Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Calixarene Derivatives: A Mini-Review on their Synthesis and Demands in Nanosensors and Biomedical Fields

Author(s): Nur Farah Nadia Abd Karim, Faridah Lisa Supian*, Mazlina Musa, Shahrul Kadri Ayop, Mohd Syahriman Mohd Azmi, Muhammad Dain Yazid and Wong Yeong Yi

Volume 23, Issue 6, 2023

Published on: 21 November, 2022

Page: [734 - 745] Pages: 12

DOI: 10.2174/1389557522666220928120727

Price: $65

Abstract

Nanotechnology has been widely studied in biomedical applications in the last decade. The revolution in nanotechnology triggers the fabrication of nanomaterials with novel properties and functionalities, making the research in nanosensors and biomedical rapidly expanding. Nanosensor application has improved the sensitivity by enhancing their catalytic activity, conductivity, and biocompatibility. Calixarene is excellent as a sensing element used as a sensor due to its unique host-guest properties. Three major types of calixarene which are extensively studied are calix[4]arene, calix[6]arene, and calix[8]arene. These organic nanomaterials resemble vase-like supramolecular structures and exhibit valuable properties. Calixarene's basic molecular design is the cyclic phenol tetramer with four aryl groups, perfect for molecular recognition such as cations, transition metal ions, and heavy metals. Calixarenes may form stable complexes with biomolecules in developing biosensors for protein, enzyme, and antibody sensing. Calixarene's lower rim can be modified for optimum molecular interaction with guest molecules such as anions, cations, and neutral molecules. The lower ring has welldefined conformation properties and cavities, which allow trapping guest drugs such as imatinib, paclitaxel, and temozolomide. Calixarene also possesses good biocompatibility and innocuousness and gained attention for cancer treatment due to the response to multiple stimuli, stability, avoiding non-specific cell uptake, and reaching the target for treatment effect. This review paper focuses on the synthesis and characteristics of calixarene applied in nanosensors as an ideal complex agent in drug transportation and controlled drug released for biomedical research.

Keywords: Biomedical, calixarenes, nanomaterial, nanosensors, nanotechnology, organic nanomaterial, synthesis.

Graphical Abstract

[1]
Boisseau, P.; Loubaton, B. Nanomedicine, nanotechnology in medicine. C. R. Phys., 2011, 12(7), 620-636.
[http://dx.doi.org/10.1016/j.crhy.2011.06.001]
[2]
Raffa, V.; Vittorio, O.; Riggio, C.; Cuschieri, A. Progress in nanotechnology for healthcare. Minim. Invasive Ther. Allied Technol., 2010, 19(3), 127-135.
[http://dx.doi.org/10.3109/13645706.2010.481095] [PMID: 20497066]
[3]
Genwa, M.; Kumar, P. Implications of nanotechnology in healthcare. Nanosci. Nanotechnol. Asia, 2018, 9(1), 44-57.
[http://dx.doi.org/10.2174/2210681208666180110153435]
[4]
Chithrakumar, T.; Thangamani, M. Exploring nanotechnology for diagnostic, therapy and medicine. IOP Conf. Series Mater. Sci. Eng., 2021, 1091(1)012062
[http://dx.doi.org/10.1088/1757-899X/1091/1/012062]
[5]
Lu, W.; Lieber, C.M. Nanoelectronics from the bottom up. Nat. Mater., 2007, 6(11), 841-850.
[http://dx.doi.org/10.1038/nmat2028] [PMID: 17972939]
[6]
Lu, J.; Chen, Z.; Ma, Z.; Pan, F.; Curtiss, L.A.; Amine, K. The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol., 2016, 11(12), 1031-1038.
[http://dx.doi.org/10.1038/nnano.2016.207] [PMID: 27920438]
[7]
Pacheco-Torgal, F.; Jalali, S. Nanotechnology: Advantages and drawbacks in the field of construction and building materials. Constr. Build. Mater., 2011, 25(2), 582-590.
[http://dx.doi.org/10.1016/j.conbuildmat.2010.07.009]
[8]
Šesták, J.; Moravcová, D.; Kahle, V. Instrument platforms for nano liquid chromatography. J. Chromatogr. A, 2015, 1421, 2-17.
[http://dx.doi.org/10.1016/j.chroma.2015.07.090] [PMID: 26265002]
[9]
Keyser, U.F. Enhancing nanopore sensing with DNA nanotechnology. Nat. Nanotechnol., 2016, 11(2), 106-108.
[http://dx.doi.org/10.1038/nnano.2016.2] [PMID: 26839252]
[10]
Morganti, P. Use and potential of nanotechnology in cosmetic dermatology. Clin. Cosmet. Investig. Dermatol., 2010, 3, 5-13.
[http://dx.doi.org/10.2147/CCID.S4506] [PMID: 21437055]
[11]
Shinkai, S. Calixarenes - the third generation of supramolecules. Tetrahedron, 1993, 49(40), 8933-8968.
[http://dx.doi.org/10.1016/S0040-4020(01)91215-3]
[12]
Gutsche, C.D. Calixarenes: An Introduction; RSC Pub: Cambridge, London, 2008.
[13]
Acikbas, Y.; Bozkurt, S.; Halay, E.; Capan, R.; Guloglu, M.L.; Sirit, A.; Erdogan, M. Fabrication and characterization of calix[4]arene Langmuir–Blodgett thin film for gas sensing applications. J. Incl. Phenom. Macrocycl. Chem., 2017, 89(1-2), 77-84.
[http://dx.doi.org/10.1007/s10847-017-0732-6]
[14]
Jose, P.; Menon, S. Lower-rim substituted calixarenes and their applications. Bioinorg. Chem. Appl., 2007, 2007, 1-16.
[http://dx.doi.org/10.1155/2007/65815] [PMID: 17611612]
[15]
Sardjono, R.E.; Rachmawati, R. Green synthesis of oligomer calixarenes In: Green Chemical Processing and Synthesis; Iyad, K.; Hassan, S., Eds.; Intech: London, UK, 2017.
[http://dx.doi.org/10.5772/67804]
[16]
Maiti, S.; Jana, S. Polysaccharide Carriers for Drug Delivery, 1st Ed.; Woodhead Publishing: United Kingdom, 2019.
[17]
Español, E.; Villamil, M. Calixarenes: Generalities and their role in improving the solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules. Biomolecules, 2019, 9(3), 90-105.
[http://dx.doi.org/10.3390/biom9030090] [PMID: 30841659]
[18]
McMahon, G.; O’Malley, S.; Nolan, K.; Diamond, D. Important calixarene derivatives – their synthesis and applications. ARKIVOC, 2003, 2003(7), 23-31.
[http://dx.doi.org/10.3998/ark.5550190.0004.704]
[19]
Wang, Y.X.; Guo, D.S.; Duan, Y.C.; Wang, Y.J.; Liu, Y. Amphiphilic p-sulfonatocalix[4]arene as “drug chaperone” for escorting anticancer drugs. Sci. Rep., 2015, 5(1), 9019.
[http://dx.doi.org/10.1038/srep09019] [PMID: 25761778]
[20]
Gorbunov, A.; Kuznetsova, J.; Deltsov, I.; Molokanova, A.; Cheshkov, D.; Bezzubov, S.; Kovalev, V.; Vatsouro, I. Selective azide–alkyne cycloaddition reactions of azidoalkylated calixarenes. Org. Chem. Front., 2020, 7(17), 2432-2441.
[http://dx.doi.org/10.1039/D0QO00650E]
[21]
Legnani, L.; Compostella, F.; Sansone, F.; Toma, L. Cone calix[4]arenes with orientable glycosylthioureido groups at the upper rim: An in-depth analysis of their symmetry properties. J. Org. Chem., 2015, 80(15), 7412-7418.
[http://dx.doi.org/10.1021/acs.joc.5b00878] [PMID: 26153830]
[22]
Murphy, P.; McKinlay, R.G.; Dalgarno, S.J.; Paterson, M.J. Toward understanding of the lower rim binding preferences of calix[4]arene. J. Phys. Chem. A, 2015, 119(22), 5804-5815.
[http://dx.doi.org/10.1021/acs.jpca.5b02624] [PMID: 25951295]
[23]
Cen, R.; Liu, M.; Lu, J.; Zhang, W.; Dai, J.; Zeng, X.; Tao, Z.; Xiao, X. Synthesis and characterization of a sensitive and selective Fe3+ fluorescent sensor based on novel sulfonated calix[4]arene based host guest complex. Chin. Chem. Lett., 2022, 33(5), 2469-2472.
[http://dx.doi.org/10.1016/j.cclet.2021.12.005]
[24]
Zhou, J.; Chen, M.; Diao, G. Calix[4,6,8]arenesulfonates functionalized reduced graphene oxide with high supramolecular recognition capability: Fabrication and application for enhanced host-guest electrochemical recognition. ACS Appl. Mater. Interfaces, 2013, 5(3), 828-836.
[http://dx.doi.org/10.1021/am302289v] [PMID: 23311992]
[25]
Nishikubo, T.; Kameyama, A.; Kudo, H. Novel high performance materials. calixarene derivatives containing protective groups and polymerizable groups for photolithography, and calixarene derivatives containing active ester groups for thermal curing of epoxy resins. Polym. J., 2003, 35(3), 213-229.
[http://dx.doi.org/10.1295/polymj.35.213]
[26]
Gutsche, C.D. Calixarenes; Royal Society of Chemistry: Cambridge, London, England, 1989.
[27]
Becker, A.; Tobias, H.; Porat, Z.; Mandler, D. Detection of uranium(VI) in aqueous solution by a calix[6]arene modified electrode. J. Electroanal. Chem. (Lausanne), 2008, 621(2), 214-221.
[http://dx.doi.org/10.1016/j.jelechem.2007.11.009]
[28]
Supian, F.L. . Sensing Interactions Within Nanoscale Calixarene and Polysiloxane Langmuir- Blodgett Films; PhD thesis, University of Sheffield: Sheffield, 2010.
[29]
Mokhtari, B.; Pourabdollah, K. Applications of calixarene nano-baskets in pharmacology. J. Incl. Phenom. Macrocycl. Chem., 2012, 73(1-4), 1-15.
[http://dx.doi.org/10.1007/s10847-011-0062-z]
[30]
Nimse, S.B.; Kim, T. Biological applications of functionalized calixarenes. Chem. Soc. Rev., 2013, 42(1), 366-386.
[http://dx.doi.org/10.1039/C2CS35233H] [PMID: 23032718]
[31]
Chester, R.; Sohail, M.; Ogden, M.I.; Mocerino, M.; Pretsch, E.; Marco, R.D. A calixarene-based ion-selective electrode for thallium(I) detection. Anal. Chim. Acta, 2014, 851, 78-86.
[http://dx.doi.org/10.1016/j.aca.2014.08.046] [PMID: 25440668]
[32]
Ma, J.; Song, M.; Boussouar, I.; Tian, D.; Li, H. Recent progress of calixarene-based fluorescent chemosensors towards mercury ions. Supramol. Chem., 2015, 27(5-6), 444-452.
[http://dx.doi.org/10.1080/10610278.2014.988627]
[33]
Kumar, S.; Chawla, S.; Zou, M.C. Calixarenes based materials for gas sensing applications: A review. J. Incl. Phenom. Macrocycl. Chem., 2017, 88(3-4), 129-158.
[http://dx.doi.org/10.1007/s10847-017-0728-2]
[34]
Eddaif, L.; Shaban, A.; Telegdi, J. Sensitive detection of heavy metals ions based on the calixarene derivatives-modified piezoelectric resonators: A review. Int. J. Environ. Anal. Chem., 2019, 99(9), 824-853.
[http://dx.doi.org/10.1080/03067319.2019.1616708]
[35]
Azmi, M.S.M.; Noorizhab, M.F.F.; Supian, F.L.; Malik, S.A. A review of calixarene Langmuir–Blodgett thin film characteristics for nanosensor applications. Defence S&T Technical Bulletin, 2020, 13, 1985-6571.
[36]
Akceylan, E.; Cagil, E.M. A new drug delivery system based on magnetic calixarene nanoparticles. J. Bionanoscie., 2017, 11(5), 330-336.
[http://dx.doi.org/10.1166/jbns.2017.1469]
[37]
Wang, J.F.; Huang, L.Y.; Bu, J.H.; Li, S.Y.; Qin, S.; Xu, Y.W.; Liu, J.M.; Su, C.Y. A fluorescent calixarene-based dimeric capsule constructed via a MII –terpyridine interaction: cage structure, inclusion properties and drug release. RSC Adv, 2018, 8(40), 22530-22535.
[http://dx.doi.org/10.1039/C8RA02146E] [PMID: 35539710]
[38]
Özbek, Z.; Davis, F.; Capan, R. Electrical properties of alternating acid and amino substituted calixarene Langmuir-Blodgett thin films. J. Phys. Chem. Solids, 2020, 136109146
[http://dx.doi.org/10.1016/j.jpcs.2019.109146]
[39]
Guérineau, V.; Rollet, M.; Viel, S.; Lepoittevin, B.; Costa, L.; Saint-Aguet, P.; Laurent, R.; Roger, P.; Gigmes, D.; Martini, C.; Huc, V. The synthesis and characterization of giant Calixarenes. Nat. Commun., 2019, 10(1), 113.
[http://dx.doi.org/10.1038/s41467-018-07751-4] [PMID: 30631073]
[40]
Pan, Y-C.; Hu, X-Y.; Guo, D-S. Biomedical applications of calixarenes: State of the art and perspectives. Angew. Chem. Weinheim Bergstr. Ger., 2020, 133(6), 2800-2828.
[http://dx.doi.org/10.1002/ange.201916380]
[41]
Da Silva, E.; Lazar, A.N.; Coleman, A.W. Biopharmaceutical applications of calixarenes. J. Drug Deliv. Sci. Technol., 2004, 14(1), 3-20.
[http://dx.doi.org/10.1016/S1773-2247(04)50001-1]
[42]
Gutsche, C.D. Synthesis of Calixarenes and Thiacalixarenes. In: Calixarenes 2001; Asfari, Z.; Böhmer, V.; Harrowfield, J.; Vicens, J.; Saadioui, M., Eds.; Springer: Dordrecht, Netherlands, 2001; pp. 1-25.
[43]
Davis, F.; Higson, S. Macrocycles: Constructions, Chemistry and Nanotechnology Applications; John Wiley & Sons: Milton, QLD, Australia, 2011.
[http://dx.doi.org/10.1002/9780470980200]
[44]
Ding, Y.; Jiao, J.; Sun, B.; Yang, Z.; Lin, C.; Wang, L. The facile preparation of p-(methoxy)calix[n]arenes (n = 6, 7, or 8) and their permethylated derivatives. Chin. Chem. Lett., 2021, 32(11), 3539-3543.
[http://dx.doi.org/10.1016/j.cclet.2021.05.045]
[45]
Islam, M.M.; Georghiou, P.E.; Rahman, S.; Yamato, T. Calix[3]arene-analogous metacyclophanes: Synthesis, structures and properties with infinite potential. Molecules, 2020, 25(18), 4202.
[http://dx.doi.org/10.3390/molecules25184202] [PMID: 32937796]
[46]
Andreetti, G.D.; Ungaro, R.; Pochini, A. Crystal and molecular structure of cycloquater[(5-t-butyl-2-hydroxy-1,3-phenylene) methylene] toluene (1: 1) clathrate. J. Chem. Soc. Chem. Commun., 1979, (22), 1005-1007.
[http://dx.doi.org/10.1039/c39790001005]
[47]
Andreetti, G.D.; Pochini, A.; Ungaro, R. Molecular inclusion in functionalized macrocycles. Part 6. The crystal and molecular structures of the calix[4]arene from p-(1,1,3,3-tetramethylbutyl)phenol and its 1: 1 complex with toluene. J. Chem. Soc., Perkin Trans. 2, 1983, 2(9), 1773-1779.
[http://dx.doi.org/10.1039/p29830001773]
[48]
Juneja, R.K.; Robinson, K.D.; Johnson, C.P.; Atwood, J.L. Synthesis and characterization of rigid, deep-cavity calix[4]arenes. J. Am. Chem. Soc., 1993, 115(9), 3818-3819.
[http://dx.doi.org/10.1021/ja00062a075]
[49]
Arduini, A.; Nachtigall, F.F.; Pochini, A.; Secchi, A.; Ugozzoli, F. Calix[4]Arene Cavitands: A solid state study on the interactions of their aromatic cavity with neutral organic guests characterised by acid CH3 or CH2 groups. Supramol. Chem., 2000, 12(3), 273-291.
[http://dx.doi.org/10.1080/10610270008029449]
[50]
Kim, S.K.; Lynch, V.M.; Hay, B.P.; Kim, J.S.; Sessler, J.L. Ion pair-induced conformational motion in calix[4]arene-strapped calix[4]pyrroles. Chem. Sci. (Camb.), 2015, 6(2), 1404-1413.
[http://dx.doi.org/10.1039/C4SC03272A] [PMID: 29560229]
[51]
Wolfgong, W.J.; Talafuse, L.K.; Smith, J.M.; Adams, M.J.; Adeogba, F.; Valenzuela, M.; Rodriguez, E.; Contreras, K.; Carter, D.M.; Bacchus, A.; McGuffey, A.R.; Bott, S.G. The influence of solvent of crystallization upon the solid-state conformation of calix[6]arenes’. Supramol. Chem., 1996, 7(1), 67-78.
[http://dx.doi.org/10.1080/10610279608054998]
[52]
Martins, F.T.; da Silva Maia, A.F.; dos Santos, F.M.; Alvarenga, M.E.; Ribeiro, L.; da Silva Neto, L.; de Fátima, Â. Guest-driven unusual conformations in two calix[6]arene solvates and a new calix[8]arene. Z. Kristallogr. Cryst. Mater., 2018, 233(8), 565-578.
[http://dx.doi.org/10.1515/zkri-2017-2110]
[53]
Gutsche, C.D.; Gutsche, A.E.; Karaulov, A.I. Calixarenes 11. Crystal and molecular structure ofp-tert-butylcalix[8]arene. J. Incl. Phenom., 1985, 3(4), 447-451.
[http://dx.doi.org/10.1007/BF00657496]
[54]
Martínez-Alanis, P.R.; Castillo, I. Calix[8]arene anions: solid state structure of an inclusion compound with a tetrabutylammonium cation. Tetrahedron Lett., 2005, 46(51), 8845-8848.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.088]
[55]
Czugler, M.; Tisza, S.; Speier, G. Versatility in inclusion hosts: Unusual conformation in the crystal structure of the p-t-butylcalix[8]arene: pyridine (1:8) clathrate. J. Incl. Phenom. Mol. Recognit. Chem., 1991, 11, 323-331.
[56]
Gutsche, C.D.; Muthukrishnan, R. Calixarenes. 1. Analysis of the product mixtures produced by the base-catalyzed condensation of formaldehyde with para-substituted phenols. J. Org. Chem., 1978, 43(25), 4905-4906.
[http://dx.doi.org/10.1021/jo00419a052]
[57]
Baldini, L.; Casnati, A.; Sansone, F.; Ungaro, R. Calixarene-based multivalent ligands. Chem. Soc. Rev., 2007, 36(2), 254-266.
[http://dx.doi.org/10.1039/B603082N] [PMID: 17264928]
[58]
Mokhtari, B.; Pourabdollah, K. Applications of nano-baskets in drug development: High solubility and low toxicity. Drug Chem. Toxicol., 2013, 36(1), 119-132.
[http://dx.doi.org/10.3109/01480545.2011.653490] [PMID: 22360609]
[59]
Deshayes, S.; Gref, R. Synthetic and bioinspired cage nanoparticles for drug delivery. Nanomedicine (Lond.), 2014, 9(10), 1545-1564.
[http://dx.doi.org/10.2217/nnm.14.67] [PMID: 25253501]
[60]
Gutsche, C.D. Single step synthesis and properties of calixarenes.In: Vicens, J.; Böhmer, V., Eds.; Calixarenes: A Versatile Class of Macrocyclic Compounds; Springer: Dordrecht, Netherland, 1991.
[http://dx.doi.org/10.1007/978-94-009-2013-2_1]
[61]
Furer, V.L.; Potapova, L.I.; Kovalenko, V.I. DFT study of hydrogen bonding and IR spectra of calix[6]arene. J. Mol. Struct., 2017, 1128, 439-447.
[http://dx.doi.org/10.1016/j.molstruc.2016.09.010]
[62]
Furer, V.L.; Borisoglebskaya, E.I.; Kovalenko, V.I. Band intensity in the IR spectra and conformations of calix[4]arene and thiacalix[4]arene. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 61(1-2), 355-359.
[http://dx.doi.org/10.1016/j.saa.2004.05.009] [PMID: 15556460]
[63]
Furer, V.L. Vandyukov, A.E.; Kleshnina, S.R.; Solovieva, S.E.; Antipin, I.S.; Kovalenko, V.I. FT-IR and FT-Raman study of p-Sulfonatocalix. Arene. J. Mol. Struct., 2020, 1203127474
[http://dx.doi.org/10.1016/j.molstruc.2019.127474]
[64]
Tulli, L.; Shahgaldian, P. Calixarenes and resorcinarenes at interfacesIn: Calixarenes and Beyond Neri, P; Sessler, J.; Wang, M.X., Eds.; Springer International Publishing: Cham, Switzerland, 2016.
[http://dx.doi.org/10.1007/978-3-319-31867-7_37]
[65]
Eddaif, L.; Trif, L.; Telegdi, J.; Egyed, O.; Shaban, A. Calix[4]resorcinarene macrocycles. J. Therm. Anal. Calorim., 2019, 137(2), 529-541.
[http://dx.doi.org/10.1007/s10973-018-7978-0]
[66]
Sokolova, M.P.; Bronnikov, S.V.; Sukhanova, T.E.; Grigor’ev, A.I.; Volkov, A.Y.; Gubanova, G.N.; Kutin, A.A.; Farcas, A.; Pinteala, M.; Harabagiu, V.; Simionescu, B. Structure, morphology, and thermal properties of polyrotaxanes based on calix[6]arene and modifi ed polydimethylsiloxane. Russ. J. Appl. Chem., 2010, 83(1), 109-114.
[http://dx.doi.org/10.1134/S1070427210010210]
[67]
Grigoras, M.; Catargiu, A.M.; Tudorache, F. Molecular composites obtained by polyaniline synthesis in the presence of p -octasulfonated calixarene macrocycle. J. Appl. Polym. Sci., 2013, 127(4), 2796-2802.
[http://dx.doi.org/10.1002/app.37605]
[68]
Abdel-Karim, R.; Reda, Y.; Abdel-Fattah, A. Review-nanostructured materials-based nanosensors. J. Electrochem. Soc., 2020, 167(3)031554
[http://dx.doi.org/10.1149/1945-7111/ab67aa]
[69]
Kozitsina, A.; Svalova, T.; Malysheva, N.; Okhokhonin, A.; Vidrevich, M.; Brainina, K. Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis. Biosensors (Basel), 2018, 8(2), 35.
[http://dx.doi.org/10.3390/bios8020035] [PMID: 29614784]
[70]
Moreno-Bondi, M.C. Biomimetic recognition elements for sensing applications. Anal. Bioanal. Chem., 2012, 402(10), 3019-3020.
[http://dx.doi.org/10.1007/s00216-012-5778-0] [PMID: 22327931]
[71]
Agrawal, Y.K.; Bhatt, H. Calixarenes and their biomimetic applications. Bioinorg. Chem. Appl., 2004, 2(3-4), 237-274.
[http://dx.doi.org/10.1155/S1565363304000159] [PMID: 18365079]
[72]
Lhoták, P. Anion receptors based on calixarenes. In: Anion Sensing. Topics in Current Chemistry; Stibor, I., Ed.; Springer: Berlin, Germany, 2005.
[http://dx.doi.org/10.1007/b101162]
[73]
de Fátima, A.; Fernandes, S.; Sabino, A. Calixarenes as new platforms for drug design. Curr. Drug Discov. Technol., 2009, 6(2), 151-170.
[http://dx.doi.org/10.2174/157016309788488302] [PMID: 19519339]
[74]
Ludwig, R.; Dzung, N. Calixarene-based molecules for cation recognition. Sensors (Basel), 2002, 2(10), 397-416.
[http://dx.doi.org/10.3390/s21000397]
[75]
Sénèque, O.; Giorgi, M.; Reinaud, O. Bio-inspired calix[6]arene–zinc funnel complexes. Supramol. Chem., 2003, 15(7-8), 573-580.
[http://dx.doi.org/10.1080/10610270310001605160]
[76]
Bistri, O.; Colasson, B.; Reinaud, O. Recognition of primary amines in water by a zinc funnel complex based on calix[6]arene. Chem. Sci. (Camb.), 2012, 3(3), 811-818.
[http://dx.doi.org/10.1039/C1SC00738F]
[77]
Lascaux, A.; Leener, G.D.; Fusaro, L. Topić F.; Rissanen, K.; Luhmer, M.; Jabin, I. Selective recognition of neutral guests in an aqueous medium by a biomimetic calix[6]cryptamide receptor. Org. Biomol. Chem., 2016, 14(2), 738-746.
[http://dx.doi.org/10.1039/C5OB02067K] [PMID: 26580493]
[78]
Lim, D.C.K.; Supian, F.L. Calix[4]arene and calix[8]arene langmuir films: Surface studies, optical and structural characterisations. Int. J. Innov. Technol. Explor. Eng., 2019, 8(8S), 80-85.
[79]
Supian, F.L.; Richardson, T.H.; Deasy, M.; Kelleher, F.; Ward, J.P.; McKee, V. Interaction between Langmuir and Langmuir-Blodgett films of two calix[4]arenes with aqueous copper and lithium ions. Langmuir, 2010, 26(13), 10906-10912.
[http://dx.doi.org/10.1021/la100808r] [PMID: 20415490]
[80]
Bozkurt, S.; Turkmen, M.B. Synthesis of calix[4]arene-based thiourea derivatives for extraction of toxic dichromate and arsenate ions. Polycycl. Aromat. Compd., 2018, 38(2), 157-167.
[http://dx.doi.org/10.1080/10406638.2016.1174719]
[81]
Kiegiel, K.; Steczek, L.; Zakrzewska-Trznadel, G. Application of calixarenes as macrocyclic ligands for uranium(VI). A reviews J. Chem., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/762819]
[82]
Deska, M.; Dondela, B.; Sliwa, W. Selected applications of calixarene derivatives. ARKIVOC, 2015, 2015(6), 393-416.
[http://dx.doi.org/10.3998/ark.5550190.p008.958]
[83]
Qureshi, I.; Memon, S.; Yilmaz, M. Extraction and binding efficiency of calix[8]arene derivative toward selected transition metals. Pak. J. Anal. Environ. Chem., 2008, 9, 6.
[84]
Supian, F.L.; Bakar, S.A.; Azahari, N.A.; Richardson, T.H. Characteristics of a novel calix[8]arene modified with carbon nanotubes thin films for metal cations detection. In: AIP Conference Proceedings; , 2013.
[85]
Supian, F.L.; Darvina Lim, C.K.; Razali, A.S. Conductivity comparison of calix[8]arene-MWCNTs through spin coating technique. Sains Malays., 2017, 46(1), 91-96.
[http://dx.doi.org/10.17576/jsm-2017-4601-12]
[86]
Dridi, C.; Benzarti-Ghédira, M.; Vocanson, F.; Ben Chaabane, R.; Davenas, J.; Ben Ouada, H. Optical and electrical properties of semi-conducting calix[5,9]arene thin films with potential applications in organic electronics. Semicond. Sci. Technol., 2009, 24(10)105007
[http://dx.doi.org/10.1088/0268-1242/24/10/105007]
[87]
Gaeta, C.; Talotta, C.; Farina, F.; Campi, G.; Camalli, M.; Neri, P. Conformational features and recognition properties of a conformationally blocked calix[7]arene derivative. Chemistry, 2012, 18(4), 1219-1230.
[http://dx.doi.org/10.1002/chem.201102179] [PMID: 22179991]
[88]
Baudry, R.; Kalchenko, O.; Dumazet-Bonnamour, I.; Vocanson, F.; Lamartine, R. Investigation of host-guest stability constants of calix[n]arenes complexes with aromatic molecules by RP-HPLC method. J. Chromatogr. Sci., 2003, 41(3), 157-163.
[http://dx.doi.org/10.1093/chromsci/41.3.157] [PMID: 12725700]
[89]
Abd Hamid, S.M; Bunnori, N. Adekunle, I.A.; Ali, Y. Applications of calixarenes in cancer chemotherapy: Facts and perspectives. Drug Des. Devel. Ther., 2015, 9, 2831-2838.
[http://dx.doi.org/10.2147/DDDT.S83213] [PMID: 26082613]
[90]
An, L.; Wang, C.; Han, L.; Liu, J.; Huang, T.; Zheng, Y.; Yan, C.; Sun, J. Structural design, synthesis, and preliminary biological evaluation of novel Dihomooxacalix[4]arene-based anti-tumor agents. Front Chem., 2019, 7, 856.
[http://dx.doi.org/10.3389/fchem.2019.00856] [PMID: 31921778]
[91]
Shurpik, D.N.; Padnya, P.L.; Stoikov, I.I.; Cragg, P.J. Antimicrobial activity of Calixarenes and related macrocycles. Molecules, 2020, 25(21), 5145.
[http://dx.doi.org/10.3390/molecules25215145] [PMID: 33167339]
[92]
Brown, S.D.; Plumb, J.A.; Johnston, B.F.; Wheate, N.J. Folding of dinuclear platinum anticancer complexes within the cavity of para-sulphonatocalix[4]arene. Inorg. Chim. Acta, 2012, 393, 182-186.
[http://dx.doi.org/10.1016/j.ica.2012.04.033]
[93]
Galindo-Murillo, R.; Sandoval-Salinas, M.E.; Barroso-Flores, J. In silico design of monomolecular drug carriers for the tyrosine kinase inhibitor drug imatinib based on calix- and thiacalix[n]arene host molecules: A DFT and molecular dynamics study. J. Chem. Theory Comput., 2014, 10(2), 825-834.
[http://dx.doi.org/10.1021/ct4004178] [PMID: 26580056]
[94]
Galindo-Murillo, R.; Olmedo-Romero, A.; Cruz-Flores, E.; Petrar, P.M.; Kunsagi-Mate, S.; Barroso-Flores, J. Calix[n]arene-based drug carriers: A DFT study of their electronic interactions with a chemotherapeutic agent used against leukemia. Comput. Theor. Chem., 2014, 1035, 84-91.
[http://dx.doi.org/10.1016/j.comptc.2014.03.001]
[95]
Zhao, Z.M.; Wang, Y.; Han, J.; Zhu, H.D.; An, L. Preparation and characterization of amphiphilic calixarene nanoparticles as delivery carriers for paclitaxel. Chem. Pharm. Bull. (Tokyo), 2015, 63(3), 180-186.
[http://dx.doi.org/10.1248/cpb.c14-00699] [PMID: 25757488]
[96]
Athar, M.; Lone, M.Y.; Jha, P.C. Theoretical assessment of calix[ n]arene as drug carriers for second generation tyrosine kinase inhibitors. J. Mol. Liq., 2017, 247, 448-455.
[http://dx.doi.org/10.1016/j.molliq.2017.09.113]
[97]
Chen, W.; Li, L.; Zhang, X.; Liang, Y.; Pu, Z.; Wang, L.; Mo, J. Curcumin: A calixarene derivative micelle potentiates anti-breast cancer stem cells effects in xenografted, triple-negative breast cancer mouse models. Drug Deliv., 2017, 24(1), 1470-1481.
[http://dx.doi.org/10.1080/10717544.2017.1381198] [PMID: 28956452]
[98]
Jiapaer, S.; Furuta, T.; Tanaka, S.; Kitabayashi, T.; Nakada, M. Potential strategies overcoming the temozolomide resistance for glioblastoma. Neurol. Med. Chir. (Tokyo), 2018, 58(10), 405-421.
[http://dx.doi.org/10.2176/nmc.ra.2018-0141] [PMID: 30249919]
[99]
Renziehausen, A.; Tsiailanis, A.D.; Perryman, R.; Stylos, E.K.; Chatzigiannis, C.; O’Neill, K.; Crook, T.; Tzakos, A.G.; Syed, N. Encapsulation of temozolomide in a calixarene nanocapsule improves its stability and enhances its therapeutic efficacy against glioblastoma. Mol. Cancer Ther., 2019, 18(9), 1497-1505.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1250] [PMID: 31213505]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy