Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Mini-Review Article

Biomedical Applications of Polysaccharide-Based Aerogels: A Review

Author(s): Sreelakshmi K. Warrier, Shilpa Sarah Mathew, Laly A. Pothan and Koottumpurath Raghavan Ajish*

Volume 5, Issue 2, 2022

Published on: 01 November, 2022

Page: [87 - 94] Pages: 8

DOI: 10.2174/2452271605666220929151916

Price: $65

conference banner
Abstract

Aerogels, in recent times, have become materials of extensive research due to their fascinating capabilities in different fields. High porosity, large surface area, low thermal conductivity and low density make them significant in fields such as medicine, environmental engineering, food packaging, and so on. Biodegradability, low toxicity and biocompatibility, in addition to the aforementioned properties, offered by bio-based aerogels, especially polysaccharide based aerogels, give them a huge advantage over conventional inorganic ones. Polysaccharide based aerogels synthesised from starch, cellulose, pectin, alginate, chitosan, carrageenan and agarose precursors enable sustainable developments in the biomedical, cosmetic, electronic, construction and food industries. This review focuses on the biomedical applications of polysaccharide based aerogels, with special emphasis on its implications in drug delivery, tissue engineering, medical implantable devices, wound dressing, biosensors and bio-imaging. The future perspectives of these smart materials have also been subjected to discussion.

Keywords: Aerogels, polysaccharides, starch, cellulose, biomedical applications, chitosan, drug delivery

« Previous
Graphical Abstract

[1]
Aegerter MA, Leventis N, Koebel MM. Aerogels handbook. Springer Science & Business Media 2011; p. 932.
[http://dx.doi.org/10.1007/978-1-4419-7589-8]
[2]
Fricke J, Tillotson T. Aerogels: Production, characterization, and applications. Thin Solid Films 1997; 297(1-2): 212-23.
[http://dx.doi.org/10.1016/S0040-6090(96)09441-2]
[3]
Muhammad A, Lee D, Shin Y, Park J. Recent progress in polysaccharide aerogels: Their synthesis, application, and fu-ture Outlook. Polymers 2021; 13(8): 1347.
[http://dx.doi.org/10.3390/polym13081347] [PMID: 33924110]
[4]
Mikkonen KS, Parikka K, Ghafar A, Tenkanen M. Prospects of polysaccharide aerogels as modern advanced food materi-als. Trends Food Sci Technol 2013; 34(2): 124-36.
[http://dx.doi.org/10.1016/j.tifs.2013.10.003]
[5]
Mary SK, Koshy RR, Arunima R, Thomas S, Pothen LA. A review of recent advances in starch-based materials: Bionanocomposites, pH sensitive films, aerogels and carbon dots. In: Carbohydrate Polymer Technologies and Applications. 2022; p. 100190.
[6]
Syeda HI, Yap PS. A review on three-dimensional cellulose-based aerogels for the removal of heavy metals from water. Sci Total Environ 2022; 807(Pt 1): 150606.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150606] [PMID: 34592292]
[7]
Ru X, Zhao K, Hu Z, et al. Preparation of Bletilla striata poly-saccharide composite aerogel and its application in adsorption of dyes and oils from water. J Porous Mater 2022; 29(4): 991-1000.
[http://dx.doi.org/10.1007/s10934-022-01223-3]
[8]
Morcillo-Martín R, Espinosa E, Rabasco-Vílchez L, Sanchez LM, de Haro J, Rodríguez A. Cellulose nanofiber-Based Aer-ogels From Wheat Straw: Influence Of Surface Load And Lig-nin Content On Their Properties And Dye Removal Capacity. Biomolecules 2022; 12(2): 232.
[http://dx.doi.org/10.3390/biom12020232] [PMID: 35204733]
[9]
Fu Y, Guo Z. Natural polysaccharide-based aerogels and their applications in oil–water separations: A review. J Mater Chem A Mater Energy Sustain 2022; 10(15): 8129-58.
[http://dx.doi.org/10.1039/D2TA00708H]
[10]
Duman O, Diker CÖ, Uğurlu H, Tunç S. Highly hydrophobic and superoleophilic agar/PVA aerogels for selective removal of oily substances from water. Carbohydr Polym 2022; 286: 119275.
[http://dx.doi.org/10.1016/j.carbpol.2022.119275] [PMID: 35337501]
[11]
Wang Y, Su Y, Wang W, Fang Y, Riffat SB, Jiang F. The ad-vances of polysaccharide-based aerogels: Preparation and po-tential application. Carbohydr Polym 2019; 226: 115242.
[http://dx.doi.org/10.1016/j.carbpol.2019.115242] [PMID: 31582065]
[12]
Deng J, Zhu EQ, Xu GF, et al. Overview of renewable poly-saccharide-based composites for biodegradable food packag-ing applications. Green Chem 2022; 24(2): 480-92.
[http://dx.doi.org/10.1039/D1GC03898B]
[13]
Dhua S, Gupta AK, Mishra P. Aerogel: Functional emerging material for potential application in food: A review. In: Food Bioprocess Technol. Springer 2022; pp. 1-26.
[http://dx.doi.org/10.1007/s11947-022-02829-w]
[14]
Abdullah , Zou Y, Farooq S, et al. Bio-aerogels: Fabrication, properties and food applications. Crit Rev Food Sci Nutr 2022; 2: 1-23.
[PMID: 35156465]
[15]
Ishwarya SP, Nisha P. Advances and prospects in the food applications of pectin hydrogels. Crit Rev Food Sci Nutr 2022; 62(16): 4393-417.
[http://dx.doi.org/10.1080/10408398.2021.1875394] [PMID: 33511846]
[16]
Liu Y, Liu J, Song P. Recent advances in polysaccharide-based carbon aerogels for environmental remediation and sustainable energy. Sustain Mater Technol 2021; 27: e00240.
[http://dx.doi.org/10.1016/j.susmat.2020.e00240]
[17]
Zou F, Budtova T. Polysaccharide-based aerogels for thermal insulation and superinsulation: An overview. Carbohydr Polym 2021; 266: 118130.
[http://dx.doi.org/10.1016/j.carbpol.2021.118130] [PMID: 34044946]
[18]
Wu K, Wu H, Wang R, et al. The use of cellulose fiber from office waste paper to improve the thermal insulation-related property of konjac glucomannan/starch aerogel. Ind Crops Prod 2022; 177: 114424.
[http://dx.doi.org/10.1016/j.indcrop.2021.114424]
[19]
Radwan-Pragłowska J, Piątkowski M, Janus Ł, Bogdał D, Matysek D, Cablik V. Microwave-assisted synthesis and characterization of antioxidant chitosan-based aerogels for bi-omedical applications. IJPAC Int J Polym Anal Charact 2018; 23(8): 721-9.
[http://dx.doi.org/10.1080/1023666X.2018.1504471]
[20]
Misra SK, Pathak K. Microscale and nanoscale chitosan-based particles for biomedical use.In: Chitosan in Biomedical Applications. Elsevier 2022; pp. 37-73.
[http://dx.doi.org/10.1016/B978-0-12-821058-1.00010-1]
[21]
Groult S, Buwalda S, Budtova T. Tuning bio-aerogel proper-ties for controlling drug delivery. Part 2: Cellulose-pectin composite aerogels.In: Biomaterial Advances. Springer 2022; p. 212732.
[22]
Zamboulis A, Michailidou G, Koumentakou I, Bikiaris DN. Polysaccharide 3D printing for drug delivery applications. Pharmaceutics 2022; 14(1): 145.
[http://dx.doi.org/10.3390/pharmaceutics14010145] [PMID: 35057041]
[23]
Abdelhamid HN, Mathew AP. Cellulose–Metal Organic Frameworks (CelloMOFs) hybrid materials and their multi-faceted applications: A review. Coord Chem Rev 2022; 451: 214263.
[http://dx.doi.org/10.1016/j.ccr.2021.214263]
[24]
El-Naggar ME, Othman SI, Allam AA, Morsy OM. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int J Biol Macromol 2020; 145: 1115-28.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.037] [PMID: 31678101]
[25]
Behr M, Ganesan K. Improving polysaccharide-based chi-tin/chitosan-aerogel materials by learning from genetics and molecular biology. Materials 2022; 15(3): 1041.
[http://dx.doi.org/10.3390/ma15031041] [PMID: 35160985]
[26]
Auriemma G, Russo P, Del GP, García-González CA, Landín M, Aquino RP. Technologies and formulation design of poly-saccharide-based hydrogels for drug delivery. Molecules 2020; 25(14): 3156.
[http://dx.doi.org/10.3390/molecules25143156] [PMID: 32664256]
[27]
Valo H, Arola S, Laaksonen P, et al. Drug release from nano-particles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 2013; 50(1): 69-77.
[http://dx.doi.org/10.1016/j.ejps.2013.02.023] [PMID: 23500041]
[28]
Tkalec G, Knez Ž, Novak Z. Fast production of high-methoxyl pectin aerogels for enhancing the bioavailability of low-soluble drugs. J Supercrit Fluids 2015; 106: 16-22.
[http://dx.doi.org/10.1016/j.supflu.2015.06.009]
[29]
Horvat G, Pantić M, Knez Ž, Novak Z. Encapsulation and drug release of poorly water soluble nifedipine from bio-carriers. J Non-Cryst Solids 2018; 481: 486-93.
[http://dx.doi.org/10.1016/j.jnoncrysol.2017.11.037]
[30]
Bugnone CA, Ronchetti S, Manna L, Banchero M. An emulsi-fication/internal setting technique for the preparation of coated and uncoated hybrid silica/alginate aerogel beads for con-trolled drug delivery. J Supercrit Fluids 2018; 142: 1-9.
[http://dx.doi.org/10.1016/j.supflu.2018.07.007]
[31]
Chen Y, Qi Y, Yan X, et al. Green fabrication of porous chi-tosan/graphene oxide composite xerogels for drug delivery. J Appl Polym Sci 2014; 131(6): 40006.
[http://dx.doi.org/10.1002/app.40006]
[32]
Sampath UGTM, Ching YC, Chuah CH, et al. Influence of a nonionic surfactant on curcumin delivery of nanocellulose re-inforced chitosan hydrogel. Int J Biol Macromol 2018; 118(Pt A): 1055-64.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.147] [PMID: 30001596]
[33]
Ching YC, Gunathilake TMSU, Chuah CH, Ching KY, Singh R, Liou NS. Curcumin/Tween 20-incorporated cellulose na-noparticles with enhanced curcumin solubility for nano-drug delivery: Characterization and in vitro evaluation. Cellulose 2019; 26(9): 5467-81.
[http://dx.doi.org/10.1007/s10570-019-02445-6]
[34]
Wang R, Shou D, Lv O, Kong Y, Deng L, Shen J. pH-controlled drug delivery with hybrid aerogel of chitosan, car-boxymethyl cellulose and graphene oxide as the carrier. Int J Biol Macromol 2017; 103: 248-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.064] [PMID: 28526342]
[35]
Radwan-Pragłowska J, Piątkowski M, Janus Ł, Bogdał D, Matysek D. Biodegradable, pH-responsive chitosan aerogels for biomedical applications. RSC Advances 2017; 7(52): 32960-5.
[http://dx.doi.org/10.1039/C6RA27474A]
[36]
Liu Z, Zhang S, He B, Wang S, Kong F. Synthesis of cellulose aerogels as promising carriers for drug delivery: A review. Cellulose 2021; 28(5): 2697-714.
[http://dx.doi.org/10.1007/s10570-021-03734-9]
[37]
Valente SA, Silva LM, Lopes GR, Sarmento B, Coimbra MA, Passos CP. Polysaccharide-based formulations as potential carriers for pulmonary delivery – A review of their properties and fates. Carbohydr Polym 2022; 277: 118784.
[http://dx.doi.org/10.1016/j.carbpol.2021.118784] [PMID: 34893219]
[38]
Liu Z, Zhang S, Gao C, Meng X, Wang S, Kong F. Tempera-ture/pH-responsive carboxymethyl cellulose/poly (N-isopropyl acrylamide) interpenetrating polymer network aero-gels for drug delivery systems. Polymers 2022; 14(8): 1578.
[http://dx.doi.org/10.3390/polym14081578] [PMID: 35458328]
[39]
Ikada Y. Challenges in tissue engineering. J R Soc Interface 2006; 3(10): 589-601.
[http://dx.doi.org/10.1098/rsif.2006.0124] [PMID: 16971328]
[40]
García-González CA, Budtova T, Durães L, et al. An opinion paper on aerogels for biomedical and environmental applica-tions. Molecules 2019; 24(9): 1815.
[http://dx.doi.org/10.3390/molecules24091815] [PMID: 31083427]
[41]
Orive G, Carcaboso AM, Hernández RM, Gascón AR, Pedraz JL. Biocompatibility evaluation of different alginates and algi-nate-based microcapsules. Biomacromolecules 2005; 6(2): 927-31.
[http://dx.doi.org/10.1021/bm049380x] [PMID: 15762661]
[42]
Cai H, Sharma S, Liu W, et al. Aerogel microspheres from natural cellulose nanofibrils and their application as cell cul-ture scaffold. Biomacromolecules 2014; 15(7): 2540-7.
[http://dx.doi.org/10.1021/bm5003976] [PMID: 24894125]
[43]
Franco P, Pessolano E, Belvedere R, Petrella A, De Marco I. Supercritical impregnation of mesoglycan into calcium algi-nate aerogel for wound healing. J Supercrit Fluids 2020; 157: 104711.
[http://dx.doi.org/10.1016/j.supflu.2019.104711]
[44]
Valchuk NA, Brovko OS, Palamarchuk IA, et al. Preparation of aerogel materials based on alginate–chitosan interpolymer complex using supercritical fluids. Russ J Phys Chem B Focus Phys 2019; 13(7): 1121-4.
[http://dx.doi.org/10.1134/S1990793119070224]
[45]
Martins M, Barros AA, Quraishi S, et al. Preparation of macroporous alginate-based aerogels for biomedical applica-tions. J Supercrit Fluids 2015; 106: 152-9.
[http://dx.doi.org/10.1016/j.supflu.2015.05.010]
[46]
Yılmaz P. öztürk Er E, Bakırdere S, ülgen K, özbek B. Appli-cation of supercritical gel drying method on fabrication of mechanically improved and biologically safe three-component scaffold composed of graphene ox-ide/chitosan/hydroxyapatite and characterization studies. J Mater Res Technol 2019; 8(6): 5201-16.
[http://dx.doi.org/10.1016/j.jmrt.2019.08.043]
[47]
Baldino L, Cardea S, De Marco I, Reverchon E. Chitosan scaffolds formation by a supercritical freeze extraction pro-cess. J Supercrit Fluids 2014; 90: 27-34.
[http://dx.doi.org/10.1016/j.supflu.2014.03.002]
[48]
Liu J, Cheng F, Grénman H, et al. Development of nanocellu-lose scaffolds with tunable structures to support 3D cell cul-ture. Carbohydr Polym 2016; 148: 259-71.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.064] [PMID: 27185139]
[49]
Pircher N, Fischhuber D, Carbajal L, et al. Preparation and reinforcement of dual‐porous biocompatible cellulose scaf-folds for tissue engineering. Macromol Mater Eng 2015; 300(9): 911-24.
[http://dx.doi.org/10.1002/mame.201500048] [PMID: 26941565]
[50]
Karimzadeh Z, Namazi H. Nontoxic double-network polymer-ic hybrid aerogel functionalized with reduced graphene oxide: Preparation, characterization, and evaluation as drug delivery agent. J Polym Res 2022; 29(2): 37.
[http://dx.doi.org/10.1007/s10965-022-02902-0]
[51]
Tomé LIN, Reis MS, de Sousa HC, Braga MEM. Chitosan-xanthan gum PEC-based aerogels: A chemically stable PEC in scCO2. Mater Chem Phys 2022; 287: 126294.
[http://dx.doi.org/10.1016/j.matchemphys.2022.126294]
[52]
López-Iglesias C, Barros J, Ardao I, et al. Vancomycin-loaded chitosan aerogel particles for chronic wound applications. Carbohydr Polym 2019; 204: 223-31.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.012] [PMID: 30366534]
[53]
Lodhi G. Chitooligosaccharide and its derivatives: Preparation and biological applications. BioMed Res Int 2014; 2014: 1-14.
[54]
Duong HM, Lim ZK, Nguyen TX, Gu B, Penefather MP, Phan-Thien N. Compressed hybrid cotton aerogels for stop-ping liquid leakage. Colloids Surf A Physicochem Eng Asp 2018; 537: 502-7.
[http://dx.doi.org/10.1016/j.colsurfa.2017.10.067]
[55]
Wan C, Li J. Cellulose aerogels functionalized with polypyr-role and silver nanoparticles: In-situ synthesis, characteriza-tion and antibacterial activity. Carbohydr Polym 2016; 146: 362-7.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.081] [PMID: 27112885]
[56]
Sun F, Nordli HR, Pukstad B, Kristofer GE, Chinga-Carrasco G. Mechanical characteristics of nanocellulose-PEG bionano-composite wound dressings in wet conditions. J Mech Behav Biomed Mater 2017; 69: 377-84.
[http://dx.doi.org/10.1016/j.jmbbm.2017.01.049] [PMID: 28171794]
[57]
Liu J, Chinga-Carrasco G, Cheng F, et al. Hemicellulose-reinforced nanocellulose hydrogels for wound healing appli-cation. Cellulose 2016; 23(5): 3129-43.
[http://dx.doi.org/10.1007/s10570-016-1038-3]
[58]
Lu T, Li Q, Chen W, Yu H. Composite aerogels based on dialdehyde nanocellulose and collagen for potential applica-tions as wound dressing and tissue engineering scaffold. Compos Sci Technol 2014; 94: 132-8.
[http://dx.doi.org/10.1016/j.compscitech.2014.01.020]
[59]
Jiji S, Udhayakumar S, Rose C, Muralidharan C, Kadirvelu K. Thymol enriched bacterial cellulose hydrogel as effective ma-terial for third degree burn wound repair. Int J Biol Macromol 2019; 122: 452-60.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.192] [PMID: 30385344]
[60]
Loh EYX, Fauzi MB, Ng MH, Ng PY, Ng SF, Mohd Amin MCI. Insight into delivery of dermal fibroblast by non-biodegradable bacterial nanocellulose composite hydrogel on wound healing. Int J Biol Macromol 2020; 159: 497-509.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.011] [PMID: 32387606]
[61]
Guo N, Xia Y, Zeng W, et al. Alginate-based aerogels as wound dressings for efficient bacterial capture and enhanced antibacterial photodynamic therapy. Drug Deliv 2022; 29(1): 1086-99.
[http://dx.doi.org/10.1080/10717544.2022.2058650] [PMID: 35373683]
[62]
Rostamitabar M, Ghahramani A, Seide G, Jockenhoevel S, Ghazanfari S. Drug loaded cellulose–chitosan aerogel micro-fibers for wound dressing applications. Cellulose 2022; 29(11): 6261-81.
[http://dx.doi.org/10.1007/s10570-022-04630-6]
[63]
Fontenot KR, Edwards JV, Haldane D, et al. Struc-ture/function relations of chronic wound dressings and emerging concepts on the interface of nanocellulosic sensors.In: Lignocellulosics. Elsevier 2020; pp. 249-78.
[http://dx.doi.org/10.1016/B978-0-12-804077-5.00014-2]
[64]
Tummalapalli M, Singh S, Sanwaria S, Gurave PM. Design and development of advanced glucose biosensors via tuned interactions between marine polysaccharides and diagnostic elements–A survey. In: Sensors International. 2022; p. 100170.
[65]
Thangaraj R, Nellaiappan S, Sudhakaran R, Kumar AS. A flow injection analysis coupled dual electrochemical detector for selective and simultaneous detection of guanine and adenine. Electrochim Acta 2014; 123: 485-93.
[http://dx.doi.org/10.1016/j.electacta.2014.01.066]
[66]
Zhang L, Zhang J. Multiporous molybdenum carbide nano-sphere as a new charming electrode material for highly sensi-tive simultaneous detection of guanine and adenine. Biosens Bioelectron 2018; 110: 218-24.
[http://dx.doi.org/10.1016/j.bios.2018.03.064] [PMID: 29625329]
[67]
Sonner Z, Wilder E, Heikenfeld J, et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 2015; 9(3): 031301.
[http://dx.doi.org/10.1063/1.4921039] [PMID: 26045728]
[68]
Gomes NO, Carrilho E, Machado SAS, Sgobbi LF. Bacterial cellulose-based electrochemical sensing platform: A smart material for miniaturized biosensors. Electrochim Acta 2020; 349: 136341.
[http://dx.doi.org/10.1016/j.electacta.2020.136341]
[69]
Abdi MM, Razalli RL, Tahir PM, Chaibakhsh N, Hassani M, Mir M. Optimized fabrication of newly cholesterol biosensor based on nanocellulose. Int J Biol Macromol 2019; 126: 1213-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.001] [PMID: 30611809]
[70]
Silva RR, Raymundo-Pereira PA, Campos AM, et al. Microbi-al nanocellulose adherent to human skin used in electrochem-ical sensors to detect metal ions and biomarkers in sweat. Talanta 2020; 218: 121153.
[http://dx.doi.org/10.1016/j.talanta.2020.121153] [PMID: 32797908]
[71]
Zhao VXT, Wong TI, Zheng XT, Tan YN, Zhou X. Colori-metric biosensors for point-of-care virus detections. Mater Sci Energy Technol 2020; 3: 237-49.
[http://dx.doi.org/10.1016/j.mset.2019.10.002] [PMID: 33604529]
[72]
Milindanuth P, Pisitsak P. A novel colorimetric sensor based on rhodamine-B derivative and bacterial cellulose for the de-tection of Cu(II) ions in water. Mater Chem Phys 2018; 216: 325-31.
[http://dx.doi.org/10.1016/j.matchemphys.2018.06.003]
[73]
Guo W, He H, Zhu H, et al. Preparation and properties of a biomass cellulose-based colorimetric sensor for Ag+ and Cu2+. Ind Crops Prod 2019; 137: 410-8.
[http://dx.doi.org/10.1016/j.indcrop.2019.05.044]
[74]
Fontenot KR, Edwards JV, Haldane D, et al. Human neutro-phil elastase detection with fluorescent peptide sensors conju-gated to cellulosic and nanocellulosic materials: Part II, struc-ture/function analysis. Cellulose 2016; 23(2): 1297-309.
[http://dx.doi.org/10.1007/s10570-016-0873-6]
[75]
Ruiz-Palomero C, Benítez-Martínez S, Soriano ML, Valcárcel M. Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase. Anal Chim Acta 2017; 974: 93-9.
[http://dx.doi.org/10.1016/j.aca.2017.04.018] [PMID: 28535886]
[76]
Ruiz-Palomero C, Soriano ML, Benítez-Martínez S, Valcárcel M. Photoluminescent sensing hydrogel platform based on the combination of nanocellulose and S,N-codoped graphene quantum dots. Sens Actuators B Chem 2017; 245: 946-53.
[http://dx.doi.org/10.1016/j.snb.2017.02.006]
[77]
Basarir F, Kaschuk JJ, Vapaavuori J. Perspective about cellu-lose-based pressure and strain sensors for human motion de-tection. Biosensors 2022; 12(4): 187.
[http://dx.doi.org/10.3390/bios12040187] [PMID: 35448247]
[78]
Sabri F, Sebelik ME, Meacham R, Boughter JD Jr, Challis MJ, Leventis N. In vivo ultrasonic detection of polyurea cross-linked silica aerogel implants. PLoS One 2013; 8(6): e66348.
[http://dx.doi.org/10.1371/journal.pone.0066348] [PMID: 23799093]
[79]
Chauhan P, Hadad C, López AH, et al. A nanocellulose–dye conjugate for multi-format optical pH-sensing. Chem Commun 2014; 50(67): 9493-6.
[http://dx.doi.org/10.1039/C4CC02983F] [PMID: 25009835]
[80]
Grate JW, Mo KF, Shin Y, et al. Alexa fluor-labeled fluores-cent cellulose nanocrystals for bioimaging solid cellulose in spatially structured microenvironments. Bioconjug Chem 2015; 26(3): 593-601.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00048] [PMID: 25730280]
[81]
Dong S, Roman M. Fluorescently labeled cellulose nanocrys-tals for bioimaging applications. J Am Chem Soc 2007; 129(45): 13810-1.
[http://dx.doi.org/10.1021/ja076196l] [PMID: 17949004]
[82]
Guo J, Liu D, Filpponen I, et al. Photoluminescent hybrids of cellulose nanocrystals and carbon quantum dots as cytocom-patible probes for in vitro bioimaging. Biomacromolecules 2017; 18(7): 2045-55.
[http://dx.doi.org/10.1021/acs.biomac.7b00306] [PMID: 28530806]
[83]
O’Donnell N, Okkelman IA, Timashev P, Gromovykh TI, Papkovsky DB, Dmitriev RI. Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering. Acta Biomater 2018; 80: 85-96.
[http://dx.doi.org/10.1016/j.actbio.2018.09.034] [PMID: 30261339]
[84]
Zhang Z, Liu G, Li X, Zhang S, Lü X, Wang Y. Design and synthesis of fluorescent nanocelluloses for sensing and bi-oimaging applications. ChemPlusChem 2020; 85(3): 487-502.
[http://dx.doi.org/10.1002/cplu.201900746] [PMID: 32187845]
[85]
Colombo L, Zoia L, Violatto MB, et al. Organ distribution and bone tropism of cellulose nanocrystals in living mice. Biomacromolecules 2015; 16(9): 2862-71.
[http://dx.doi.org/10.1021/acs.biomac.5b00805] [PMID: 26226200]
[86]
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaf-folds and osteogenesis. Biomaterials 2005; 26(27): 5474-91.
[http://dx.doi.org/10.1016/j.biomaterials.2005.02.002] [PMID: 15860204]
[87]
Thomas S, Pothan LA, Mavelil-Sam R. Biobased aerogels: Polysaccharide and protein-based materials. In: Green Chemistry Series. 2018; pp. 1-8.
[http://dx.doi.org/10.1039/9781782629979]
[88]
Maleki H, Durães L, García-González CA, Del GP, Portugal A, Mahmoudi M. Synthesis and biomedical applications of aero-gels: Possibilities and challenges. Adv Colloid Interface Sci 2016; 236: 1-27.
[http://dx.doi.org/10.1016/j.cis.2016.05.011] [PMID: 27321857]
[89]
Zheng L, Zhang S, Ying Z, Liu J, Zhou Y, Chen F. Engineer-ing of aerogel-based biomaterials for biomedical applications. Int J Nanomedicine 2020; 15: 2363-78.
[http://dx.doi.org/10.2147/IJN.S238005] [PMID: 32308388]
[90]
Alvarado-Hidalgo F, Ramírez-Sánchez K, Starbird-Perez R. Smart porous multi-stimulus polysaccharide-based biomateri-als for tissue engineering. Molecules 2020; 25(22): 5286.
[http://dx.doi.org/10.3390/molecules25225286] [PMID: 33202707]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy