Abstract
Among various emerging organofluorine molecules, gem-difluorovinyl sulfonates are attractive building blocks and less used in organic reactions. This review article is concerned with recent advances in organic reactions using gem-difluorovinyl sulfonates in recent years. We discussed the reactions of gem-difluorovinyl sulfonates with aldehydes, amines, imines, amides, boronic acids, aryl halides, etc. or addition, reduction, substitution and intramolecular 1,3-sulfonyl migration of gemdifluorovinyl sulfonates in nine approaches. The synthetic strategies described in this review provided diversely substituted fluorinated molecules.
Keywords: gem-difluorovinyl sulfonates, 2, 2-difluorovinyl tosylate, boronic acids, amines, indoles, alkynes.
Graphical Abstract
[http://dx.doi.org/10.1039/C6CS00351F] [PMID: 27499359];
b) Zhang, C. Recent advances in trifluoromethylation of organic compounds using Umemoto’s reagents. Org. Biomol. Chem., 2014, 12(34), 6580-6589.
[http://dx.doi.org/10.1039/C4OB00671B] [PMID: 25011917];
c) Song, H.X.; Han, Q.Y.; Zhao, C.L.; Zhang, C.P. Fluoroalkylation reactions in aqueous media: A review. Green Chem., 2018, 20(8), 1662-1731. http://dx.doi.org/10.1039/C8GC00078F;
d) Zhang, C. Application of langlois’ reagent in trifluoromethylation reactions. Adv. Synth. Catal., 2014, 356(14-15), 2895-2906. http://dx.doi.org/10.1002/adsc.201400370;
e) Koike, T.; Akita, M. Fine design of photoredox systems for catalytic fluoromethylation of carbon-carbon multiple bonds. Acc. Chem. Res., 2016, 49(9), 1937-1945.
[http://dx.doi.org/10.1021/acs.accounts.6b00268] [PMID: 27564676];
f) Zhang, C. Recent developments in trifluoromethylation or difluoroalkylation by use of difluorinated phosphonium salts. Adv. Synth. Catal., 2017, 359(3), 372-383. http://dx.doi.org/10.1002/adsc.201601011;
g) Gui, H.Z.; Wei, Y.; Shi, M. Recent advances in the construction of trifluoromethyl-containing spirooxindoles through cycloaddition reactions. Chem. Asian J., 2020, 15(8), 1225-1233.
[http://dx.doi.org/10.1002/asia.202000054] [PMID: 32103615];
h) Koike, T.; Akita, M. Recent progress in photochemical radical di- and mono-fluoromethylation. Org. Biomol. Chem., 2019, 17(22), 5413-5419.
[http://dx.doi.org/10.1039/C9OB00734B] [PMID: 31086872];
i) Zhang, C. Recent progress toward trifluoromethylselenolation reactions. J. Chin. Chem. Soc. (Taipei), 2017, 64(5), 457-463.
[http://dx.doi.org/10.1002/jccs.201600861];
j) Ni, C.; Hu, M.; Hu, J. Good partnership between sulfur and fluorine: Sulfur-based fluorination and fluoroalkylation reagents for organic synthesis Chem. Rev., 2015, 115(2), 765-825.
[http://dx.doi.org/10.1021/cr5002386] [PMID: 25144886];
k) Zhang, C.; Liu, Y. Advances in the synthesis of α,α-difluoro-γ-lactams. J. Heterocycl. Chem., 2022, 59, 809-819.
[http://dx.doi.org/10.1002/jhet.4432];
l) Zhang, C. Synthesis of trifluoromethyl or trifluoroacetyl substituted heterocyclic compounds from trifluoromethyl‐α,β‐ynones. J. Chin. Chem. Soc. (Taipei), 2022, 69(4), 594-603.
[http://dx.doi.org/10.1002/jccs.202100544];
m) Zhang, C. SApplication of aromatic substituted 2,2,2-trifluoro diazoethanes in organic reactions. Curr. Org. Chem., 2022, 26(7), 639-650.
[http://dx.doi.org/10.2174/1385272826666220516113815]
[http://dx.doi.org/10.1126/science.1131943] [PMID: 17901324];
b) Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev., 2014, 114(4), 2432-2506.
[http://dx.doi.org/10.1021/cr4002879] [PMID: 24299176];
c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II–III clinical trials of major pharmaceutical companies: New structural trends and therapeutic areas. Chem. Rev., 2016, 116(2), 422-518.
[http://dx.doi.org/10.1021/acs.chemrev.5b00392] [PMID: 26756377];
d) Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev., 2008, 37(2), 320-330.
[http://dx.doi.org/10.1039/B610213C] [PMID: 18197348]
[http://dx.doi.org/10.1021/acs.orglett.0c00405] [PMID: 32105085]
[http://dx.doi.org/10.1021/acs.joc.8b02207] [PMID: 30379072];
b) Jiang, L.; Yan, Q.; Wang, R.; Ding, T.; Yi, W.; Zhang, W. Trifluoromethanesulfinyl chloride for electrophilic trifluoromethythiolation and bifunctional chlorotrifluoromethythiolation. Chem. Eur. J., 2018, 24(70), 18749-18756.
[http://dx.doi.org/10.1002/chem.201804027] [PMID: 30240046];
c) Yan, J.; Jiang, M.; Song, L.P.; Liu, J.T. Oxytrifluoromethylthiolation of 2,3-allenoates with trifluoromethanesulfinyl chloride: A synthetic approach to trifluoromethylthiolated 4-oxo-2(E)-alkenoates and furans. Adv. Synth. Catal., 2020, 362(14), 2882-2887.
[http://dx.doi.org/10.1002/adsc.202000304]
[http://dx.doi.org/10.1021/acs.joc.9b01901] [PMID: 31584815];
b) Xu, C.; Song, X.; Guo, J.; Chen, S.; Gao, J.; Jiang, J.; Gao, F.; Li, Y.; Wang, M. Synthesis of chloro(phenyl)trifluoromethyliodane and catalyst-free electrophilic trifluoromethylations. Org. Lett., 2018, 20(13), 3933-3937.
[http://dx.doi.org/10.1021/acs.orglett.8b01510] [PMID: 29923412];
c) Guo, J.; Xu, C.; Liu, X.; Wang, M. Aryltrifluoromethylative cyclization of unactivated alkenes by the use of PhICF3Cl under catalyst-free conditions. Org. Biomol. Chem., 2019, 17(8), 2162-2168.
[http://dx.doi.org/10.1039/C8OB03189D] [PMID: 30720035];
d) Guo, J.; Xu, C.; Wang, L.; Huang, W.; Wang, M. Catalyst-free and selective trifluoromethylative cyclization of acryloanilides using PhICF3Cl. Org. Biomol. Chem., 2019, 17(18), 4593-4599.
[http://dx.doi.org/10.1039/C9OB00601J] [PMID: 31011720]
b) Yamada, S.; Shimoji, K.; Takahashi, T.; Konno, T.; Ishihara, T. An effective preparation of sulfonyl- or sulfinyl-substituted fluorinated alkenes and their stereoselective addition-elimination reactions with organocuprates. Chem. Asian J., 2010, 5(8), 1846-1853.
[http://dx.doi.org/10.1002/asia.201000022] [PMID: 20540067];
c) Jiang, L.F.; Ren, B.T.; Li, B.; Zhang, G.Y.; Peng, Y.; Guan, Z.Y.; Deng, Q.H. Nucleophilic substitution of gem-difluoroalkenes with TMSNu promoted by catalytic Amounts of Cs2CO3. J. Org. Chem., 2019, 84(11), 6557-6564.
[http://dx.doi.org/10.1021/acs.joc.9b00999] [PMID: 31090405]
[http://dx.doi.org/10.1039/C9CC07677H] [PMID: 31675019];
b) Li, J.; Xi, W.; Zhong, R.; Yang, J.; Wang, L.; Ding, H.; Wang, Z. HFIP-catalyzed direct dehydroxydifluoroalkylation of benzylic and allylic alcohols with difluoroenoxysilanes. Chem. Commun. (Camb.), 2021, 57(8), 1050-1053.
[http://dx.doi.org/10.1039/D0CC06980A] [PMID: 33409524];
c) Meyer, D.N.; Cortés González, M.A.; Jiang, X.; Johansson-Holm, L.; Pourghasemi Lati, M.; Elgland, M.; Nordeman, P.; Antoni, G.; Szabó, K.J. Base-catalysed 18 F-labelling of trifluoromethyl ketones. Application to the synthesis of 18 F-labelled neutrophil elastase inhibitors. Chem. Commun. (Camb.), 2021, 57(68), 8476-8479.
[http://dx.doi.org/10.1039/D1CC03624F] [PMID: 34346419];
d) Hao, Y.J.; Gong, Y.; Zhou, Y.; Zhou, J.; Yu, J.S. Construction of β-quaternary α;α;-difluoroketones via catalytic nucleophilic substitution of tertiary alcohols with difluoroenoxysilanes. Org. Lett., 2020, 22, 8516-8521.
[http://dx.doi.org/10.1021/acs.orglett.0c03123] [PMID: 33048558];
e) Lin, X.; Wang, L.; Zhong, J. Enantioselective synthesis of difluoroalkylated isoindolinones via chiral spirocyclic phosphoric acid catalyzed mannich-type reaction. Synlett, 2021, 32(4), 417-422. http://dx.doi.org/10.1055/a-1274-2959;
f) He, J.X.; Zhang, Z.H.; Mu, B.S.; Cui, X.Y.; Zhou, J.; Yu, J.S. Catalyst-free and solvent-controlled divergent synthesis of difluoromethylene-containing S-seterocycles. J. Org. Chem., 2021, 86(13), 9206-9217.
[http://dx.doi.org/10.1021/acs.joc.1c00754] [PMID: 34126743];
g) Hu, X.S.; He, J.X.; Dong, S.Z.; Zhao, Q.H.; Yu, J.S.; Zhou, J. Regioselective Markovnikov hydrodifluoroalkylation of alkenes using difluoroenoxysilanes. Nat. Commun., 2020, 11(1), 5500.
[http://dx.doi.org/10.1038/s41467-020-19387-4] [PMID: 33127898];
h) Pan, B.W.; Shi, Y.; Tian, Y.P.; Zhou, Y.; Zhou, J.; Yu, J.S. Synthesis of multifunctional α,α;-difluoroketones through allylic alkylation of difluoroenoxysilanes with MBH carbonates. Chem. Asian J., 2020, 15, 4028-4032.
[http://dx.doi.org/10.1002/asia.202001145] [PMID: 33084191];
i) Yu, J.S.; Liu, Y.L.; Tang, J.; Wang, X.; Zhou, J. Highly efficient “on water” catalyst-free nucleophilic addition reactions using difluoroenoxysilanes: Dramatic fluorine effects. Angew. Chem. Int. Ed., 2014, 53(36), 9512-9516.
[http://dx.doi.org/10.1002/anie.201404432] [PMID: 25044065];
j) Yu, J.S.; Liao, F.M.; Gao, W.M.; Liao, K.; Zuo, R.L.; Zhou, J. Michael addition catalyzed by chiral secondary amine phosphoramide using fluorinated silyl enol ethers: Formation of quaternary carbon stereocenters. Angew. Chem. Int. Ed., 2015, 54(25), 7381-7385.
[http://dx.doi.org/10.1002/anie.201501747] [PMID: 25950511]
[http://dx.doi.org/10.1002/jlcr.3012] [PMID: 24285518]
[http://dx.doi.org/10.3762/bjoc.9.286] [PMID: 24367415]
[http://dx.doi.org/10.1002/cjoc.201600060]
[http://dx.doi.org/10.1021/acs.orglett.8b00721] [PMID: 29652153]
[http://dx.doi.org/10.1039/C8OB00541A] [PMID: 29691542]
[http://dx.doi.org/10.1021/acs.joc.5b00853] [PMID: 26057617]
[http://dx.doi.org/10.1021/jacs.7b00118] [PMID: 28177234]
[http://dx.doi.org/10.1039/C7CC02105D] [PMID: 28487918]
[http://dx.doi.org/10.1002/cjoc.201900197]
[http://dx.doi.org/10.1021/jo7027097] [PMID: 18380442]
[http://dx.doi.org/10.1016/j.jfluchem.2016.08.014]
[http://dx.doi.org/10.1039/C5CC08394J] [PMID: 26611839]
[http://dx.doi.org/10.1016/j.jfluchem.2021.109784]
[http://dx.doi.org/10.1021/acs.joc.0c02474] [PMID: 33400531]
[http://dx.doi.org/10.1016/S0040-4039(96)02035-7]
[http://dx.doi.org/10.1016/S0040-4039(99)01491-4]
[http://dx.doi.org/10.1021/ol1024037] [PMID: 21043522]
[http://dx.doi.org/10.1021/acscatal.0c03993]
[http://dx.doi.org/10.1016/j.jfluchem.2014.07.007]
[http://dx.doi.org/10.5012/bkcs.2012.33.2.379]
[http://dx.doi.org/10.1016/j.tetlet.2012.01.127]
[http://dx.doi.org/10.1016/j.jfluchem.2015.07.010]
[http://dx.doi.org/10.1016/j.tetlet.2013.12.071]
[http://dx.doi.org/10.1021/acs.orglett.6b02919] [PMID: 27749077]
[http://dx.doi.org/10.1039/D1QO01406D]
[http://dx.doi.org/10.1039/C7CC04842D] [PMID: 28795700]
[http://dx.doi.org/10.1039/C8CC02183J] [PMID: 29770372]
[http://dx.doi.org/10.1021/acs.joc.9b00957] [PMID: 31081322]
[http://dx.doi.org/10.1039/c2ob25802a] [PMID: 22833145]
[http://dx.doi.org/10.1021/acschemneuro.0c00737] [PMID: 33491441]
[http://dx.doi.org/10.1016/j.jfluchem.2004.05.014]
[http://dx.doi.org/10.1039/C7CC06048C] [PMID: 28872180]
[http://dx.doi.org/10.1016/j.tet.2004.04.012]
[http://dx.doi.org/10.1021/acs.orglett.0c03492] [PMID: 33205980]
[http://dx.doi.org/10.1021/acscatal.1c02952]