Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Innate Immune Response in Hypertension

Author(s): Juan Bautista De Sanctis*

Volume 28, Issue 36, 2022

Published on: 06 October, 2022

Page: [2984 - 2990] Pages: 7

DOI: 10.2174/1381612828666220922112412

Price: $65

Abstract

Even though an association between inflammation and hypertension has been known for many years, it has not been simple to ascertain the role of several physiological responses involved. The innate immune response plays a critical role in these physiological responses. Innate immune cells can be activated directly by shear stress, activate the inflammasome and produce numerous cytokines and soluble mediators essential in hypertension. NFkB activation is mainly involved in the activation of innate immune cells. Shear stress also stimulates the expression of DAMP and PAMP receptors, enhancing pathogen and danger signals and magnifying inflammation. The adaptative immune response is activated with the increased antigen presentation resulting from the insults mentioned. Chronic inflammation may lead to autoimmunity. Peripheral hypoxia, a consequence of hypertension, activates hypoxia-inducing factors 1-α and 1-β (HIF-1α, HIF-1β), which modulate innate immune cells and promote inflammation. HIF-1α is involved in the upregulation of oxygen and nitrogen radical production proteins. HIF-1β down-regulates antioxidant enzymes. However, the critical evidence of the role of innate immune cells in hypertension came from the results of clinical trials involving therapies blocking inflammatory cytokines and Toll-like receptor expression. Several lines of research have been conducted on this complex disease. Pro-tolerogenic innate immune cells, myeloid suppressor cells, and M2 macrophages may play a crucial role in promoting or resolving inflammation, cardiovascular diseases and hypertension, and should be studied in detail.

Keywords: Sodium transport, innate immune response, hypertension, inflammasome, hypoxia, Toll-like receptors, antihypertensive therapy.

[1]
Health topics. Hypertension. Word Health Organization Available from: https://www.who.int/news-room/fact-sheets/detail/hypertension Accessed June 26, 2022
[2]
Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med 2011; 17(11): 1402-9.
[http://dx.doi.org/10.1038/nm.2541] [PMID: 22064430]
[3]
Wenzel UO, Ehmke H, Bode M. Immune mechanisms in arterial hypertension: Recent advances. Cell Tissue Res 2021; 85(2): 393-404.
[4]
Rodríguez IB. The participation of immunity in the pathogenesis of arterial hypertension. Nefrología 2020; 40(1): 1-3.
[http://dx.doi.org/10.1016/j.nefroe.2019.04.005] [PMID: 31350092]
[5]
Rodríguez IB, Pons H, Quiroz Y, Johnson RJ. The immunological basis of hypertension. Am J Hypertens 2014; 27(11): 1327-37.
[http://dx.doi.org/10.1093/ajh/hpu142] [PMID: 25150828]
[6]
Primatesta P, Falaschetti E, Gupta S, Marmot MG, Poulter NR. Association between smoking and blood pressure: evidence from the health survey for England. Hypertension 2001; 37(2): 187-93.
[http://dx.doi.org/10.1161/01.HYP.37.2.187] [PMID: 11230269]
[7]
Qiu F, Liang CL, Liu H, et al. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget 2017; 8(1): 268-84.
[http://dx.doi.org/10.18632/oncotarget.13613] [PMID: 27902485]
[8]
Tsai SY, Huang WH, Chan HL, Hwang LC. The role of smoking cessation programs in lowering blood pressure: A retrospective cohort study. Tob Induc Dis 2021; 19: 82.
[http://dx.doi.org/10.18332/tid/142664] [PMID: 34720797]
[9]
Zhao H, Li Y, Zhang Y, He WY, Jin WN. Role of immune and inflammatory mechanisms in stroke: A review of current advances. Neuroimmunomodulation 2022; 1-14.
[http://dx.doi.org/10.1159/000524951] [PMID: 35640538]
[10]
Matsuda S, Mafune A, Kohda N, Hama T, Urashima M. Associations among smoking, MGMT hypermethylation, TP53-mutations, and relapse in head and neck squamous cell carcinoma. PLoS One 2020; 15(4): e0231932.
[http://dx.doi.org/10.1371/journal.pone.0231932] [PMID: 32324779]
[11]
Ye J, Wang Y, Wang Z, et al. Circulating IL 37 levels are elevated in patients with hypertension. Exp Ther Med 2021; 21(6): 558.
[http://dx.doi.org/10.3892/etm.2021.9990] [PMID: 33850530]
[12]
De Miguel C, Pelegrín P, Baroja MA, Cuevas S. Emerging role of the inflammasome and pyroptosis in hypertension. Int J Mol Sci 2021; 22(3): 1064.
[http://dx.doi.org/10.3390/ijms22031064] [PMID: 33494430]
[13]
Wilczynski SA, Wenceslau CF, McCarthy CG, Webb RC. A cytokine/bradykinin storm comparison: What is the relationship between hypertension and COVID-19? Am J Hypertens 2021; 34(4): 304-6.
[http://dx.doi.org/10.1093/ajh/hpaa217] [PMID: 33877321]
[14]
Satou R, Miyata K, Gonzalez VRA, Ingelfinger JR, Navar LG, Kobori H. Interferon‐γ biphasically regulates angiotensinogen expression via a JAK‐STAT pathway and Suppressor of Cytokine Signaling 1 (SOCS1) in renal proximal tubular cells. FASEB J 2012; 26(5): 1821-30.
[http://dx.doi.org/10.1096/fj.11-195198] [PMID: 22302831]
[15]
Penrose HM, Katsurada A, Miyata K, Urushihara M, Satou R. STAT1 regulates interferon-γ-induced angiotensinogen and MCP-1 expression in a bidirectional manner in primary cultured mesangial cells. J Renin Angiotensin Aldosterone Syst 2020; 21(3): 1470320320946527.
[http://dx.doi.org/10.1177/1470320320946527] [PMID: 32741247]
[16]
Davis GK, Fehrenbach DJ, Madhur MS. Interleukin 17A: Key player in the pathogenesis of hypertension and a potential therapeutic target. Curr Hypertens Rep 2021; 23(3): 13.
[http://dx.doi.org/10.1007/s11906-021-01128-7] [PMID: 33666761]
[17]
Saleh MA, Norlander AE, Madhur MS. Inhibition of interleukin-17A, but not interleukin-17F, signaling lowers blood pressure, and reduces end-organ inflammation in angiotensin II–induced hypertension. JACC Basic Transl Sci 2016; 1(7): 606-16.
[http://dx.doi.org/10.1016/j.jacbts.2016.07.009] [PMID: 28280792]
[18]
Wen Y, Crowley SD. Renal effects of cytokines in hypertension. Curr Opin Nephrol Hypertens 2018; 27(2): 70-6.
[http://dx.doi.org/10.1097/MNH.0000000000000385] [PMID: 29140820]
[19]
Rai A, Narisawa M, Li P, et al. Adaptive immune disorders in hypertension and heart failure: Focusing on T-cell subset activation and clinical implications. J Hypertens 2020; 38(10): 1878-89.
[http://dx.doi.org/10.1097/HJH.0000000000002456] [PMID: 32890260]
[20]
Xu S, Zhang J, Liu J, et al. The role of interleukin-10 family members in cardiovascular diseases. Int Immunopharmacol 2021; 94: 107475.
[http://dx.doi.org/10.1016/j.intimp.2021.107475] [PMID: 33662690]
[21]
Wahid A, Chen W, Wang X, Tang X. High-mobility group box 1 serves as an inflammation driver of cardiovascular disease. Biomed Pharmacother 2021; 139: 111555.
[http://dx.doi.org/10.1016/j.biopha.2021.111555] [PMID: 33865014]
[22]
Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol 2019; 19(8): 517-32.
[http://dx.doi.org/10.1038/s41577-019-0160-5] [PMID: 30992524]
[23]
Qiu Y, Liu Y, Tao J. Progress of clinical evaluation for vascular aging in humans. J Transl Int Med 2021; 9(1): 17-23.
[http://dx.doi.org/10.2478/jtim-2021-0002] [PMID: 33850797]
[24]
Deng C, Zhao L, Yang Z, et al. Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury. Acta Pharmacol Sin 2022; 43(3): 520-8.
[http://dx.doi.org/10.1038/s41401-021-00676-7] [PMID: 34040166]
[25]
Jung AR, Park YH, Shin DH, et al. HMGB1 promotes tumor progression and invasion through HMGB1/TNFR1/NF-κB axis in castration-resistant prostate cancer. J Urol 2021; 206(5) (Suppl. 3): 2215-27.
[http://dx.doi.org/10.1097/JU.0000000000002042.04] [PMID: 34094679]
[26]
Cardoso AL, Fernandes A, Aguilar PJA, et al. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47: 214-77.
[http://dx.doi.org/10.1016/j.arr.2018.07.004] [PMID: 30071357]
[27]
Diamond JA, Ismail H. Obstructive sleep apnea and cardiovascular disease. Clin Geriatr Med 2021; 37(3): 445-56.
[http://dx.doi.org/10.1016/j.cger.2021.04.006] [PMID: 34210449]
[28]
Lambden S, Cowburn AS, Macias D, et al. Endothelial cell regulation of systemic haemodynamics and metabolism acts through the HIF transcription factors. Intensive Care Med Exp 2021; 9(1): 28.
[http://dx.doi.org/10.1186/s40635-021-00390-y] [PMID: 34114090]
[29]
Semenza GL. Hypoxia-inducible factors: Roles in cardiovascular disease progression, prevention, and treatment. Cardiovasc Res 2022; cvac089.
[http://dx.doi.org/10.1093/cvr/cvac089] [PMID: 35687650]
[30]
Magen E, Mishal J, Paskin J, et al. Resistant arterial hypertension is associated with higher blood levels of complement C3 and C-reactive protein. J Clin Hypertens 2008; 10(9): 677-83.
[http://dx.doi.org/10.1111/j.1751-7176.2008.00002.x] [PMID: 18844762]
[31]
Xiao L, Harrison DG. Inflammation in hypertension. Can J Cardiol 2020; 36(5): 635-47.
[http://dx.doi.org/10.1016/j.cjca.2020.01.013] [PMID: 32389337]
[32]
Targoński R, Sadowski J, Price S, Targoński R. Sodium-induced inflammation—An invisible player in resistant hypertension. Hypertens Res 2020; 43(7): 629-33.
[http://dx.doi.org/10.1038/s41440-020-0428-y] [PMID: 32203452]
[33]
De Sanctis JB, García AH, Moreno D, Hajduch M. Coronavirus infection: An immunologists’ perspective. Scand J Immunol 2021; 93(6): e13043.
[http://dx.doi.org/10.1111/sji.13043] [PMID: 33783027]
[34]
Saavedra JM. Angiotensin receptor blockers are not just for hypertension anymore. Physiology 2021; 36(3): 160-73.
[http://dx.doi.org/10.1152/physiol.00036.2020] [PMID: 33904788]
[35]
Aneman I, Pienaar D, Suvakov S, Simic TP, Garovic VD, McClements L. Mechanisms of key innate immune cells in early- and late-onset preeclampsia. Front Immunol 2020; 11: 1864.
[http://dx.doi.org/10.3389/fimmu.2020.01864] [PMID: 33013837]
[36]
Garmendia JV, Gutiérrez Y, Blanca I, Bianco NE, De Sanctis JB. Nitric oxide in different types of hypertension during pregnancy. Clin Sci 1997; 93(5): 413-21.
[http://dx.doi.org/10.1042/cs0930413] [PMID: 9486086]
[37]
Anato V, Garmendia JV, Bianco NE, De Sanctis JB. Antihypertensive treatment decreased serum leptin levels in severe preeclampsia during pregnancy. Ann Nutr Metab 2001; 45(5): 190-2.
[http://dx.doi.org/10.1159/000046728] [PMID: 11585975]
[38]
Anato V, Garmendia JV, Bianco NE, De Sanctis JB. Serum leptin levels in different types of hypertension during pregnancy. Res Commun Mol Pathol Pharmacol 2000; 108(3-4): 147-53.
[PMID: 11913707]
[39]
Bravo PE, Morse S, Borne DM, Aguilar EA, Reisin E. Leptin and hypertension in obesity. Vasc Health Risk Manag 2006; 2(2): 163-9.
[http://dx.doi.org/10.2147/vhrm.2006.2.2.163] [PMID: 17319461]
[40]
Gruber T, Pan C, Contreras RE, et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab 2021; 33(6): 1155-1170.e10.
[http://dx.doi.org/10.1016/j.cmet.2021.04.007] [PMID: 33951475]
[41]
Wu O, Leng JH, Zhang X, et al. Controversial culprit of leptin in obesity hypertension: Clues from a case-control study with Chinese newly diagnosed adult early-onset obesity hypertensives. Clin Exp Hypertens 2022; 44(6): 495-501.
[http://dx.doi.org/10.1080/10641963.2022.2071920] [PMID: 35531968]
[42]
Rami AZA, Hamid AA, Anuar NNM, Aminuddin A, Ugusman A. Exploring the relationship of perivascular adipose tissue inflammation and the development of vascular pathologies. Mediators Inflamm 2022; 2022: 2734321.
[http://dx.doi.org/10.1155/2022/2734321] [PMID: 35177953]
[43]
Fernández RJC, De Ávila GJC, Martínez FML, et al. Myeloid-derived suppressor cells show different frequencies in diabetics and subjects with arterial hypertension. J Diabetes Res 2019; 2019: 1568457.
[http://dx.doi.org/10.1155/2019/1568457] [PMID: 31915708]
[44]
Zaman R, Hamidzada H, Epelman S. Exploring cardiac macrophage heterogeneity in the healthy and diseased myocardium. Curr Opin Immunol 2021; 68: 54-63.
[http://dx.doi.org/10.1016/j.coi.2020.09.005] [PMID: 33128959]
[45]
Rizzoni D, De Ciuceis C, Szczepaniak P, Paradis P, Schiffrin EL, Guzik TJ. Immune system and microvascular remodeling in humans. Hypertension 2022; 79(4): 691-705.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.121.17955] [PMID: 35098718]
[46]
Delaney JAC, Olson NC, Sitlani CM, et al. Natural killer cells, gamma delta T cells and classical monocytes are associated with systolic blood pressure in the Multi-Ethnic Study of Atherosclerosis (MESA). BMC Cardiovasc Disord 2021; 21(1): 45.
[http://dx.doi.org/10.1186/s12872-021-01857-2] [PMID: 33482725]
[47]
Hengel FE, Benitah JP, Wenzel UO. Mosaic theory revised: Inflammation and salt play central roles in arterial hypertension. Cell Mol Immunol 2022; 19(5): 561-76.
[http://dx.doi.org/10.1038/s41423-022-00851-8] [PMID: 35354938]
[48]
Lu X, Crowley SD. The immune system in hypertension: A lost shaker of salt 2021 Lewis K. DAHL memorial lecture. Hypertension 2022; 79(7): 1339-47.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.122.18554] [PMID: 35545942]
[49]
Higaki A, Mogi M. Dendritic cells as potential initiators of immune-mediated hypertensive disorders. Hypertens Res 2022; 45(3): 527-9.
[http://dx.doi.org/10.1038/s41440-021-00830-y] [PMID: 34961789]
[50]
Lu X, Zhang J, Wen Y, et al. Type 1 angiotensin receptors on CD11c-expressing cells protect against hypertension by regulating dendritic cell–mediated T cell activation. Hypertension 2022; 79(6): 1227-36.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.121.18734] [PMID: 35430875]
[51]
Van Beusecum JP, Barbaro NR, Smart CD, et al. Growth arrest specific-6 and Axl coordinate inflammation and hypertension. Circ Res 2021; 129(11): 975-91.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.319643] [PMID: 34565181]
[52]
Madhur MS, Elijovich F, Alexander MR, et al. Hypertension. Circ Res 2021; 128(7): 908-33.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.318052] [PMID: 33793336]
[53]
Ying W, Tang K, Avolio E, et al. Immunosuppression of macrophages underlies the cardioprotective effects of CST (Catestatin). Hypertension 2021; 77(5): 1670-82.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.16809] [PMID: 33826401]
[54]
Zalewska E, Kmieć P, Sworczak K. Role of catestatin in the cardiovascular system and metabolic disorders. Front Cardiovasc Med 2022; 9: 909480.
[http://dx.doi.org/10.3389/fcvm.2022.909480] [PMID: 35665253]
[55]
Saheera S, Potnuri AG, Guha A, Palaniyandi SS, Thandavarayan RA. Histamine 2 receptors in cardiovascular biology: A friend for the heart. Drug Discov Today 2022; 27(1): 234-45.
[http://dx.doi.org/10.1016/j.drudis.2021.08.008] [PMID: 34438076]
[56]
Mansueto G, Di Napoli M, Campobasso CP, Slevin M. Pulmonary Arterial Hypertension (PAH) from autopsy study: T-cells, B-cells and mastocytes detection as morphological evidence of immunologically mediated pathogenesis. Pathol Res Pract 2021; 225: 153552.
[http://dx.doi.org/10.1016/j.prp.2021.153552] [PMID: 34352438]
[57]
Ertuglu LA, Kirabo A. Hypersensitive or hypertensive? IgE-FcεR1 signaling in mast cells adds a new piece to the immunity and hypertension puzzle. Cardiovasc Res 2022; cvac028.
[http://dx.doi.org/10.1093/cvr/cvac028] [PMID: 35417016]
[58]
Potnuri AG, Allakonda L, Appavoo A, Saheera S, Nair RR. Association of histamine with hypertension-induced cardiac remodeling and reduction of hypertrophy with the histamine-2-receptor antagonist famotidine compared with the beta-blocker metoprolol. Hypertens Res 2018; 41(12): 1023-35.
[http://dx.doi.org/10.1038/s41440-018-0109-2] [PMID: 30310171]
[59]
Hernández N, Torres SH, Finol HJ, Sosa A, Cierco M. Capillary and muscle fiber type changes in DOCA-salt hypertensive rats. Anat Rec 1996; 246(2): 208-16.
[http://dx.doi.org/10.1002/(SICI)1097-0185(199610)246:2<208::AID-AR7>3.0.CO;2-X] [PMID: 8888962]
[60]
Hernández N, Torres SH, Finol HJ, Vera O. Capillary changes in skeletal muscle of patients with essential hypertension. Anat Rec 1999; 256(4): 425-32.
[http://dx.doi.org/10.1002/(SICI)1097-0185(19991201)256:4<425::AID-AR9>3.0.CO;2-X] [PMID: 10589028]
[61]
Hernández N, De Sanctis JB, Losada M, Torres SH, Sosa A, Rivas M. Oxidative stress in soleus and Extensor Digitorum Longus (EDL) muscles of spontaneously hypertensive rats. Invest Clin 2011; 52(3): 239-51.
[PMID: 21950195]
[62]
Hernández N, Torres SH, De Sanctis JB, Sosa A. Metabolic changes in DOCA-salt hypertensive rats. Res Commun Mol Pathol Pharmacol 2000; 108(3-4): 201-11.
[PMID: 11913712]
[63]
Hernández N, Torres SH, Vera O, De Sanctis JB, Flores E. Muscle fiber composition and capillarization in relation to metabolic alterations in hypertensive men. J Med 2001; 32(1-2): 67-82.
[PMID: 11321889]
[64]
Torres SH, De Sanctis JB, De Briceno LM, Hernández N, Finol HJ. Inflammation and nitric oxide production in skeletal muscle of type 2 diabetic patients. J Endocrinol 2004; 181(3): 419-27.
[http://dx.doi.org/10.1677/joe.0.1810419] [PMID: 15171690]
[65]
Subiela JV, Torres SH, De Sanctis JB, Hernández N. Cardiorespiratory responses, nitric oxide production and inflammatory factors in patients with myocardial infarction after rehabilitation. Nitric Oxide 2018; 76: 87-96.
[http://dx.doi.org/10.1016/j.niox.2018.03.006] [PMID: 29534920]
[66]
McCarthy CG, Saha P, Golonka RM, Wenceslau CF, Joe B, Vijay KM. Innate immune cells and hypertension: Neutrophils and Neutro-phil Extracellular Traps (NETs). Compr Physiol 2021; 11(1): 1575-89.
[http://dx.doi.org/10.1002/cphy.c200020] [PMID: 33577121]
[67]
Li X, Alu A, Wei Y, Wei X, Luo M. The modulatory effect of high salt on immune cells and related diseases. Cell Prolif 2022; 55(9): e13250.
[http://dx.doi.org/10.1111/cpr.13250] [PMID: 35747936]
[68]
Drakopoulou M, Soulaidopoulos S, Oikonomou G, Tousoulis D, Toutouzas K. Cardiovascular effects of biologic Disease-Modifying Anti-Rheumatic Drugs (DMARDs). Curr Vasc Pharmacol 2020; 18(5): 488-506.
[http://dx.doi.org/10.2174/1570161118666200214115532] [PMID: 32056527]
[69]
Ma J, Chen X. Anti-inflammatory therapy for coronary atherosclerotic heart disease: Unanswered questions behind existing successes. Front Cardiovasc Med 2021; 7: 631398.
[http://dx.doi.org/10.3389/fcvm.2020.631398] [PMID: 33598482]
[70]
Faria AP, Ritter AMV, Santa CA, et al. Effects of anti-TNF alpha therapy on blood pressure in resistant hypertensive subjects: A ran-domized, double-blind, placebo-controlled pilot study. Arq Bras Cardiol 2021; 116(3): 443-51.
[http://dx.doi.org/10.36660/abc.202190703] [PMID: 33909773]
[71]
Jayaram A, Deer E, Amaral LM, et al. The role of tumor necrosis factor in triggering activation of natural killer cell, multi-organ mito-chondrial dysfunction and hypertension during pregnancy. Pregnancy Hypertens 2021; 24: 65-72.
[http://dx.doi.org/10.1016/j.preghy.2021.02.006] [PMID: 33677421]
[72]
Tanase DM, Gosav EM, Radu S, et al. Arterial hypertension and interleukins: Potential therapeutic target or future diagnostic marker? Int J Hypertens 2019; 2019: 3159283.
[http://dx.doi.org/10.1155/2019/3159283] [PMID: 31186952]
[73]
Bryniarski P, Nazimek K, Marcinkiewicz J. Immunomodulatory potential of diuretics. Biology 2021; 10(12): 1315.
[http://dx.doi.org/10.3390/biology10121315] [PMID: 34943230]
[74]
Clemmer JS, Hillegass WB, Taylor EB. Antihypertensive effects of immunosuppressive therapy in autoimmune disease. J Hum Hypertens 2022; 1-7.
[http://dx.doi.org/10.1038/s41371-022-00682-0] [PMID: 35396536]
[75]
Taylor EB, Ryan MJ. Immunosuppression with mycophenolate mofetil attenuates hypertension in an experimental model of autoimmune disease. J Am Heart Assoc 2017; 6(3): e005394.
[http://dx.doi.org/10.1161/JAHA.116.005394] [PMID: 28242635]
[76]
Bhandaru M, Pasham V, Yang W, Bobbala D, Rotte A, Lang F. Effect of azathioprine on Na(+)/H(+) exchanger activity in dendritic cells. Cell Physiol Biochem 2012; 29(3-4): 533-42.
[http://dx.doi.org/10.1159/000338507] [PMID: 22508060]
[77]
Marienhagen K, Lehner F, Klempnauer J, Hecker H, Borlak J. Treatment of cyclosporine induced hypertension: Results from a long-term observational study using different antihypertensive medications. Vascul Pharmacol 2019; 115: 69-83.
[http://dx.doi.org/10.1016/j.vph.2018.06.012] [PMID: 29933079]
[78]
Jaén RI, Val BA, Prieto P, et al. Innate immune receptors, key actors in cardiovascular diseases. JACC Basic Transl Sci 2020; 5(7): 735-49.
[http://dx.doi.org/10.1016/j.jacbts.2020.03.015] [PMID: 32760860]
[79]
Lazaridis A, Gavriilaki E, Douma S, Gkaliagkousi E. Toll-like receptors in the pathogenesis of essential hypertension. A forthcoming immune-driven theory in full effect. Int J Mol Sci 2021; 22(7): 3451.
[http://dx.doi.org/10.3390/ijms22073451] [PMID: 33810594]
[80]
Nunes KP, de Oliveira AA, Lima VV, Webb RC. Toll-like receptor 4 and blood pressure: Lessons from animal studies. Front Physiol 2019; 10: 655.
[http://dx.doi.org/10.3389/fphys.2019.00655] [PMID: 31191352]
[81]
Dange RB, Agarwal D, Teruyama R, Francis J. Toll-like receptor 4 inhibition within the paraventricular nucleus attenuates blood pressure and inflammatory response in a genetic model of hypertension. J Neuroinflammation 2015; 12(1): 31.
[http://dx.doi.org/10.1186/s12974-015-0242-7] [PMID: 25879545]
[82]
Ishikawa T, Abe K, Takana IM, et al. Chronic inhibition of toll‐like receptor 9 ameliorates pulmonary hypertension in rats. J Am Heart Assoc 2021; 10(7): e019247.
[http://dx.doi.org/10.1161/JAHA.120.019247] [PMID: 33787285]
[83]
Park YJ, Yoo SA, Kim M, Kim WU. The role of calcium–calcineurin–NFAT signaling pathway in health and autoimmune diseases. Front Immunol 2020; 11: 195.
[http://dx.doi.org/10.3389/fimmu.2020.00195] [PMID: 32210952]
[84]
Zhao JV, Schooling CM, Leung GM. Using genetics to understand the role of antihypertensive drugs modulating angiotensin‐converting enzyme in immune function and inflammation. Br J Clin Pharmacol 2021; 87(4): 1839-46.
[http://dx.doi.org/10.1111/bcp.14572] [PMID: 33025652]
[85]
Koushki K, Shahbaz SK, Mashayekhi K, et al. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-like receptor pathways. Clin Rev Allergy Immunol 2021; 60(2): 175-99.
[http://dx.doi.org/10.1007/s12016-020-08791-9] [PMID: 32378144]
[86]
Mira E, Mañes S. Immunomodulatory and anti-inflammatory activities of statins. Endocr Metab Immune Disord Drug Targets 2009; 9(3): 237-47.
[http://dx.doi.org/10.2174/187153009789044383] [PMID: 19594418]
[87]
Shahbaz SK, Sadeghi M, Koushki K, Penson PE, Sahebkar A. Regulatory T cells: Possible mediators for the anti-inflammatory action of statins. Pharmacol Res 2019; 149: 104469.
[http://dx.doi.org/10.1016/j.phrs.2019.104469] [PMID: 31577918]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy