Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Editorial

Targeted Covalent Inhibition: A Prospective Way to Develop Novel HSP90 C-terminal Inhibitor

Author(s): Yajun Liu* and Yajing Li

Volume 23, Issue 16, 2022

Published on: 30 September, 2022

Page: [1454 - 1456] Pages: 3

DOI: 10.2174/1389450123666220920111841

[1]
Schopf FH, Biebl MM, Buchner J. The hsp90 chaperone machinery. Nat Rev Mol Cell Biol 2017; 18(6): 345-60.
[http://dx.doi.org/10.1038/nrm.2017.20] [PMID: 28429788]
[2]
Hoter A, El-Sabban M, Naim H. The hsp90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci 2018; 19(9): 2560.
[http://dx.doi.org/10.3390/ijms19092560] [PMID: 30158430]
[3]
Serwetnyk MA, Blagg BSJ. The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards hsp90 inhibition. Acta Pharm Sin B 2021; 11(6): 1446-68.
[http://dx.doi.org/10.1016/j.apsb.2020.11.015] [PMID: 34221862]
[4]
Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic hsp90 complex in cancer. Nat Rev Cancer 2010; 10(8): 537-49.
[http://dx.doi.org/10.1038/nrc2887] [PMID: 20651736]
[5]
Li L, Wang L, You QD, Xu XL. Heat shock protein 90 inhibitors: an update on achievements, challenges, and future directions. J Med Chem 2020; 63(5): 1798-822.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00940] [PMID: 31663736]
[6]
Biebl MM, Buchner J. Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harb Perspect Biol 2019; 11(9): a034017.
[http://dx.doi.org/10.1101/cshperspect.a034017] [PMID: 30745292]
[7]
Li L, Chen NN, You QD, Xu XL. An updated patent review of anticancer Hsp90 inhibitors (2013-present). Expert Opin Ther Pat 2021; 31(1): 67-80.
[http://dx.doi.org/10.1080/13543776.2021.1829595] [PMID: 32990109]
[8]
Kijima T, Prince TL, Tigue ML, et al. Hsp90 inhibitors disrupt a transient hsp90-hsf1 interaction and identify a noncanonical model of hsp90-mediated HSF1 regulation. Sci Rep 2018; 8(1): 6976.
[http://dx.doi.org/10.1038/s41598-018-25404-w] [PMID: 29725069]
[9]
Xiao Y, Liu Y. Recent advances in the discovery of novel hsp90 inhibitors: an update from 2014. Curr Drug Targets 2020; 21(3): 302-17.
[http://dx.doi.org/10.2174/1389450120666190829162544] [PMID: 31465284]
[10]
Bickel D, Gohlke H. C-terminal modulators of heat shock protein of 90 kDa (hsp90): State of development and modes of action. Bioorg Med Chem 2019; 27(21): 115080.
[http://dx.doi.org/10.1016/j.bmc.2019.115080] [PMID: 31519378]
[11]
Lonsdale R, Ward RA. Structure-based design of targeted covalent inhibitors. Chem Soc Rev 2018; 47(11): 3816-30.
[http://dx.doi.org/10.1039/C7CS00220C] [PMID: 29620097]
[12]
Martínez-Ruiz A, Villanueva L, de Orduña CG, et al. S-nitrosylation of hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci 2005; 102(24): 8525-30.
[http://dx.doi.org/10.1073/pnas.0407294102] [PMID: 15937123]
[13]
Dai J, Zhu M, Qi X, et al. Fungal mycotoxin penisuloxazin A, a novel C-terminal hsp90 inhibitor and characteristics of its analogues on hsp90 function related to binding sites. Biochem Pharmacol 2020; 182: 114218.
[http://dx.doi.org/10.1016/j.bcp.2020.114218] [PMID: 32949584]
[14]
Zhu D, Li S, Chen C, et al. Tubocapsenolide A targets C-terminal cysteine residues of hsp90 to exert the anti-tumor effect. Pharmacol Res 2021; 166: 105523.
[http://dx.doi.org/10.1016/j.phrs.2021.105523] [PMID: 33667688]
[15]
Li L, Chen N, Xia D, et al. Discovery of a covalent inhibitor of heat shock protein 90 with antitumor activity that blocks the co-chaperone binding via C-terminal modification. Cell Chem Biol 2021; 28(10): 1446-59.
[http://dx.doi.org/10.1016/j.chembiol.2021.03.016] [PMID: 33932325]

© 2025 Bentham Science Publishers | Privacy Policy