846250]
[72]
Sette, A.; Rappuoli, R. Reverse vaccinology: Developing vaccines in the era of genomics. Immunity, 2010, 33(4), 530-541.
[http://dx.doi.org/10.1016/j.immuni.2010.09.017] [PMID: 21029963]
[73]
Donati, C.; Rappuoli, R. Reverse vaccinology in the 21st century: Improvements over the original design. Ann. N. Y. Acad. Sci., 2013, 1285(1), 115-132.
[http://dx.doi.org/10.1111/nyas.12046] [PMID: 23527566]
[74]
He, Y.; Cao, Z.; De Groot, A.S.; Brusic, V.; Schönbach, C.; Petrovsky, N. Computational vaccinology and the ICoVax 2012 workshop. BMC Bioinformatics, 2013, 14(S4), I1.
[75]
Lefébure, T.; Stanhope, M.J. Evolution of the core and pan-genome of Streptococcus: Positive selection, recombination, and genome com-position. Genome Biol., 2007, 8(5), R71.
[http://dx.doi.org/10.1186/gb-2007-8-5-r71] [PMID: 17475002]
[76]
Zhao, Y.; Wu, J.; Yang, J.; Sun, S.; Xiao, J.; Yu, J. PGAP: Pan-genomes analysis pipeline. Bioinformatics, 2012, 28(3), 416-418.
[http://dx.doi.org/10.1093/bioinformatics/btr655] [PMID: 22130594]
[77]
Tettelin, H. The bacterial pan-genome and reverse vaccinology. Genome Dyn., 2009, 6, 35-47.
[http://dx.doi.org/10.1159/000235761] [PMID: 19696492]
[78]
Vivona, S.; Bernante, F.; Filippini, F. NERVE: New enhanced reverse vaccinology environment. BMC Biotechnol., 2006, 6(1), 35.
[http://dx.doi.org/10.1186/1472-6750-6-35] [PMID: 16848907]
[79]
Vivona, S.; Gardy, J.L.; Ramachandran, S.; Brinkman, F.S.L.; Raghava, G.P.S.; Flower, D.R.; Filippini, F. Computer-aided biotechnology: From immuno-informatics to reverse vaccinology. Trends Biotechnol., 2008, 26(4), 190-200.
[http://dx.doi.org/10.1016/j.tibtech.2007.12.006] [PMID: 18291542]
[80]
Pushkala, S.; Sudha Seshayyan, T. The identification of synthetic peptide vaccine candidate against SARS-CoV-2/COVID-19through re-verse vaccinology approach. Biomedicine (Taipei), 2021, 41(2), 375-381.
[81]
Terranova, L.; Principi, N.; Bianchini, S.; Di Pietro, G.; Umbrello, G.; Madini, B.; Esposito, S. Neisseria meningitidis serogroup B carriage by adolescents and young adults living in Milan, Italy: Prevalence of strains potentially covered by the presently available meningococcal B vaccines. Hum. Vaccin. Immunother., 2018, 14(5), 1070-1074.
[http://dx.doi.org/10.1080/21645515.2018.1450121] [PMID: 29584565]
[82]
Robleda-Castillo, R.; Ros-Lucas, A.; Martinez-Peinado, N.; Alonso-Padilla, J. An overview of current uses and future opportunities for computer-assisted design of vaccines for neglected tropical diseases. Adv. Appl. Bioinform. Chem., 2021, 14, 25-47.
[http://dx.doi.org/10.2147/AABC.S258759] [PMID: 33623396]
[83]
Bidmos, F.A.; Nadel, S.; Screaton, G.R.; Kroll, J.S.; Langford, P.R. Cross-reactive bactericidal antimeningococcal antibodies can be isolated from convalescing invasive meningococcal disease patients using reverse vaccinology 2.0. Front. Immunol., 2018, 16, 1621.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy