Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Review Article

Advances in the Applications of Capillary Electrophoresis to Tobacco Analysis

Author(s): Zhenjie Li, Qianyu Wu, Xinle Zhang and Gang Chen*

Volume 19, Issue 1, 2023

Published on: 25 October, 2022

Page: [77 - 99] Pages: 23

DOI: 10.2174/1573411018666220927094137

Price: $65

Abstract

Background: Capillary electrophoresis (CE) has found a wide range of applications because of its high separation efficiency, low expense, short analysis time and minimal sample volume requirement. The tobacco quality depends on the nature and quantity of numerous substances. CE has been applied in the constituent analysis of tobacco and tobacco products for quality control and research.

Methods: The advances in the applications of CE to tobacco analysis are reviewed. The main subjects cover the separation modes of CE, the detection techniques of CE, sample preparations and the applications of CE in the measurements of various constituents in tobacco samples. In addition, the CE-based metabonomic investigation of tobacco is also introduced.

Results: Capillary zone electrophoresis, micellar electrokinetic chromatography, capillary isotachophoresis, capillary gel electrophoresis, capillary electrochromatography and non-aqueous CE have been applied in the determination of a variety of constituents in tobacco and tobacco products. The assayed substances include alkaloids, amines, saccharides, organic acids, inorganic ions, phenols, phenolic acids, flavonoids, amino acids, peptides, proteins, hormones, agricultural chemicals, etc.

Conclusion: This review demonstrates that CE is a promising analytical technique in tobacco analysis. It is anticipated that CE will find more applications in tobacco investigations.

Keywords: Capillary electrophoresis, tobacco, tobacco products, analysis, constituents, quality control

« Previous
Graphical Abstract

[1]
Kakar, K.U.; Nawaz, Z.; Cui, Z.; Ahemd, N.; Ren, X. Molecular breeding approaches for production of disease-resilient commercially important tobacco. Brief. Funct. Genomics, 2020, 19(1), 10-25.
[http://dx.doi.org/10.1093/bfgp/elz038] [PMID: 31942928]
[2]
Hammond, D. Health warning messages on tobacco products: A review. Tob. Control, 2011, 20(5), 327-337.
[http://dx.doi.org/10.1136/tc.2010.037630] [PMID: 21606180]
[3]
Lencucha, R.; Drope, J.; Magati, P.; Sahadewo, G.A. Tobacco farming: Overcoming an understated impediment to comprehensive tobacco control. Tob. Control, 2022, 31(2), 308-312.
[http://dx.doi.org/10.1136/tobaccocontrol-2021-056564] [PMID: 35241604]
[4]
Omare, M.O.; Kibet, J.K.; Cherutoi, J.K.; Kengara, F.O. A review of tobacco abuse and its epidemiological consequences. J. Public Health, 2022, 30(6), 1485-1500.
[http://dx.doi.org/10.1007/s10389-020-01443-4] [PMID: 33425659]
[5]
Jiang, Z.; Tian, Z.; Zhang, C.; Li, D.; Wu, R.; Tian, N.; Xing, L.; Ma, L. Recent advances in speciation analyses of tobacco and other important economic crops. Curr. Anal. Chem., 2022, 18(5), 518-528.
[http://dx.doi.org/10.2174/1573411017999201201115234]
[6]
Zhu, X.; Shao, N.; Li, D.; Xue, F.; Hou, L.; Gao, Y. Preparation and thermal analysis of flame-retardant chitosan thin films on ammonium polyphosphate treated reconstituted tobacco sheet. Curr. Anal. Chem., 2020, 16(6), 711-721.
[http://dx.doi.org/10.2174/1573412915666190227165046]
[7]
Hecht, S.S.; Hatsukami, D.K. Smokeless tobacco and cigarette smoking: Chemical mechanisms and cancer prevention. Nat. Rev. Cancer, 2022, 22(3), 143-155.
[http://dx.doi.org/10.1038/s41568-021-00423-4] [PMID: 34980891]
[8]
O’Brien, E.K.; Baig, S.A.; Persoskie, A. Absolute and relative smokeless tobacco product risk perceptions: Developing and validating new measures that are up-to-snuff. Nicotine Tob. Res., 2022, 24(2), 265-269.
[http://dx.doi.org/10.1093/ntr/ntab167] [PMID: 34482405]
[9]
Martins-da-Silva, A.S.; Torales, J.; Becker, R.F.V.; Moura, H.F.; Waisman Campos, M.; Fidalgo, T.M.; Ventriglio, A.; Castaldelli-Maia, J.M. Tobacco growing and tobacco use. Int. Rev. Psychiatry, 2022, 34(1), 51-58.
[http://dx.doi.org/10.1080/09540261.2022.2034602] [PMID: 35584014]
[10]
Nicholas, B.D.; Kiprovski, A.; Perez, D.; Mehta, R.; Murphy, M.K.; Li, Z.; Tampio, A. Changes in eustachian tube mucosa in mice after short-term tobacco and e-cigarette smoke exposure. Laryngoscope, 2022, 132(3), 648-654.
[http://dx.doi.org/10.1002/lary.29887] [PMID: 34599608]
[11]
Ralapati, S. Capillary electrophoresis as an analytical tool for monitoring nicotine in ATF regulated tobacco products. J. Chromatogr., Biomed. Appl., 1997, 695(1), 117-129.
[http://dx.doi.org/10.1016/S0378-4347(97)00107-2] [PMID: 9271136]
[12]
Lu, G.H.; Ralapati, S. Application of high-performance capillary electrophoresis to the quantitative analysis of nicotine and profiling of other alkaloids in ATF-regulated tobacco products. Electrophoresis, 1998, 19(1), 19-26.
[http://dx.doi.org/10.1002/elps.1150190106] [PMID: 9511858]
[13]
O’Brien, D.; Long, J.; Quigley, J.; Lee, C.; McCarthy, A.; Kavanagh, P. Association between electronic cigarette use and tobacco cigarette smoking initiation in adolescents: A systematic review and meta-analysis. BMC Public Health, 2021, 21(1), 954.
[http://dx.doi.org/10.1186/s12889-021-10935-1] [PMID: 34078351]
[14]
Akiyama, Y.; Sherwood, N. Systematic review of biomarker findings from clinical studies of electronic cigarettes and heated tobacco products. Toxicol. Rep., 2021, 8, 282-294.
[http://dx.doi.org/10.1016/j.toxrep.2021.01.014] [PMID: 33552927]
[15]
Thomas, R.; Parker, L.S.; Shiffman, S. The ethics of tobacco harm reduction: An analysis of e-cigarette availability from the perspectives of utilitarianism, bioethics, and public health ethics. Nicotine Tob. Res., 2021, 23(1), 3-8.
[http://dx.doi.org/10.1093/ntr/ntaa198] [PMID: 33002156]
[16]
Shahab, L.; Beard, E.; Brown, J. Association of initial e-cigarette and other tobacco product use with subsequent cigarette smoking in adolescents: A cross-sectional, matched control study. Tob. Control, 2021, 30(2), 212-220.
[http://dx.doi.org/10.1136/tobaccocontrol-2019-055283] [PMID: 32184339]
[17]
Arntzen, C.J. Plant science. Using tobacco to treat cancer. Science, 2008, 321(5892), 1052-1053.
[http://dx.doi.org/10.1126/science.1163420] [PMID: 18719274]
[18]
Charlton, A. Medicinal uses of tobacco in history. J. R. Soc. Med., 2004, 97(6), 292-296.
[http://dx.doi.org/10.1177/014107680409700614] [PMID: 15173337]
[19]
Schneider, N.K.; Ling, P.M. How tobacco protects you against the flu. Tob. Control, 2008, 17(3), 215-216.
[http://dx.doi.org/10.1136/tc.2007.024521] [PMID: 18522972]
[20]
Sanchez-Ramos, J.R. The rise and fall of tobacco as a botanical medicine. J. Herb. Med., 2020, 22, 100374.
[http://dx.doi.org/10.1016/j.hermed.2020.100374] [PMID: 32834941]
[21]
Niu, H.; Zhang, P.; Li, B.; Sun, S.; Yang, X.; He, F. Tobacco as a potential raw material for drug production. Acta Physiol. Plant., 2021, 43(12), 163.
[http://dx.doi.org/10.1007/s11738-021-03338-7]
[22]
Hidayat, S.; Alayyannur, P.A. The content of harmful and potentially harmful constituents in heated tobacco product: Systematic review. J. Drug Deliv. Ther., 2021, 11(3-S), 111-120.
[http://dx.doi.org/10.22270/jddt.v11i3-S.4830]
[23]
O’Connor, R.; Schneller, L.M.; Felicione, N.J.; Talhout, R.; Goniewicz, M.L.; Ashley, D.L. Evolution of tobacco products: Recent history and future directions. Tob. Control, 2022, 31(2), 175-182.
[http://dx.doi.org/10.1136/tobaccocontrol-2021-056544] [PMID: 35241585]
[24]
Zimmer, G.F.; Santos, R.O.; Teixeira, I.D.; Schneider, R.C.S.; Helfer, G.A.; Costa, A.B. Rapid quantification of constituents in tobacco by NIR fiber‐optic probe. J. Chemometr., 2020, 34(12), e3303.
[http://dx.doi.org/10.1002/cem.3303]
[25]
Le Foll, B.; Piper, M.E.; Fowler, C.D.; Tonstad, S.; Bierut, L.; Lu, L.; Jha, P.; Hall, W.D. Tobacco and nicotine use. Nat. Rev. Dis. Primers, 2022, 8(1), 19.
[http://dx.doi.org/10.1038/s41572-022-00346-w] [PMID: 35332148]
[26]
Alarabi, A.B.; Lozano, P.A.; Khasawneh, F.T.; Alshbool, F.Z. The effect of emerging tobacco related products and their toxic constituents on thrombosis. Life Sci., 2022, 290, 120255.
[http://dx.doi.org/10.1016/j.lfs.2021.120255] [PMID: 34953893]
[27]
Guan, S.; Bush, L.; Ji, H. An in vitro study of constituents released from smokeless tobacco products into human saliva. J. Anal. Toxicol., 2022, 46(6), 625-632.
[http://dx.doi.org/10.1093/jat/bkab076] [PMID: 34155520]
[28]
Jores, T.; Tonnies, J.; Dorrity, M.W.; Cuperus, J.T.; Fields, S.; Queitsch, C. Identification of plant enhancers and their constituent elements by STARR-seq in tobacco leaves. Plant Cell, 2020, 32(7), 2120-2131.
[http://dx.doi.org/10.1105/tpc.20.00155] [PMID: 32409318]
[29]
Hu, Z.X.; Zou, J.B.; An, Q.; Yi, P.; Yuan, C.M.; Gu, W.; Huang, L.J.; Lou, H.Y.; Zhao, L.H.; Hao, X.J. Anti-tobacco mosaic virus (TMV) activity of chemical constituents from the seeds of Sophora tonkinensis. J. Asian Nat. Prod. Res., 2021, 23(7), 644-651.
[http://dx.doi.org/10.1080/10286020.2021.1886089] [PMID: 33583289]
[30]
Bosilkovska, M.; Tran, C.T.; de La Bourdonnaye, G.; Taranu, B.; Benzimra, M.; Haziza, C. Exposure to harmful and potentially harmful constituents decreased in smokers switching to carbon-heated tobacco product. Toxicol. Lett., 2020, 330, 30-40.
[http://dx.doi.org/10.1016/j.toxlet.2020.04.013] [PMID: 32380119]
[31]
Loken, B.; Borgida, E.; Wang, T.; Madzelan, M.K.; Williams, A.L.; Hatsukami, D.; Stepanov, I. Can the public be educated about constituents in smokeless tobacco? A three-wave randomized controlled trial. Nicotine Tob. Res., 2021, 23(1), 161-170.
[http://dx.doi.org/10.1093/ntr/ntz241] [PMID: 32010948]
[32]
Arastoo, S.; Haptonstall, K.P.; Choroomi, Y.; Moheimani, R.; Nguyen, K.; Tran, E.; Gornbein, J.; Middlekauff, H.R. Acute and chronic sympathomimetic effects of e-cigarette and tobacco cigarette smoking: Role of nicotine and non-nicotine constituents. Am. J. Physiol. Heart Circ. Physiol., 2020, 319(2), H262-H270.
[http://dx.doi.org/10.1152/ajpheart.00192.2020] [PMID: 32559135]
[33]
Yerger, V.B.; McCandless, P.M. Menthol sensory qualities and smoking topography: A review of tobacco industry documents. Tob. Control, 2011, 20(Suppl. 2), ii37-ii43.
[http://dx.doi.org/10.1136/tc.2010.041988] [PMID: 21504930]
[34]
Ekezie, W.; Murray, R.L.; Agrawal, S.; Bogdanovica, I.; Britton, J.; Leonardi-Bee, J. Quality of smoking cessation advice in guidelines of tobacco-related diseases: An updated systematic review. Clin. Med. (London, England), 2020, 20(6), 551-559.
[http://dx.doi.org/10.7861/clinmed.2020-0359] [PMID: 33199319]
[35]
Haque, S.; Kodidela, S.; Sinha, N.; Kumar, P.; Cory, T.J.; Kumar, S. Differential packaging of inflammatory cytokines/chemokines and oxidative stress modulators in U937 and U1 macrophages-derived extracellular vesicles upon exposure to tobacco constituents. PLoS One, 2020, 15(5), e0233054.
[http://dx.doi.org/10.1371/journal.pone.0233054] [PMID: 32433651]
[36]
Haziza, C.; de La Bourdonnaye, G.; Donelli, A.; Poux, V.; Skiada, D.; Weitkunat, R.; Baker, G.; Picavet, P.; Lüdicke, F. Ludicke. Reduction in exposure to selected harmful and potentially harmful constituents approaching those observed upon smoking abstinence in smokers switching to the menthol tobacco heating system 2.2 for 3 months (Part 1). Nicotine Tob. Res., 2020, 22(4), 539-548.
[http://dx.doi.org/10.1093/ntr/ntz013] [PMID: 30722062]
[37]
Zhao, J.; Hu, C.; Zeng, J.; Zhao, Y.; Zhang, J.; Chang, Y.; Li, L.; Zhao, C.; Lu, X.; Xu, G. Study of polar metabolites in tobacco from different geographical origins by using capillary electrophoresis–mass spectrometry. Metabolomics, 2014, 10(5), 805-815.
[http://dx.doi.org/10.1007/s11306-014-0631-4]
[38]
Zhao, J.; Zhao, Y.; Hu, C.; Zhao, C.; Zhang, J.; Li, L.; Zeng, J.; Peng, X.; Lu, X.; Xu, G. Metabolic profiling with gas chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry reveals the carbon-nitrogen status of tobacco leaves across different planting areas. J. Proteome Res., 2016, 15(2), 468-476.
[http://dx.doi.org/10.1021/acs.jproteome.5b00807] [PMID: 26784525]
[39]
Huang, Z.; Bi, Y.J.; Sha, Y.F.; Xie, W.Y.; Wu, D.; Liu, B.Z. Separation and analysis of sucrose esters in tobacco by online liquid chromatography-gas chromatography/mass spectrometry. Anal. Sci., 2018, 34(8), 887-891.
[http://dx.doi.org/10.2116/analsci.18P076] [PMID: 30101882]
[40]
Chen, M.; Chen, L.; Pan, L.; Liu, R.; Guo, J.; Fan, M.; Wang, X.; Liu, H.; Liu, S. Simultaneous analysis of multiple pesticide residues in tobacco by magnetic carbon composite-based QuEChERS method and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. J. Chromatogr. A, 2022, 1668, 462913.
[http://dx.doi.org/10.1016/j.chroma.2022.462913] [PMID: 35247721]
[41]
Silinski, R.M.A.; Uenoyama, T.; Coleman, D.P.; Blake, J.C.; Thomas, B.F.; Marusich, J.A.; Jackson, K.J.; Meredith, S.E.; Gahl, R.F. Analysis of nicotine and non-nicotine tobacco constituents in aqueous smoke/aerosol extracts by UHPLC and ultraperformance convergence chromatography-tandem mass spectrometry. Chem. Res. Toxicol., 2020, 33(12), 2988-3000.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00312] [PMID: 33226218]
[42]
Shen, S.; Chen, M.; Wang, X.; Fei, T.; Yang, D.; Cao, M.; Wu, D. Residue measurement of pendimethalin in tobacco by using heart‐cutting two dimensional liquid chromatography coupled with tandem mass spectrometry. J. Sep. Sci., 2020, 43(17), 3467-3473.
[http://dx.doi.org/10.1002/jssc.202000323] [PMID: 32627424]
[43]
Deng, H.; Bian, Z.; Yang, F.; Liu, S.; Li, Z.; Fan, Z.; Wang, Y.; Tang, G. Use of autoclave extraction and liquid chromatography with tandem mass spectrometry for determination of maleic hydrazide residues in tobacco. J. Sep. Sci., 2019, 42(14), 2390-2397.
[http://dx.doi.org/10.1002/jssc.201900250] [PMID: 31038270]
[44]
Zhou, Y.; Zhang, H.; Wang, X.; Qi, D.; Gu, W.; Wu, D.; Liu, B. Development of a heart-cutting supercritical fluid chromatography-high-performance liquid chromatography coupled to tandem mass spectrometry for the determination of four tobacco-specific nitrosamines in mainstream smoke. Anal. Bioanal. Chem., 2019, 411(13), 2961-2969.
[http://dx.doi.org/10.1007/s00216-019-01746-w] [PMID: 30877347]
[45]
Chen, Y.; Yu, Y.; Liu, X.; Yang, Y.; Lu, P.; Hu, D. Development and validation of a liquid chromatography-tandem mass spectrometry method for multiresidue determination of 25 herbicides in soil and tobacco. Chromatographia, 2020, 83(2), 229-239.
[http://dx.doi.org/10.1007/s10337-019-03834-6]
[46]
Losso, K.; Cardini, J.; Huber, S.; Kappacher, C.; Jakschitz, T.; Rainer, M.; Bonn, G.K. Rapid differentiation and quality control of tobacco products using direct analysis in real time mass spectrometry and liquid chromatography mass spectrometry. Talanta, 2022, 238(Pt 2), 123057.
[http://dx.doi.org/10.1016/j.talanta.2021.123057] [PMID: 34801913]
[47]
Chen, Y.; Chen, W.; Lan, Y.; Wang, K.; Wu, Y.; Zhong, X.; Ying, K.; Li, J.; Yang, G. Determination of 18 phenolic acids in tobacco and rhizosphere soil by ultra high performance liquid chromatography combined with triple quadrupole mass spectrometry. J. Sep. Sci., 2019, 42(4), 816-825.
[http://dx.doi.org/10.1002/jssc.201800819] [PMID: 30580494]
[48]
Paul, A.; Khan, Z.; Bhattacharyya, A.; Majumder, S.; Banerjee, K. Multiclass pesticide residue analysis in tobacco (Nicotiana tabacum) using high performance liquid chromatography-high resolution (Orbitrap) mass spectrometry: A simultaneous screening and quantitative method. J. Chromatogr. A, 2021, 1648, 462208.
[http://dx.doi.org/10.1016/j.chroma.2021.462208] [PMID: 34000594]
[49]
Avagyan, R.; Spasova, M.; Lindholm, J. Determination of nicotine-related impurities in nicotine pouches and tobacco-containing products by liquid chromatography-tandem mass spectrometry. Separations, 2021, 8(6), 77.
[http://dx.doi.org/10.3390/separations8060077]
[50]
Xiong, W.; Jing, H.; Guo, D.; Wang, Y.; Yang, F. A novel method for the determination of fungicide residues in tobacco by ultra-performance liquid chromatography-tandem mass spectrometry combined with pass-through solid-phase extraction. Chromatographia, 2021, 84(8), 729-740.
[http://dx.doi.org/10.1007/s10337-021-04056-5]
[51]
Chen, H.C.; Chen, Y.Y.; Chao, M.R.; Chang, Y.Z. Validation of a high-throughput method for simultaneous determination of areca nut and tobacco biomarkers in hair using microwave-assisted extraction and isotope dilution liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal., 2022, 216, 114775.
[http://dx.doi.org/10.1016/j.jpba.2022.114775] [PMID: 35490505]
[52]
Ishizaki, A.; Kataoka, H. A sensitive method for the determination of tobacco-specific nitrosamines in mainstream and sidestream smokes of combustion cigarettes and heated tobacco products by online in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta, 2019, 1075, 98-105.
[http://dx.doi.org/10.1016/j.aca.2019.04.073] [PMID: 31196428]
[53]
Chen, A.X.; Akmam Morsed, F.; Cheah, N.P. simple method to simultaneously determine the level of nicotine, glycerol, propylene glycol, and triacetin in heated tobacco products by gas chromatography-flame-ionization detection. J. AOAC Int., 2022, 105(1), 46-53.
[http://dx.doi.org/10.1093/jaoacint/qsab140] [PMID: 34648035]
[54]
Cai, K.; Gao, W.; Yuan, Y.; Gao, C.; Zhao, H.; Lin, Y.; Pan, W.; Lei, B. An improved in situ acetylation with dispersive liquid-liquid microextraction followed by gas chromatography–mass spectrometry for the sensitive determination of phenols in mainstream tobacco smoke. J. Chromatogr. A, 2019, 1603, 401-406.
[http://dx.doi.org/10.1016/j.chroma.2019.05.007] [PMID: 31122729]
[55]
Cai, K.; Zhao, H.; Xiang, Z.; Cai, B.; Pan, W.; Lei, B. Enzymatic hydrolysis followed by gas chromatography-mass spectroscopy for determination of glycosides in tobacco and method optimization by response surface methodology. Anal. Methods, 2014, 6(17), 7006-7014.
[http://dx.doi.org/10.1039/C4AY01056F]
[56]
Amorós-Pérez, A.; Cano-Casanova, L.; Román-Martínez, M.C.; Lillo-Ródenas, M.Á. Comparison of particulate matter emission and soluble matter collected from combustion cigarettes and heated tobacco products using a setup designed to simulate puffing regimes. Chem. Eng. J. Adv., 2021, 8, 100144.
[http://dx.doi.org/10.1016/j.ceja.2021.100144]
[57]
Zhang, J.D.; Zhou, Q.; Zhang, D.H.Y.; Yang, G.Y.; Zhang, C.M.; Wu, Y.P.; Xu, Y.; Chen, J.H.; Kong, W.S.; Kong, G.H.; Wang, J. The agronomic traits, alkaloids analysis, FT-IR and 2DCOS-IR spectroscopy identification of the low-nicotine-content nontransgenic tobacco edited by CRISPR–Cas9. Molecules, 2022, 27, 3817.
[http://dx.doi.org/10.3390/molecules27123817]
[58]
Barathi, P.; Kumar, A.S. Quercetin tethered pristine-multiwalled carbon nanotube modified glassy carbon electrode as an efficient electrochemical detector for flow injection analysis of hydrazine in cigarette tobacco samples. Electrochim. Acta, 2014, 135, 1-10.
[http://dx.doi.org/10.1016/j.electacta.2014.05.003]
[59]
Mishra, P.; Kumar, R.; Dwivedi, A.; Rai, A.K. Analysis of constituents present in smokeless tobacco (Nicotiana tabacum) using spectroscopic techniques. Methods Appl. Fluoresc., 2022, 10(3), 34001.
[http://dx.doi.org/10.1088/2050-6120/ac5e11] [PMID: 35290966]
[60]
Pérez-Olmos, R.; Rios, A.; Fernández, J.R.; Lapa, R.A.S.; Lima, J.L.F.C. Construction and evaluation of ion selective electrodes for nitrate with a summing operational amplifier. Application to tobacco analysis. Talanta, 2001, 53(4), 741-748.
[http://dx.doi.org/10.1016/S0039-9140(00)00526-9] [PMID: 18968163]
[61]
Jorgenson, J.W.; Lukacs, K.D. Zone electrophoresis in open-tubular glass capillaries. Anal. Chem., 1981, 53(8), 1298-1302.
[http://dx.doi.org/10.1021/ac00231a037]
[62]
Kašička, V. Recent developments in capillary and microchip electroseparations of peptides (2019–mid 2021). Electrophoresis, 2022, 43(1-2), 82-108.
[http://dx.doi.org/10.1002/elps.202100243] [PMID: 34632606]
[63]
Valdés, A.; Álvarez-Rivera, G.; Socas-Rodríguez, B.; Herrero, M.; Cifuentes, A. Capillary electromigration methods for food analysis and foodomics: Advances and applications in the period February 2019-February 2021. Electrophoresis, 2022, 43(1-2), 37-56.
[http://dx.doi.org/10.1002/elps.202100201] [PMID: 34473359]
[64]
Ta, H.Y.; Collin, F.; Perquis, L.; Poinsot, V.; Ong-Meang, V.; Couderc, F. Twenty years of amino acid determination using capillary electrophoresis: A review. Anal. Chim. Acta, 2021, 1174, 338233.
[http://dx.doi.org/10.1016/j.aca.2021.338233] [PMID: 34247732]
[65]
Hancu, G.; Papp, L.A.; Szekely-Szentmiklosi, B.; Kelemen, H. The use of antibiotics as chiral selectors in capillary electrophoresis: A review. Molecules, 2022, 27(11), 3601.
[http://dx.doi.org/10.3390/molecules27113601] [PMID: 35684535]
[66]
Zhang, C.; Woolfork, A.G.; Suh, K.; Ovbude, S.; Bi, C.; Elzoeiry, M.; Hage, D.S. Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: A review. J. Pharm. Biomed. Anal., 2020, 177, 112882.
[http://dx.doi.org/10.1016/j.jpba.2019.112882] [PMID: 31542417]
[67]
Wang, Y.; Adeoye, D.I.; Ogunkunle, E.O.; Wei, I.A.; Filla, R.T.; Roper, M.G. Affinity capillary electrophoresis: A critical review of the literature from 2018 to 2020. Anal. Chem., 2021, 93(1), 295-310.
[http://dx.doi.org/10.1021/acs.analchem.0c04526] [PMID: 33185441]
[68]
Xu, M.; Zhang, H.; Tang, T.; Zhou, J.; Zhou, W.; Tan, S.; He, B. Potential and applications of capillary electrophoresis for analyzing traditional Chinese medicine: A critical review. Analyst, 2021, 146(15), 4724-4736.
[http://dx.doi.org/10.1039/D1AN00767J] [PMID: 34269779]
[69]
Helena, H.; Ivona, V. Roman, Ř.; František, F. Current applications of capillary electrophoresis‐mass spectrometry for the analysis of biologically important analytes in urine (2017 to mid‐2021): A review. J. Sep. Sci., 2022, 45(1), 305-324.
[http://dx.doi.org/10.1002/jssc.202100621] [PMID: 34538010]
[70]
Yang, S.S.; Smetena, I.; Goldsmith, A.I. Evaluation of micellar electrokinetic capillar chromatography for the analysis of selected tobacco alkaloids. J. Chromatogr. A, 1996, 746(1), 131-136.
[http://dx.doi.org/10.1016/0021-9673(96)00314-7] [PMID: 8885385]
[71]
Lin, Y.H.; Feng, C.H.; Wang, S.W.; Ko, P.Y.; Lee, M.H.; Chen, Y.L. Determination of nicotine in tobacco by chemometric optimization and cation-selective exhaustive injection in combination with sweeping-micellar electrokinetic chromatography. J. Anal. Methods Chem., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/869719] [PMID: 26101695]
[72]
Li, S.F.Y. Capillary Electrophoresis: Principles, Practice, and Applications; Elsevier: Amsterdam, 1992.
[73]
Ewing, A.G.; Wallingford, R.A.; Olefirowicz, T.M. Capillary electrophoresis. Anal. Chem., 1989, 61(4), 292A-303A.
[http://dx.doi.org/10.1021/ac00179a722] [PMID: 2712298]
[74]
Weinberger, R. Practical Capillary Electrophoresis; Academic Press: Boston, 1993.
[75]
Kuhn, R.; Hoffstetter-Kuhn, S. Capillary Electrophoresis: Principles and Practice; Springer-Verlag: New York, 1993.
[http://dx.doi.org/10.1007/978-3-642-78058-5]
[76]
Gao, Z.; Zhong, W. Recent (2018–2020) development in capillary electrophoresis. Anal. Bioanal. Chem., 2022, 414(1), 115-130.
[http://dx.doi.org/10.1007/s00216-021-03290-y] [PMID: 33754195]
[77]
Rabanes, H.R.; Guidote, A.M., Jr; Quirino, J.P. Capillary electrophoresis of natural products: Highlights of the last five years (2006-2010). Electrophoresis, 2012, 33(1), 180-195.
[http://dx.doi.org/10.1002/elps.201100223] [PMID: 22147686]
[78]
Jarvas, G.; Guttman, A. Miękus, N.; Bączek, T.; Jeong, S.; Chung, D.S.; Pätoprstý, V.; Masár, M.; Hutta, M.; Datinská, V.; Foret, F. Practical sample pretreatment techniques coupled with capillary electrophoresis for real samples in complex matrices. Trends Analyt. Chem., 2020, 122, 115702.
[http://dx.doi.org/10.1016/j.trac.2019.115702]
[79]
Harvanová, J.; Bloom, L. Capillary electrophoresis technique for metal species determination: A review. J. Liq. Chromatogr. Relat. Technol., 2015, 38(3), 371-380.
[http://dx.doi.org/10.1080/10826076.2014.941264]
[80]
Sádecká, J.; Polonský, J. Determination of organic acids in tobacco by capillary isotachophoresis. J. Chromatogr. A, 2003, 988(1), 161-165.
[http://dx.doi.org/10.1016/S0021-9673(03)00033-5] [PMID: 12647831]
[81]
Saeed, M.; Depala, M.; Craston, D.H.; Anderson, I.G.M. Application of capillary electrochromatography (CEC) for the analysis of phenols in mainstream and sidestream tobacco smoke. Chromatographia, 1999, 49(7-8), 391-398.
[http://dx.doi.org/10.1007/BF02467612]
[82]
Gebauer, P.; Beckers, J.L. Boček, P. Theory of system zones in capillary zone electrophoresis. Electrophoresis, 2002, 23(12), 1779-1785.
[http://dx.doi.org/10.1002/1522-2683(200206)23:12<1779:AID-ELPS1779>3.0.CO;2-G] [PMID: 12116120]
[83]
Liu, K.P.; Xia, B.B.; Zhang, X.Y. Review of QSPR modeling of mobilities of peptides in capillary zone electrophoresis. J. Liq. Chromatogr. Relat. Technol., 2008, 31(11-12), 1808-1822.
[http://dx.doi.org/10.1080/10826070802129001]
[84]
Shihabi, Z. Review: Sample concentration based on inclusion of organic solvents in capillary zone electrophoresis. Curr. Pharm. Anal., 2006, 2(1), 9-15.
[http://dx.doi.org/10.2174/157341206775474025]
[85]
Opekar, F.; Coufal, P.; Štulík, K. Rapid capillary zone electrophoresis along short separation pathways and its use in some hyphenated systems: A critical review. Chem. Rev., 2009, 109(9), 4487-4499.
[http://dx.doi.org/10.1021/cr900018r] [PMID: 19537776]
[86]
Hiltunen, S.; Sirén, H. Analysis of monosaccharides and oligosaccharides in the pulp and paper industry by use of capillary zone electrophoresis: A review. Anal. Bioanal. Chem., 2013, 405(17), 5773-5784.
[http://dx.doi.org/10.1007/s00216-013-7031-x] [PMID: 23715674]
[87]
Terabe, S.; Otsuka, K.; Ichikawa, K.; Tsuchiya, A.; Ando, T. Electrokinetic separations with micellar solutions and open-tubular capillaries. Anal. Chem., 1984, 56(1), 111-113.
[http://dx.doi.org/10.1021/ac00265a031]
[88]
Pyell, U. Micellar electrokinetic chromatography – From theoretical concepts to real samples (Review). Fresenius J. Anal. Chem., 2001, 371(6), 691-703.
[http://dx.doi.org/10.1007/s002160100981] [PMID: 11768454]
[89]
Silva, M. Micellar electrokinetic chromatography: A review of methodological and instrumental innovations focusing on practical aspects. Electrophoresis, 2013, 34(1), 141-158.
[http://dx.doi.org/10.1002/elps.201200349] [PMID: 23161127]
[90]
Malá, Z.; Gebauer, P. Recent progress in analytical capillary isotachophoresis (2018 - March 2022). J. Chromatogr. A, 2022, 1677, 463337.
[http://dx.doi.org/10.1016/j.chroma.2022.463337] [PMID: 35868155]
[91]
Malá, Z.; Gebauer, P. Capillary isotachophoresis with electrospray-ionization mass-spectrometric detection: Cationic electrolyte systems in the medium-alkaline range for selective analysis of medium strong bases. J. Chromatogr. A, 2020, 1618, 460907.
[http://dx.doi.org/10.1016/j.chroma.2020.460907] [PMID: 31987524]
[92]
Roy, D.; Colyer, C.L. Nitrogen-doped carbon dots aid in the separation of ssDNA molecules of different length by capillary transient isotachophoresis (ctITP) with laser-induced fluorescence (LIF) detection. J. Chromatogr. A, 2021, 1641, 461990.
[http://dx.doi.org/10.1016/j.chroma.2021.461990] [PMID: 33640806]
[93]
Piestansky, J.; Matuskova, M.; Cizmarova, I.; Majerova, P.; Kovac, A.; Mikus, P. Ultrasensitive determination of serotonin in human urine by a two dimensional capillary isotachophoresis-capillary zone electrophoresis hyphenated with tandem mass spectrometry. J. Chromatogr. A, 2021, 1648, 462190.
[http://dx.doi.org/10.1016/j.chroma.2021.462190] [PMID: 33979756]
[94]
Miao, P.; Zhang, L.; Zhang, J.; Ma, M.; Du, Y.; Gan, J.; Yang, J. Metal organic framework- modified monolithic column immobilized with pepsin for enantioseparation in capillary electrochromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2022, 1203, 123306.
[http://dx.doi.org/10.1016/j.jchromb.2022.123306] [PMID: 35635939]
[95]
Sun, G.; Tang, W.; Lu, Y.; Row, K.H. Enantioseparation by simultaneous biphasic recognition using mobile phase additive and chiral stationary phase in capillary electrochromatography. J. Chromatogr. A, 2022, 1666, 462856.
[http://dx.doi.org/10.1016/j.chroma.2022.462856] [PMID: 35123168]
[96]
Declerck, S.; Vander Heyden, Y.; Mangelings, D. Enantioseparations of pharmaceuticals with capillary electrochromatography: A review. J. Pharm. Biomed. Anal., 2016, 130, 81-99.
[http://dx.doi.org/10.1016/j.jpba.2016.04.024] [PMID: 27156645]
[97]
Schweitz, L.; Spégel, P.; Nilsson, S. Approaches to molecular imprinting based selectivity in capillary electrochromatography. Electrophoresis, 2001, 22(19), 4053-4063.
[http://dx.doi.org/10.1002/1522-2683(200111)22:19<4053::AID-ELPS4053>3.0.CO;2-H] [PMID: 11824629]
[98]
Hajba, L.; Guttman, A. Recent advances in capillary electrochromatography of proteins and carbohydrates in the biopharmaceutical and biomedical field. Crit. Rev. Anal. Chem., 2021, 51(3), 289-298.
[http://dx.doi.org/10.1080/10408347.2020.1720589] [PMID: 32022586]
[99]
Fanali, C. Enantiomers separation by capillary electrochromatography. Trends Analyt. Chem., 2019, 120, 115640.
[http://dx.doi.org/10.1016/j.trac.2019.115640]
[100]
Fanali, S.; Chankvetadze, B. History, advancement, bottlenecks, and future of chiral capillary electrochromatography. J. Chromatogr. A, 2021, 1637, 461832.
[http://dx.doi.org/10.1016/j.chroma.2020.461832] [PMID: 33383238]
[101]
Qi, L.; Qiao, J. Advances in stimuli-responsive polymeric coatings for open-tubular capillary electrochromatography. J. Chromatogr. A, 2022, 1670, 462957.
[http://dx.doi.org/10.1016/j.chroma.2022.462957] [PMID: 35334374]
[102]
Hu, L.F.; Yin, S.J.; Zhang, H.; Yang, F.Q. Recent developments of monolithic and open‐tubular capillary electrochromatography (2017–2019). J. Sep. Sci., 2020, 43(9-10), 1942-1966.
[http://dx.doi.org/10.1002/jssc.201901168] [PMID: 31909566]
[103]
Ahmed, M.A.; Felisilda, B.M.B.; Quirino, J.P. Recent advancements in open-tubular liquid chromatography and capillary electrochromatography during 2014–2018. Anal. Chim. Acta, 2019, 1088, 20-34.
[http://dx.doi.org/10.1016/j.aca.2019.08.016] [PMID: 31623713]
[104]
Chen, G.; Zhu, Y.; Wang, Y.; Xu, X.; Lu, T. Determination of bioactive constituents in traditional Chinese medicines by CE with electrochemical detection. Curr. Med. Chem., 2006, 13(21), 2467-2485.
[http://dx.doi.org/10.2174/092986706778201657] [PMID: 17017905]
[105]
Swinney, K.; Bornhop, D.J. Detection in capillary electrophoresis. Electrophoresis, 2000, 21(7), 1239-1250.
[http://dx.doi.org/10.1002/(SICI)1522-2683(20000401)21:7<1239::AID-ELPS1239>3.0.CO;2-6] [PMID: 10826668]
[106]
Wuethrich, A.; Quirino, J.P. Derivatisation for separation and detection in capillary electrophoresis (2015–2017). Electrophoresis, 2018, 39(1), 82-96.
[http://dx.doi.org/10.1002/elps.201700252] [PMID: 28758685]
[107]
Amankwa, L.N.; Albin, M.; Kuhr, W.G. Fluorescence detection in capillary electrophoresis. Trends Analyt. Chem., 1992, 11(3), 114-120.
[http://dx.doi.org/10.1016/0165-9936(92)85009-T]
[108]
Mbuna, J.; Kaneta, T. Capillary electrophoresis with laser-induced fluorescence detection for application in intracellular investigation of anthracyclines and multidrug resistance proteins. Anal. Sci., 2015, 31(11), 1121-1128.
[http://dx.doi.org/10.2116/analsci.31.1121] [PMID: 26561255]
[109]
Schulze, P.; Belder, D. Label-free fluorescence detection in capillary and microchip electrophoresis. Anal. Bioanal. Chem., 2009, 393(2), 515-525.
[http://dx.doi.org/10.1007/s00216-008-2452-7] [PMID: 18982318]
[110]
Tseng, H.M.; Li, Y.; Barrett, D.A. Bioanalytical applications of capillary electrophoresis with laser-induced native fluorescence detection. Bioanalysis, 2010, 2(9), 1641-1653.
[http://dx.doi.org/10.4155/bio.10.72] [PMID: 21083292]
[111]
Lacroix, M.; Poinsot, V.; Fournier, C.; Couderc, F. Laser-induced fluorescence detection schemes for the analysis of proteins and peptides using capillary electrophoresis. Electrophoresis, 2005, 26(13), 2608-2621.
[http://dx.doi.org/10.1002/elps.200410414] [PMID: 15948219]
[112]
de Kort, B.J.; de Jong, G.J.; Somsen, G.W. Native fluorescence detection of biomolecular and pharmaceutical compounds in capillary electrophoresis: Detector designs, performance and applications: A review. Anal. Chim. Acta, 2013, 766, 13-33.
[http://dx.doi.org/10.1016/j.aca.2012.12.006] [PMID: 23427797]
[113]
Klampfl, C.W. Recent advances in the application of capillary electrophoresis with mass spectrometric detection. Electrophoresis, 2006, 27(1), 3-34.
[http://dx.doi.org/10.1002/elps.200500523] [PMID: 16315165]
[114]
Issaq, H.J.; Janini, G.M.; Chan, K.C.; Veenstra, T.D. Sheathless electrospray ionization interfaces for capillary electrophoresis–mass spectrometric detection. J. Chromatogr. A, 2004, 1053(1-2), 37-42.
[http://dx.doi.org/10.1016/j.chroma.2004.08.116] [PMID: 15543970]
[115]
Liu, X.; Yang, L.X.; Lu, Y.T. Determination of biogenic amines by 3-(2-furoyl)quinoline-2-carboxaldehyde and capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. A, 2003, 998(1-2), 213-219.
[http://dx.doi.org/10.1016/S0021-9673(03)00637-X] [PMID: 12862385]
[116]
Mao, H.; Ye, X.; Chen, W.; Geng, W.; Chen, G. Fabrication of carbon nanotube-polylactic acid composite electrode by melt compounding for capillary electrophoretic determination of tectoridin and irigenin in Belamcandae rhizoma. J. Pharm. Biomed. Anal., 2019, 175, 112769.
[http://dx.doi.org/10.1016/j.jpba.2019.07.017] [PMID: 31398628]
[117]
Wan, D.; Han, Y.; Li, F.; Mao, H.; Chen, G. Far infrared-assisted removal of extraction solvent for capillary electrophoretic determination of the bioactive constituents in Plumula Nelumbinis. Electrophoresis, 2019, 40(4), 582-586.
[http://dx.doi.org/10.1002/elps.201800477] [PMID: 30488648]
[118]
Chen, Q.; Zhang, L.; Chen, G. Facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates. Anal. Chem., 2012, 84(1), 171-178.
[http://dx.doi.org/10.1021/ac2022772] [PMID: 22098222]
[119]
Baldwin, R.P. Recent advances in electrochemical detection in capillary electrophoresis. Electrophoresis, 2000, 21(18), 4017-4028.
[http://dx.doi.org/10.1002/1522-2683(200012)21:18<4017::AID-ELPS4017>3.0.CO;2-5] [PMID: 11192121]
[120]
Matysik, F.M. End-column electrochemical detection for capillary electrophoresis. Electroanalysis, 2000, 12(17), 1349-1355.
[http://dx.doi.org/10.1002/1521-4109(200011)12:17<1349::AID-ELAN1349>3.0.CO;2-9] [PMID: 10857638]
[121]
Yu, H.; Xu, X.; Sun, J.; You, T. Recent progress for capillary electrophoresis with electrochemical detection. Open Chem., 2012, 10(3), 639-651.
[http://dx.doi.org/10.2478/s11532-012-0005-6]
[122]
Šolínová, V. Kašička, V. Recent applications of conductivity detection in capillary and chip electrophoresis. J. Sep. Sci., 2006, 29(12), 1743-1762.
[http://dx.doi.org/10.1002/jssc.200600167] [PMID: 16970183]
[123]
Elbashir, A.A.; Aboul-Enein, H.Y. Recent advances in applications of capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D): An update. Biomed. Chromatogr., 2012, 26(8), 990-1000.
[http://dx.doi.org/10.1002/bmc.2729] [PMID: 22430262]
[124]
Tůma, P.; Opekar, F.; Dlouhý, P. Capillary and microchip electrophoresis with contactless conductivity detection for analysis of foodstuffs and beverages. Food Chem., 2022, 375, 131858.
[http://dx.doi.org/10.1016/j.foodchem.2021.131858] [PMID: 34923397]
[125]
Matysik, F.M. Application of non-aqueous capillary electrophoresis with electrochemical detection to the determination of nicotine in tobacco. J. Chromatogr. A, 1999, 853(1-2), 27-34.
[http://dx.doi.org/10.1016/S0021-9673(99)00512-9] [PMID: 10486709]
[126]
Hodek, O. Křížek, T.; Coufal, P.; Ryšlavá, H. Design of experiments for amino acid extraction from tobacco leaves and their subsequent determination by capillary zone electrophoresis. Anal. Bioanal. Chem., 2017, 409(9), 2383-2391.
[http://dx.doi.org/10.1007/s00216-017-0184-2] [PMID: 28084512]
[127]
Mao, H.; Zhang, Y.; Chen, G. Determination of three phenolic acids in Cimicifugae rhizoma by capillary electrophoresis with a graphene–phenolic resin composite electrode. Anal. Methods, 2019, 11(3), 303-308.
[http://dx.doi.org/10.1039/C8AY01942H]
[128]
Wang, X.; Wang, J.; Zhang, L.; Chen, G. Carbon nanotube-phenolic resin composite electrode fabricated by far infrared-assisted crosslinking for enhanced amperometric detection. Electroanalysis, 2019, 31(4), 756-765.
[http://dx.doi.org/10.1002/elan.201800604]
[129]
Jiang, H.L.; He, Y.Z.; Zhao, H.Z.; Hu, Y.Y. Determination of chlorogenic acid and rutin in cigarettes by an improved capillary electrophoresis indirect chemiluminescence system. Anal. Chim. Acta, 2004, 512(1), 111-119.
[http://dx.doi.org/10.1016/j.aca.2004.02.021]
[130]
Li, Z.; Huang, D.; Tang, Z.; Deng, C.; Zhang, X. Fast determination of chlorogenic acid in tobacco residues using microwave-assisted extraction and capillary zone electrophoresis technique. Talanta, 2010, 82(4), 1181-1185.
[http://dx.doi.org/10.1016/j.talanta.2010.06.037] [PMID: 20801316]
[131]
Sun, J.; Du, H.; You, T. Determination of nicotine and its metabolite cotinine in urine and cigarette samples by capillary electrophoresis coupled with electrochemiluminescence. Electrophoresis, 2011, 32(16), 2148-2154.
[http://dx.doi.org/10.1002/elps.201100075] [PMID: 21792993]
[132]
Clarke, M.B. Quantitation of nicotine in tobacco products by capillary electrophoresis. J. AOAC Int., 2002, 85(1), 1-7.
[http://dx.doi.org/10.1093/jaoac/85.1.1] [PMID: 11878587]
[133]
Yang, S.S.; Smetena, I. Evaluation of capillary electrophoresis for the analysis of nicotine and selected minor alkaloids from tobacco. Chromatographia, 1995, 40(7-8), 375-378.
[http://dx.doi.org/10.1007/BF02269897]
[134]
Lochmann, H.; Bazzanella, A.; Kropsch, S.; Bächmann, K. Determination of tobacco alkaloids in single plant cells by capillary electrophoresis. J. Chromatogr. A, 2001, 917(1-2), 311-317.
[http://dx.doi.org/10.1016/S0021-9673(01)00627-6] [PMID: 11403483]
[135]
McCorquodale, E.M.; Boutrid, H.; Colyer, C.L. Enantiomeric separation of N′-nitrosonornicotine by capillary electrophoresis. Anal. Chim. Acta, 2003, 496(1-2), 177-184.
[http://dx.doi.org/10.1016/S0003-2670(03)00998-X]
[136]
Zhang, L.; Tang, X.; Sun, M. Simultaneous determination of histamine and polyamines by capillary zone electrophoresis with 4-fluor-7-nitro-2,1,3-benzoxadiazole derivatization and fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 820(2), 211-219.
[http://dx.doi.org/10.1016/j.jchromb.2005.03.033] [PMID: 15869910]
[137]
Li, F.; Jiang, K.; Wu, Q.; Li, Z.; Chen, G. Fabrication of graphene-cuprous oxide hybrid paste electrodes for capillary electrophoretic measurement of polyhydroxy compounds. Electroanalysis, 2022, 34, elan.202200183.
[http://dx.doi.org/10.1002/elan.202200183]
[138]
Chen, W.H.; Lin, C.C.; Chen, T.S.; Misra, T.K.; Liu, C.Y. Capillary electrochromatographic analysis of aliphatic mono- and polycarboxylic acids. Electrophoresis, 2003, 24(6), 970-977.
[http://dx.doi.org/10.1002/elps.200390140] [PMID: 12658684]
[139]
Lagoutte, D.; Lombard, G.; Nisseron, S.; Papet, M.P.; Saint-Jalm, Y. Determination of organic acids in cigarette smoke by high-performance liquid chromatography and capillary electrophoresis. J. Chromatogr. A, 1994, 684(2), 251-257.
[http://dx.doi.org/10.1016/0021-9673(94)00593-1]
[140]
Ellington, J.J.; Wolfe, N.L.; Garrison, A.W.; Evans, J.J.; Avants, J.K.; Teng, Q. Determination of perchlorate in tobacco plants and tobacco products. Environ. Sci. Technol., 2001, 35(15), 3213-3218.
[http://dx.doi.org/10.1021/es0106321] [PMID: 11506007]
[141]
Kawamura, Y.; Takahashi, M.; Arimura, G.; Isayama, T.; Irifune, K.; Goshima, N.; Morikawa, H. Determination of levels of NO3-, NO2- and NH4+ ions in leaves of various plants by capillary electrophoresis. Plant Cell Physiol., 1996, 37(6), 878-880.
[http://dx.doi.org/10.1093/oxfordjournals.pcp.a029027]
[142]
Chang, Y.H.; Huang, C.W.; Fu, S.F.; Wu, M.Y.; Wu, T.; Lin, Y.W. Determination of salicylic acid using a magnetic iron oxide nanoparticle-based solid-phase extraction procedure followed by an online concentration technique through micellar electrokinetic capillary chromatography. J. Chromatogr. A, 2017, 1479, 62-70.
[http://dx.doi.org/10.1016/j.chroma.2016.12.018] [PMID: 27988078]
[143]
Liu, C.B.; Li, F.R.; Zhang, X.L.; Li, Z.J.; Chen, G. Simultaneous determination of nicotine and phenolic compounds in tobacco by capillary electrophoresis with pipette tip electrode. Curr. Anal. Chem., 2022.
[http://dx.doi.org/10.2174/1573411018666220815152616]
[144]
Xie, F.; Yu, A.; Cheng, Y.; Qi, R.; Li, Q.; Liu, H.; Zhang, S. Rapid separation and determination of five phenolic acids in tobacco by CE. Chromatographia, 2010, 72(11-12), 1207-1212.
[http://dx.doi.org/10.1365/s10337-010-1781-9]
[145]
Fu, G.N.; He, Y.Z.; Wang, L.; Wang, X.K. Determination of amino acids in tobacco samples by capillary electrophoresis/indirect absorbance detection with isolation of the electrolysis compartment and p-Aminobenzoic acid as a background electrolyte. Anal. Sci., 2006, 22(6), 883-887.
[http://dx.doi.org/10.2116/analsci.22.883] [PMID: 16772690]
[146]
Zhang, L.Y.; Sun, M.X. Selective determination of γ-aminobutyric acid, glutamate and alanine by mixed micellar electrokinetic chromatography and fluorescence detection. J. Chromatogr. A, 2005, 1095(1-2), 185-188.
[http://dx.doi.org/10.1016/j.chroma.2005.09.050] [PMID: 16221476]
[147]
Zhang, J.; Hu, Z.; Chen, X. Quantification of glutathione and glutathione disulfide in human plasma and tobacco leaves by capillary electrophoresis with laser-induced fluorescence detection. Talanta, 2005, 65(4), 986-990.
[http://dx.doi.org/10.1016/j.talanta.2004.08.030] [PMID: 18969899]
[148]
Zhang, L.Y.; Sun, M.X. Fast determination of glutathione by capillary electrophoresis with fluorescence detection using β-cyclodextrin as modifier. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(31), 4051-4054.
[http://dx.doi.org/10.1016/j.jchromb.2009.10.001] [PMID: 19858002]
[149]
Deng, B.; Lu, J.; Yan, J. Separation of alcohol-soluble proteins from tobacco seeds by capillary zone electrophoresis. J. Chromatogr. A, 1998, 803(1-2), 321-327.
[http://dx.doi.org/10.1016/S0021-9673(97)01256-9]
[150]
Liu, B.F.; Zhong, X.H.; Lu, Y.T. Analysis of plant hormones in tobacco flowers by micellar electrokinetic capillary chromatography coupled with on-line large volume sample stacking. J. Chromatogr. A, 2002, 945(1-2), 257-265.
[http://dx.doi.org/10.1016/S0021-9673(01)01503-5] [PMID: 11860141]
[151]
Liu, X.; Ma, L.; Lin, Y.W.; Lu, Y.T. Determination of abscisic acid by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. A, 2003, 1021(1-2), 209-213.
[http://dx.doi.org/10.1016/j.chroma.2003.09.004] [PMID: 14735990]
[152]
Liu, H.; Song, J.; Han, P.; Li, Y.; Zhang, S.; Liu, H.; Wu, Y. Separation and determination of 2,4-D, dicamba and 2,4,5-T in tobacco by nonaqueous capillary electrophoresis. J. Sep. Sci., 2006, 29(7), 1038-1044.
[http://dx.doi.org/10.1002/jssc.200500373] [PMID: 16833238]
[153]
Lanças, F.M.; Rissato, S.R.; Galhiane, M.S. Analysis of Carbaryl and carbofuran in tobacco samples by HRGC, HPLC, and CZE. J. High Resolut. Chromatogr., 1996, 19(4), 200-206.
[http://dx.doi.org/10.1002/jhrc.1240190405]
[154]
Zhao, Y.; Zhao, J.; Zhao, C.; Zhou, H.; Li, Y.; Zhang, J.; Li, L.; Hu, C.; Li, W.; Peng, X.; Lu, X.; Lin, F.; Xu, G. A metabolomics study delineating geographical location-associated primary metabolic changes in the leaves of growing tobacco plants by GC-MS and CE-MS. Sci. Rep., 2015, 5(1), 16346.
[http://dx.doi.org/10.1038/srep16346] [PMID: 26549189]
[155]
Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev., 2022, 453, 214305.
[http://dx.doi.org/10.1016/j.ccr.2021.214305]
[156]
Umapathi, R.; Sonwal, S.; Lee, M.J.; Mohana Rani, G.; Lee, E.S.; Jeon, T.J.; Kang, S.M.; Oh, M.H.; Huh, Y.S. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coord. Chem. Rev., 2021, 446, 214061.
[http://dx.doi.org/10.1016/j.ccr.2021.214061]
[157]
Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol., 2022, 119, 69-89.
[http://dx.doi.org/10.1016/j.tifs.2021.11.018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy