Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Computational Design for Identification of Human Anti-MUC1 Heteroclitic Peptides in the Treatment of HER2-Positive Breast Cancer through Neural Network Training and Monomeric based Design

Author(s): Akanksha Behl, Nagendra Nath Das, Krishna Kant Sharma, Namita Sharma, Prity Gulia and Anil Kumar Chhillar*

Volume 23, Issue 3, 2023

Published on: 14 October, 2022

Page: [235 - 241] Pages: 7

DOI: 10.2174/1568009622666220921110605

Price: $65

Abstract

Aims: Generation of the human anti-MUC1 peptide through neural network training and monomeric design method. Analyzing 9-mer peptide potential computationally for treatment of HER2-positive breast cancer.

Background: With the advancements of cancer genome atlas project (TCGA), cancer dependancy project (DepMap) and human protein atlas (HPA), large-scale datasets are generated for oncology studies. However, after development of redefined breast cancer drug targets, there are key issues in successful breast cancer treatments that needed to be pursued which paved the pathway for new approaches or strategies. In that respect, our research data aimed to represent a new aspect of breast cancer drug development studies.

Objective: Extract human MUC1 sequences from various databases. Perform neural networking method for novel peptides sequences. Analyze the potentiality of generated heteroclitic peptide sequences for suitable vaccine candidate for breast cancer treatment.

Methods: Input scaffolds of protein database (PDB) files for human MUC1 were retrieved and loaded into Evo design server with monomeric based design option. Further, neural network training approaches were followed and other computational tools were used for alignment-independent prediction of protective antigens and subunit vaccines potency of designed heteroclitic peptides.

Results: Study findings revealed two human anti-MUC1 heteroclitic peptides of 9mers (WAVWTYVSV, FMSFYIMNL), which showed the lowest energy cluster and sequence identity, normalized relative error rate of secondary structure, solvent accessibility, backbone torsion angles for neural networking and RMSD values in evolutionary profiling, and online MHCPred IC50 interaction values. VaxiGen v2.0 server revealed subunit vaccine potency values of in-silico designed two heteroclitic peptides were 0.1551 (WAVWTYVSV) and 0.3508 (FMSFYIMNL) with a threshold value of 0.5 followed by AllerTOP v2.0 for their allergenicity nature in immunogenic reactions.

Conclusion: Computationally designed heteroclitic peptide WAVWTYVSV indicated promising values which can be utilised as drug delivery or tumour marker candidate in the treatment of human breast cancer by eliciting lyse of tumor cells.

Keywords: Heteroclitic peptides, anti-MUC1, breast cancer, subunit vaccine potency, MHC interactions, neural network.

Graphical Abstract

[1]
Black, M.; Trent, A.; Tirrell, M.; Olive, C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev. Vaccines, 2010, 9(2), 157-173.
[http://dx.doi.org/10.1586/erv.09.160] [PMID: 20109027]
[2]
Chae, M.H.; Krull, F.; Lorenzen, S.; Knapp, E.W. Predicting protein complex geometries with a neural network. Proteins, 2010, 78(4), 1026-1039.
[http://dx.doi.org/10.1002/prot.22626] [PMID: 19938153]
[3]
Mitra, P.; Shultis, D.; Zhang, Y. EvoDesign: De novo protein design based on structural and evolutionary profiles. Nucleic Acids Res., 2013, 41(Web Server issue), W273-80.
[http://dx.doi.org/10.1093/nar/gkt384] [PMID: 23671331]
[4]
Jojic, N.; Reyes-Gomez, M.; Heckerman, D.; Kadie, C.; Schueler-Furman, O. Learning MHC I--peptide binding. Bioinformatics, 2006, 22(14), e227-e235.
[http://dx.doi.org/10.1093/bioinformatics/btl255] [PMID: 16873476]
[5]
Curry, J.M.; Besmer, D.M.; Erick, T.K.; Steuerwald, N.; Das Roy, L.; Grover, P.; Rao, S.; Nath, S.; Ferrier, J.W.; Reid, R.W.; Mukherjee, P. Indomethacin enhances anti-tumor efficacy of a MUC1 peptide vaccine against breast cancer in MUC1 transgenic mice. PLoS One, 2019, 14(11), e0224309.
[http://dx.doi.org/10.1371/journal.pone.0224309] [PMID: 31693710]
[6]
Lapinsh, M.; Gutcaits, A.; Prusis, P.; Post, C.; Lundstedt, T.; Wikberg, J.E.S. Classification of G-protein coupled receptors by alignment-independent extraction of principal chemical properties of primary amino acid sequences. Protein Sci., 2002, 11(4), 795-805.
[http://dx.doi.org/10.1110/ps.2500102] [PMID: 11910023]
[7]
Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2--a server for in silico prediction of allergens. J. Mol. Model., 2014, 20(6), 2278.
[http://dx.doi.org/10.1007/s00894-014-2278-5] [PMID: 24878803]
[8]
Gale, M.; Li, Y.; Cao, J.; Liu, Z.Z.; Holmbeck, M.A.; Zhang, M.; Lang, S.M.; Wu, L.; Do Carmo, M.; Gupta, S.; Aoshima, K.; DiGiovanna, M.P.; Stern, D.F.; Rimm, D.L.; Shadel, G.S.; Chen, X.; Yan, Q. Acquired resistance to HER2-targeted therapies creates vulnerability to ATP synthase inhibition. Cancer Res., 2020, 80(3), 524-535.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3985] [PMID: 31690671]
[9]
Taylor-Papadimitriou, J.; Burchell, J.M.; Graham, R.; Beatson, R. Latest developments in MUC1 immunotherapy. Biochem. Soc. Trans., 2018, 46(3), 659-668.
[http://dx.doi.org/10.1042/BST20170400] [PMID: 29784646]
[10]
Gao, T.; Cen, Q.; Lei, H. A review on development of MUC1-based cancer vaccine. Biomed. Pharmacother., 2020, 132, 110888.
[http://dx.doi.org/10.1016/j.biopha.2020.110888] [PMID: 33113416]
[11]
Kimura, T.; Finn, O.J. MUC1 immunotherapy is here to stay. Expert Opin. Biol. Ther., 2013, 13(1), 35-49.
[http://dx.doi.org/10.1517/14712598.2012.725719] [PMID: 22998452]
[12]
Glaffig, M.; Stergiou, N.; Hartmann, S.; Schmitt, E.; Kunz, H. A synthetic MUC1 anticancer vaccine containing mannose ligands for targeting macrophages and dendritic cells. ChemMedChem, 2018, 13(1), 25-29.
[http://dx.doi.org/10.1002/cmdc.201700646] [PMID: 29193802]
[13]
Kim, M.J.; Choi, J.R.; Tae, N.; Wi, T.M.; Kim, K.M.; Kim, D.H.; Lee, E.S. Novel antibodies targeting MUC1-C showed anti-metastasis and growth inhibitory effects on human breast cancer cells. Int. J. Mol. Sci., 2020, 21(9), 3258.
[http://dx.doi.org/10.3390/ijms21093258] [PMID: 32380650]
[14]
Roulois, D.; Grégoire, M.; Fonteneau, J.F. MUC1-specific cytotoxic T lymphocytes in cancer therapy: Induction and challenge. BioMed Res. Int., 2013, 2013, 871936.
[http://dx.doi.org/10.1155/2013/871936] [PMID: 23509794]
[15]
Pourjafar, M.; Samadi, P.; Saidijam, M. MUC1 antibody-based therapeutics: The promise of cancer immunotherapy. Immunotherapy, 2020, 12(17), 1269-1286.
[http://dx.doi.org/10.2217/imt-2020-0019] [PMID: 33019839]
[16]
Zirlik, K.M.; Zahrieh, D.; Neuberg, D.; Gribben, J.G. Cytotoxic T cells generated against heteroclitic peptides kill primary tumor cells independent of the binding affinity of the native tumor antigen peptide. Blood, 2006, 108(12), 3865-3870.
[http://dx.doi.org/10.1182/blood-2006-04-014415] [PMID: 16902144]
[17]
Walter, S.; Weinschenk, T.; Stenzl, A.; Zdrojowy, R.; Pluzanska, A.; Szczylik, C.; Staehler, M.; Brugger, W.; Dietrich, P.Y.; Mendrzyk, R.; Hilf, N.; Schoor, O.; Fritsche, J.; Mahr, A.; Maurer, D.; Vass, V.; Trautwein, C.; Lewandrowski, P.; Flohr, C.; Pohla, H.; Stanczak, J.J.; Bronte, V.; Mandruzzato, S.; Biedermann, T.; Pawelec, G.; Derhovanessian, E.; Yamagishi, H.; Miki, T.; Hongo, F.; Takaha, N.; Hirakawa, K.; Tanaka, H.; Stevanovic, S.; Frisch, J.; Mayer-Mokler, A.; Kirner, A.; Rammensee, H.G.; Reinhardt, C.; Singh-Jasuja, H. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med., 2012, 18(8), 1254-1261.
[http://dx.doi.org/10.1038/nm.2883] [PMID: 22842478]
[18]
Nemunaitis, B.; Bedell, C.; Klucher, K.; Vo, A.; Whiting, S. Phase 1 dose escalation of ONT-10, a therapeutic MUC1 vaccine in patients with advanced cancer. J. Immunother. Cancer, 2013, 1, 240.
[http://dx.doi.org/10.1186/2051-1426-1-S1-P240]
[19]
Cavalluzzo, B.; Ragone, C.; Mauriello, A.; Petrizzo, A.; Manolio, C.; Caporale, A.; Vitagliano, L.; Ruvo, M.; Buonaguro, L.; Tagliamonte, M. Identification and characterization of heteroclitic peptides in TCR-binding positions with improved HLA-binding efficacy. J. Transl. Med., 2021, 19(1), 89.
[http://dx.doi.org/10.1186/s12967-021-02757-x] [PMID: 33637105]
[20]
Carmon, L.; Avivi, I.; Kovjazin, R.; Zuckerman, T.; Dray, L.; Gatt, M.E.; Or, R.; Shapira, M.Y. Phase I/II study exploring ImMucin, a pan-major histocompatibility complex, anti-MUC1 signal peptide vaccine, in multiple myeloma patients. Br. J. Haematol., 2015, 169(1), 44-56.
[http://dx.doi.org/10.1111/bjh.13245] [PMID: 25496030]
[21]
Kondo, H.; Hazama, S.; Kawaoka, T.; Yoshino, S.; Yoshida, S.; Tokuno, K.; Takashima, M.; Ueno, T.; Hinoda, Y.; Oka, M. Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes. Anticancer Res., 2008, 28(1B), 379-387.
[PMID: 18383873]
[22]
Beatty, P.; Ranganathan, S.; Finn, O.J. Prevention of colitis-associated colon cancer using a vaccine to target abnormal expression of the MUC1 tumor antigen. OncoImmunology, 2012, 1(3), 263-270.
[http://dx.doi.org/10.4161/onci.18950] [PMID: 22737601]
[23]
Kohlgraf, K.G.; Gawron, A.J.; Higashi, M.; VanLith, M.L.; Shen, X.; Caffrey, T.C.; Anderson, J.M.; Hollingsworth, M.A. Tumor-specific immunity in MUC1.Tg mice induced by immunization with peptide vaccines from the cytoplasmic tail of CD227 (MUC1). Cancer Immunol. Immunother., 2004, 53(12), 1068-1084.
[http://dx.doi.org/10.1007/s00262-004-0557-1] [PMID: 15696607]
[24]
Picco, G.; Beatson, R.; Taylor-Papadimitriou, J.; Burchell, J.M. Targeting DNGR-1 (CLEC9A) with antibody/MUC1 peptide conjugates as a vaccine for carcinomas. Eur. J. Immunol., 2014, 44(7), 1947-1955.
[http://dx.doi.org/10.1002/eji.201344076] [PMID: 24648154]
[25]
Mukherjee, P.; Pathangey, L.B.; Bradley, J.B.; Tinder, T.L.; Basu, G.D.; Akporiaye, E.T.; Gendler, S.J. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. Vaccine, 2007, 25(9), 1607-1618.
[http://dx.doi.org/10.1016/j.vaccine.2006.11.007] [PMID: 17166639]
[26]
Van putten, J.P.M; Strijbis, K Transmembrane mucins: Signalling receptors at the intersection of inflammation and cancer. J. Innate Immun., 2017, 9, 281-299.
[http://dx.doi.org/10.1159/000453594] [PMID: 28052300]
[27]
Marczynski, M.; Winkeljaan, B.; Lieleg, O. Advances in mucin biopolymer research: Purification, characterization and applications.Biopolymers for Biomedical and Biotechnological Applications; Wiley: Hookben, NJ, USA, 2021, pp. 181-208.
[http://dx.doi.org/10.1002/9783527818310.ch6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy