Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Short Communication

Phylogenetic and Structural Analysis of Bacterial Nitrilases for the Biodegradation of Nitrile Compounds

Author(s): Richa Salwan*, Vivek Sharma and Surajit Das

Volume 23, Issue 12, 2022

Published on: 20 October, 2022

Page: [874 - 882] Pages: 9

DOI: 10.2174/1389203723666220921154409

Price: $65

Abstract

Background: Microbial nitrilases play a vital role in the biodegradation of nitrilecontaining pollutants, effluent treatments in chemical and textile industries, and the biosynthesis of Indole-3-acetic acid (IAA) from tryptophan in plants. However, the lack of structural information limits the correlation between its activity and substrate specificity.

Methods: The present study involves the genome mining of bacteria for the distribution and diversity of nitrilases, their phylogenetic analysis and structural characterization for motifs/ domains, followed by interaction with substrates.

Results: Here, we mined the bacterial genomes for nitrilases and correlated their functions to hypothetical, uncharacterized, or putative ones. The comparative genomics revealed four AcNit, As7Nit, Cn5Nit and Cn9Nit predicted nitrilases encoding genes as uncharacterized subgroups of the nitrilase superfamily. The annotation of these nitrilases encoding genes revealed relatedness with nitrilase hydratases and cyanoalanine hydratases. At the proteomics level, the motif analysis of these protein sequences predicted a single motif of 20-28 aa, with glutamate (E), lysine (K) and cysteine (C) residues as a part of catalytic triad along with several other residues at the active site. The structural analysis of the nitrilases revealed geometrical and close conformation in the form of α-helices and β-sheets arranged in a sandwich structure. The catalytic residues constituted the substrate binding pocket and exhibited the broad nitrile substrate spectra for aromatic and aliphatic nitriles-containing compounds. The aromatic amino acid residues Y159 in the active site were predicted to be responsible for substrate specificity. The substitution of non-aromatic alanine residue in place of Y159 completely disrupted the catalytic activity for indole-3-acetonitrile (IAN).

Conclusion: The present study reports genome mining and simulation of structure-function relationship for uncharacterized bacterial nitrilases and their role in the biodegradation of pollutants and xenobiotics, which could be of applications in different industrial sectors.

Keywords: Nitrile compounds, Biodegradation, Simulation, Substrate specificity, Catalytic, superfamily

[1]
Gong, J.S.; Lu, Z.M.; Li, H.; Shi, J.S.; Zhou, Z.M.; Xu, Z.H. Nitrilases in nitrile biocatalysis: Recent progress and forthcoming research. Microb. Cell Fact., 2012, 11, 142.
[http://dx.doi.org/10.1186/1475-2859-11-142] [PMID: 23106943]
[2]
Shaw, N.M.; Robins, K.T.; Kiener, A. Lonza: 20 years of biotransformations. Adv. Synth. Catal., 2003, 345, 425-435.
[http://dx.doi.org/10.1002/adsc.200390049]
[3]
Mylerova, V.; Martinkova, L. Synthetic applications of nitrile-converting enzymes. Curr. Org. Chem., 2003, 7, 1279-1295.
[http://dx.doi.org/10.2174/1385272033486486]
[4]
Egelkamp, R.; Friedrich, I.; Hertel, R.; Daniel, R. From sequence to function: A new workflow for nitrilase identification. Appl. Microbiol. Biotechnol., 2020, 104(11), 4957-4970.
[http://dx.doi.org/10.1007/s00253-020-10544-9] [PMID: 32291488]
[5]
Martínková, L.; Uhnáková, B.; Pátek, M.; Nešvera, J.; Křen, V. Biodegradation potential of the genus Rhodococcus. Environ. Int., 2009, 35(1), 162-177.
[http://dx.doi.org/10.1016/j.envint.2008.07.018] [PMID: 18789530]
[6]
Rustler, S.; Stolz, A. Isolation and characterization of a nitrile hydrolysing acidotolerant black yeast-Exophiala oligosperma R1. Appl. Microbiol. Biotechnol., 2007, 75(4), 899-908.
[http://dx.doi.org/10.1007/s00253-007-0890-3] [PMID: 17361431]
[7]
Piotrowski, M. Primary or secondary? Versatile nitrilases in plant metabolism. Phytochemistry, 2008, 69(15), 2655-2667.
[http://dx.doi.org/10.1016/j.phytochem.2008.08.020] [PMID: 18842274]
[8]
Tang, C.D.; Ding, P.J.; Shi, H.L.; Jia, Y.Y.; Zhou, M.Z.; Yu, H.L.; Xu, J.H.; Yao, L.G.; Kan, Y.C. One-pot synthesis of phenylglyoxylic acid from racemic mandelic acids via cascade biocatalysis. J. Agric. Food Chem., 2019, 67(10), 2946-2953.
[http://dx.doi.org/10.1021/acs.jafc.8b07295] [PMID: 30807132]
[9]
Zhang, Q.; Wu, Z.M.; Hao, C.L.; Tang, X.L.; Zheng, R.C.; Zheng, Y.G. Highly regio- and enantioselective synthesis of chiral intermediate for pregabalin using one-pot bienzymatic cascade of nitrilase and amidase. Appl. Microbiol. Biotechnol., 2019, 103(14), 5617-5626.
[http://dx.doi.org/10.1007/s00253-019-09857-1] [PMID: 31104100]
[10]
Salwan, R.; Sharma, V.; Sharma, A.; Singh, A. Molecular imprints of plant beneficial Streptomyces sp. AC30 and AC40 reveal differential capabilities and strategies to counter environmental stresses. Microbiol. Res., 2020, 235, 126449. a
[http://dx.doi.org/10.1016/j.micres.2020.126449] [PMID: 32114361]
[11]
Rucká, L.; Chmátal, M.; Kulik, N.; Petrásková, L.; Pelantová, H.; Novotný, P.; Příhodová, R.; Pátek, M.; Martínková, L. Genetic and Func-tional Diversity of Nitrilases in Agaricomycotina. Int. J. Mol. Sci., 2019, 20(23), 5990.
[http://dx.doi.org/10.3390/ijms20235990] [PMID: 31795104]
[12]
Howden, A.J.; Harrison, C.J.; Preston, G.M. A conserved mechanism for nitrile metabolism in bacteria and plants. Plant J., 2009, 57(2), 243-253.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03682.x] [PMID: 18786181]
[13]
Kiziak, C.; Conradt, D.; Stolz, A.; Mattes, R.; Klein, J. Nitrilase from Pseudomonas fluorescens EBC191: Cloning and heterologous expres-sion of the gene and biochemical characterization of the recombinant enzyme. Microbiology, 2005, 151(Pt 11), 3639-3648.
[http://dx.doi.org/10.1099/mic.0.28246-0] [PMID: 16272385]
[14]
O’Reilly, C.; Turner, P.D. The nitrilase family of CN hydrolysing enzymes - a comparative study. J. Appl. Microbiol., 2003, 95(6), 1161-1174.
[http://dx.doi.org/10.1046/j.1365-2672.2003.02123.x] [PMID: 14632988]
[15]
Pace, H.C.; Brenner, C. The nitrilase superfamily: Classification, structure and function. Genome Biol., 2001, 2(1), S0001.
[http://dx.doi.org/10.1186/gb-2001-2-1-reviews0001] [PMID: 11380987]
[16]
Jones, L.B.; Wang, X.; Gullapalli, J.S.; Kunz, D.A. Characterization of the Nit6803 nitrilase homolog from the cyanotroph Pseudomonas fluorescens NCIMB 11764. Biochem. Biophys. Rep., 2021, 25, 100893.
[http://dx.doi.org/10.1016/j.bbrep.2020.100893] [PMID: 33506113]
[17]
Brenner, C. Catalysis in the nitrilase superfamily. Curr. Opin. Struct. Biol., 2002, 12(6), 775-782.
[http://dx.doi.org/10.1016/S0959-440X(02)00387-1] [PMID: 12504683]
[18]
Shen, J.D.; Cai, X.; Liu, Z.Q.; Zheng, Y.G. Nitrilase: A promising biocatalyst in industrial applications for green chemistry. Crit. Rev. Biotechnol., 2021, 41(1), 72-93.
[http://dx.doi.org/10.1080/07388551.2020.1827367] [PMID: 33045860]
[19]
Thimann, K.V.; Mahadevan, S.; Nitrilase, I. Occurrence, preparation, and general properties of the enzyme. Arch. Biochem. Biophys., 1964, 105, 133-141.
[http://dx.doi.org/10.1016/0003-9861(64)90244-9] [PMID: 14165487]
[20]
Hook, R.H.; Robinson, W.G. Ricinine nitrilase: II. Purification and properties. J. Biol. Chem., 1964, 239, 4263-4267.
[http://dx.doi.org/10.1016/S0021-9258(18)91167-1] [PMID: 14247680]
[21]
DeSantis, G.; Zhu, Z.; Greenberg, W.A.; Wong, K.; Chaplin, J.; Hanson, S.R.; Farwell, B.; Nicholson, L.W.; Rand, C.L.; Weiner, D.P.; Rob-ertson, D.E.; Burk, M.J. An enzyme library approach to biocatalysis: Development of nitrilases for enantioselective production of carbox-ylic acid derivatives. J. Am. Chem. Soc., 2002, 124(31), 9024-9025.
[http://dx.doi.org/10.1021/ja0259842] [PMID: 12148986]
[22]
Podar, M.; Eads, J.R.; Richardson, T.H. Evolution of a microbial nitrilase gene family: A comparative and environmental genomics study. BMC Evol. Biol., 2005, 5, 42.
[http://dx.doi.org/10.1186/1471-2148-5-42] [PMID: 16083508]
[23]
Salwan, R.; Sharma, V. Genome wide underpinning of antagonistic and plant beneficial attributes of Bacillus sp. SBA12. Genomics, 2020, 112(4), 2894-2902. b
[http://dx.doi.org/10.1016/j.ygeno.2020.03.029] [PMID: 32247006]
[24]
Raczynska, J.E.; Vorgias, C.E.; Antranikian, G.; Rypniewski, W. Crystallographic analysis of a thermoactive nitrilase. J. Struct. Biol., 2011, 173(2), 294-302.
[http://dx.doi.org/10.1016/j.jsb.2010.11.017] [PMID: 21095228]
[25]
Zhang, L.; Yin, B.; Wang, C.; Jiang, S.; Wang, H.; Yuan, Y.A.; Wei, D. Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Syechocystis sp. PCC6803. J. Struct. Biol., 2014, 188(2), 93-101.
[http://dx.doi.org/10.1016/j.jsb.2014.10.003] [PMID: 25450592]
[26]
Zhang, C.S.; Zhang, Z.J.; Li, C.X.; Yu, H.L.; Zheng, G.W.; Xu, J.H. Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata. Appl. Microbiol. Biotechnol., 2012, 95(1), 91-99.
[http://dx.doi.org/10.1007/s00253-012-3993-4] [PMID: 22454104]
[27]
Nigam, V.K.; Khandelwal, A.K.; Gothwal, R.K.; Mohan, M.K.; Choudhury, B.; Vidyarthi, A.S.; Ghosh, P. Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp. J. Biosci., 2009, 34(1), 21-26.
[http://dx.doi.org/10.1007/s12038-009-0005-7] [PMID: 19430115]
[28]
Lévy-Schil, S.; Soubrier, F.; Crutz-Le Coq, A.M.; Faucher, D.; Crouzet, J.; Pétré, D. Aliphatic nitrilase from a soil-isolated Comamonas testosteroni sp.: Gene cloning and overexpression, purification and primary structure. Gene, 1995, 161(1), 15-20.
[http://dx.doi.org/10.1016/0378-1119(95)00242-X] [PMID: 7642130]
[29]
Williamson, D.S.; Dent, K.C.; Weber, B.W.; Varsani, A.; Frederick, J.; Thuku, R.N.; Cameron, R.A.; van Heerden, J.H.; Cowan, D.A.; Sew-ell, B.T. Structural and biochemical characterization of a nitrilase from the thermophilic bacterium, Geobacillus pallidus RAPc8. Appl. Microbiol. Biotechnol., 2010, 88(1), 143-153.
[http://dx.doi.org/10.1007/s00253-010-2734-9] [PMID: 20607233]
[30]
Harper, D.B. Characterization of a nitrilase from Nocardia sp. (Rhodochrous group) N.C.I.B. 11215, using p-hydroxybenzonitrile as sole carbon source. Int. J. Biochem., 1985, 17(6), 677-683.
[http://dx.doi.org/10.1016/0020-711X(85)90364-7] [PMID: 4029486]
[31]
Alonso, F.O.M.; Oestreicher, E.G.; Antunes, O.A.C. Production of enantiomerically pure D-phenylglycine using Pseudomonas aeruginosa 10145 as biocatalyst. Braz. J. Chem. Eng., 2008, 25(1), 1-8.
[http://dx.doi.org/10.1590/S0104-66322008000100002]
[32]
Kobayashi, M.; Nagasawa, T.; Yamada, H. Nitrilase of Rhodococcus rhodochrous J1. Purification and characterization. Eur. J. Biochem., 1989, 182(2), 349-356.
[http://dx.doi.org/10.1111/j.1432-1033.1989.tb14837.x] [PMID: 2737207]
[33]
Harper, D.B. Fungal degradation of aromatic nitriles. Enzymology of C-N cleavage by Fusarium solani. Biochem. J., 1977, 167(3), 685-692.
[http://dx.doi.org/10.1042/bj1670685] [PMID: 23761]
[34]
Goldlust, A.; Bohak, Z. Induction, purification, and characterization of the nitrilase of Fusarium oxysporumf.sp melonis. Biotechnol. Appl. Biochem., 1989, 11, 581-601.
[35]
Snajdrova, R.; Myelerova-Kristova, V.; Crestia, D.; Nikolaou, K.; Kuzma, M.; Lemaire, M.; Galienne, E.; Bolte, J. Nitrile biotransfor-mation by Aspergillus niger. J. Mol. Catal., B Enzym., 2004, 29, 227-232.
[http://dx.doi.org/10.1016/j.molcatb.2003.12.012]
[36]
Kaplan, O.; Vejvoda, V.; Plíhal, O.; Pompach, P.; Kavan, D.; Bojarová, P.; Bezouska, K.; Macková, M.; Cantarella, M.; Jirků, V.; Kren, V.; Martínková, L. Purification and characterization of a nitrilase from Aspergillus niger K10. Appl. Microbiol. Biotechnol., 2006, 73(3), 567-575.
[http://dx.doi.org/10.1007/s00253-006-0503-6] [PMID: 17061133]
[37]
Vejvoda, V.; Kaplan, O.; Bezouska, K.; Pompach, P.; Sulc, M.; Cantarella, M.; Benada, O.; Uhnakova, B. Purification and characterization of a nitrilase from Fusarium solani O1. J. Mol. Catal., B Enzym., 2008, 50, 99-106.
[http://dx.doi.org/10.1016/j.molcatb.2007.09.006]
[38]
Wajant, H.; Effenberger, F.; Effenberger, F. Characterization and synthetic applications of recombinant AtNIT1 from Arabidopsis thaliana. Eur. J. Biochem., 2002, 269(2), 680-687.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02702.x] [PMID: 11856328]
[39]
McBride, K.E.; Kenny, J.W.; Stalker, D.M. Metabolism of the herbicide bromoxynil by Klebsiella pneumoniae subsp. ozaenae. Appl. Environ. Microbiol., 1986, 52(2), 325-330.
[http://dx.doi.org/10.1128/aem.52.2.325-330.1986] [PMID: 3530133]
[40]
Stalker, D.M.; Malyj, L.D.; McBride, K.E. Purification and properties of a nitrilase specific for the herbicide bromoxynil and correspond-ing nucleotide sequence analysis of the bxn gene. J. Biol. Chem., 1988, 263(13), 6310-6314.
[http://dx.doi.org/10.1016/S0021-9258(18)68787-3] [PMID: 2834373]
[41]
Heinemann, U.; Engels, D.; Bürger, S.; Kiziak, C.; Mattes, R.; Stolz, A. Cloning of a nitrilase gene from the cyanobacterium Synechocystis sp. strain PCC6803 and heterologous expression and characterization of the encoded protein. Appl. Environ. Microbiol., 2003, 69(8), 4359-4366.
[http://dx.doi.org/10.1128/AEM.69.8.4359-4366.2003] [PMID: 12902216]
[42]
Yamamoto, K.; Oishi, K.; Fujimatsu, I.; Komatsu, K. Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl. Environ. Microbiol., 1991, 57(10), 3028-3032.
[http://dx.doi.org/10.1128/aem.57.10.3028-3032.1991] [PMID: 1660699]
[43]
Kiziak, C.; Klein, J.; Stolz, A. Influence of different carboxy-terminal mutations on the substrate-, reaction- and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Protein Eng. Des. Sel., 2007, 20(8), 385-396.
[http://dx.doi.org/10.1093/protein/gzm032] [PMID: 17693456]
[44]
Zhu, D.; Mukherjee, C.; Biehl, E.R.; Hua, L. Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicum USDA110 by ra-tional genome mining. J. Biotechnol., 2007, 129(4), 645-650.
[http://dx.doi.org/10.1016/j.jbiotec.2007.02.001] [PMID: 17350705]
[45]
Zhu, D.; Mukherjee, C.; Yang, Y.; Rios, B.E.; Gallagher, D.T.; Smith, N.N.; Biehl, E.R.; Hua, L. A new nitrilase from Bradyrhizobium ja-ponicum USDA 110. Gene cloning, biochemical characterization and substrate specificity. J. Biotechnol., 2008, 133(3), 327-333.
[http://dx.doi.org/10.1016/j.jbiotec.2007.10.001] [PMID: 18061298]
[46]
Nolan, L.M.; Harnedy, P.A.; Turner, P.; Hearne, A.B.; O’Reilly, C. The cyanide hydratase enzyme of Fusarium lateritium also has nitrilase activity. FEMS Microbiol. Lett., 2003, 221(2), 161-165.
[http://dx.doi.org/10.1016/S0378-1097(03)00170-8] [PMID: 12725921]
[47]
Jandhyala, D.M.; Willson, R.C.; Sewell, B.T.; Benedik, M.J. Comparison of cyanide-degrading nitrilases. Appl. Microbiol. Biotechnol., 2005, 68(3), 327-335.
[http://dx.doi.org/10.1007/s00253-005-1903-8] [PMID: 15703908]
[48]
Barclay, M.; Tett, V.A.; Knowles, C.J. () Metabolism and enzymology of cyanide ⁄metallocyanide biodegradation by Fusarium solani un-der neutral and acidic conditions. Enzyme Microb. Technol., 1998, 23, 321-330.
[http://dx.doi.org/10.1016/S0141-0229(98)00055-6]
[49]
Yanase, H.; Sakamoto, A.; Okamoto, K.; Kita, K.; Sato, Y. Degradation of the metal-cyano complex tetracyanonickelate (II) by Fusarium oxysporum N-10. Appl. Microbiol. Biotechnol., 2000, 53(3), 328-334.
[http://dx.doi.org/10.1007/s002530050029] [PMID: 10772474]
[50]
DeSantis, G.; Wong, K.; Farwell, B.; Chatman, K.; Zhu, Z.; Tomlinson, G.; Huang, H.; Tan, X.; Bibbs, L.; Chen, P.; Kretz, K.; Burk, M.J. Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). J. Am. Chem. Soc., 2003, 125(38), 11476-11477.
[http://dx.doi.org/10.1021/ja035742h] [PMID: 13129332]
[51]
Wu, S.; Fogiel, A.J.; Petrillo, K.L.; Hann, E.C.; Mersinger, L.J.; DiCosimo, R.; O’Keefe, D.P.; Ben-Bassat, A.; Payne, M.S. Protein engi-neering of Acidovorax facilis 72W nitrilase for bioprocess development. Biotechnol. Bioeng., 2007, 97(4), 689-693.
[http://dx.doi.org/10.1002/bit.21289] [PMID: 17154311]
[52]
Wu, S.; Fogiel, A.J.; Petrillo, K.L.; Jackson, R.E.; Parker, K.N.; Dicosimo, R.; Ben-Bassat, A.; O’Keefe, D.P.; Payne, M.S. Protein engineer-ing of nitrilase for chemoenzymatic production of glycolic acid. Biotechnol. Bioeng., 2008, 99(3), 717-720.
[http://dx.doi.org/10.1002/bit.21643] [PMID: 17787011]
[53]
Panova, A.; Mersinger, L.J.; Liu, Q.; Foo, T.; Roe, D.C.; Spillan, W.L.; Sigmund, A.E.; Ben-Bassat, A. Chemoenzymatic synthesis of gly-colic acid. Adv. Synth. Catal., 2007, 349, 1462-1474.
[http://dx.doi.org/10.1002/adsc.200700061]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy