Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Recent Developments in Organic Nanotubes for Drug Delivery Applications

Author(s): Manasi Bhabal, Abhishekh Tiwari*, Hemant Keshari, Uttam Shelar and Atul Changdev Chaskar*

Volume 19, Issue 5, 2023

Published on: 17 October, 2022

Page: [621 - 635] Pages: 15

DOI: 10.2174/1573413718666220919123050

Price: $65

Abstract

Over the past few years, nanoparticles have been widely used in therapeutic applications. It is well acknowledged that nanoparticles have improved the shortcomings of conventional treatments. The advantages and drawbacks of inorganic nanocarriers such as metal nanoparticles and quantum dots have been extensively studied. Although carbon nanotubes have been touted as a prominent medication delivery method, their physicochemical characteristics, such as low water solubility, limited circulation time, etc., restrict their use. Compared to hard matter tubes like carbon and other inorganic matter, organic nanotubes have better physiological properties such as improved blood stability, longer circulation time, high serum solubility, etc. The current study focuses on recent developments in the use of organic nanotubes for drug delivery and the utilization of their structural features. The soft, organic material that builds up these nanotubes has a synergistic effect on biocompatibility and lowers cytotoxicity thus proving suitable for the potential use as drug delivery carrier. The goals of this review are to identify the characteristics that support the creation of new drug delivery systems and to shed light on current advancements that have been reported in the literature. The paper also includes discussion of the difficulties in using these organic nanotubes for applications in drug delivery as well as the potential for future research in this field.

Keywords: Organic Nanotubes, drug delivery system, soft-matter nanotubes, amphiphilic nanotubes, Rosette nanotubes, self-assembly, nanotubes.

Next »
Graphical Abstract

[1]
Bhadra, U.; Pal, B.M.; Bulusu, J. Organic nanotubes: Promising vehicles for drug delivery. In: Application of Nanotechnology in Drug Delivery; InTech: London, 2014.
[http://dx.doi.org/10.5772/58412]
[2]
Balbo, B.M.A.; Kaiser, C.; Khan, A.; Hecht, S. Discrete organic nanotubes based on a combination of covalent and non-covalent approaches. Top. Curr. Chem., 2005, 245, 89-150.
[http://dx.doi.org/10.1007/b98167]
[3]
Ding, W.; Kameta, N.; Minamikawa, H.; Wada, M.; Shimizu, T.; Masuda, M. Hybrid organic nanotubes with dual functionalities localized on cylindrical nanochannels control the release of doxorubicin. Adv. Healthc. Mater., 2012, 1(6), 699-706.
[http://dx.doi.org/10.1002/adhm.201200133] [PMID: 23184820]
[4]
Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2019, 15, 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[5]
Wang, X.; Liu, Y.; Xu, W.; Jia, L.; Chi, D.; Yu, J.; Wang, J.; He, Z.; Liu, X.; Wang, Y. Irinotecan and berberine co-delivery liposomes showed improved efficacy and reduced intestinal toxicity compared with Onivyde for pancreatic cancer. Drug Deliv. Transl. Res., 2021, 11(5), 2186-2197.
[http://dx.doi.org/10.1007/s13346-020-00884-4] [PMID: 33452654]
[6]
Cressey, P.; Amrahli, M.; So, P.W.; Gedroyc, W.; Wright, M.; Thanou, M. Image-guided thermosensitive liposomes for focused ultrasound enhanced co-delivery of carboplatin and SN-38 against triple negative breast cancer in mice. Biomaterials, 2021, 271, 120758.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120758] [PMID: 33774525]
[7]
Pham, D.T.; Chokamonsirikun, A.; Phattaravorakarn, V.; Tiyaboonchai, W. Polymeric micelles for pulmonary drug delivery: A comprehensive review. J. Mater. Sci., 2021, 56(3), 2016-2036.
[http://dx.doi.org/10.1007/s10853-020-05361-4]
[8]
Pooresmaeil, M.; Namazi, H. Advances in development of the dendrimers having natural saccharides in their structure for efficient and controlled drug delivery applications. Eur. Polym. J., 2021, 148, 110356.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110356]
[9]
Abbasi, B.H.; Fazal, H.; Ahmad, N. Nanomaterials for cosmeceuticals: Nanomaterials-induced advancement in cosmetics, challenges, and opportunities. In: Nanocosmetics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 79-108.
[http://dx.doi.org/10.1016/B978-0-12-822286-7.00005-X]
[10]
Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol., 2019, 53, 101174.
[http://dx.doi.org/10.1016/j.jddst.2019.101174]
[11]
Zavareh, H.S.; Pourmadadi, M.; Moradi, A.; Yazdian, F.; Omidi, M. Chitosan/carbon quantum dot/aptamer complex as a potential anticancer drug delivery system towards the release of 5- fluorouracil. Int. J. Biol. Macromol., 2020, 165(Pt A), 1422-1430.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.166] [PMID: 32987067]
[12]
Paul, W.; Sharma, C.P. Inorganic nanoparticles for targeted drug delivery. In: Biointegration of Medical Implant Materials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 333-373.
[13]
Sorasitthiyanukarn, F.N.; Muangnoi, C.; Thaweesest, W.; Na Bhuket, R.P.; Jantaratana, P.; Rojsitthisak, P.; Rojsitthisak, P. Polyethylene glycol-chitosan oligosaccharide-coated superparamagnetic iron oxide nanoparticles: A novel drug delivery system for curcumin diglutaric acid. Biomolecules, 2020, 10(1), 73.
[http://dx.doi.org/10.3390/biom10010073] [PMID: 31906490]
[14]
Anik, M.I.; Hossain, M.K.; Hossain, I.; Mahfuz, A.M.U.B.; Rahman, M.T.; Ahmed, I. Recent progress of magnetic nanoparticles in biomedical applications: A review. Nano Select, 2021, 2(6), 1146-1186.
[http://dx.doi.org/10.1002/nano.202000162]
[15]
Prajapati, S.K.; Malaiya, A.; Kesharwani, P. Biomedical applications and toxicities of carbon nanotubes. Drug Chem. Toxicol., 2020, 45(1), 435-450.
[http://dx.doi.org/10.1080/01480545.2019.1709492] [PMID: 31908176]
[16]
Jain, N.; Tiwari, S. Biomedical application of Carbon Nanotubes (CNTS) in vulnerable parts of the body and its toxicity study: A state-of-the-art-review. In: Materials Today: Proceedings; Elsevier: Amsterdam, The Netherlands, 2021; pp. 7608-7617.
[http://dx.doi.org/10.1016/j.matpr.2021.01.895]
[17]
Zhang, L.P.; Tan, X.X.; Huang, Y.P.; Liu, Z.S. Floating liquid crystalline molecularly imprinted polymer coated carbon nanotubes for levofloxacin delivery. Eur. J. Pharm. Biopharm., 2018, 127, 150-158.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.012] [PMID: 29438726]
[18]
Hassan, A.; Saeed, A.; Afzal, S.; Shahid, M.; Amin, I.; Idrees, M. Applications and hazards associated with carbon nanotubes in biomedical sciences. Inorg. Nano-Metal Chem., 2020, 50(9), 741-752.
[http://dx.doi.org/10.1080/24701556.2020.1724151]
[19]
Saleemi, M.A.; Hosseini, F.M.; Yong, P.V.C.; Chinna, K.; Palanisamy, N.K.; Wong, E.H. Toxicity of carbon nanotubes: Molecular mechanisms, signaling cascades, and remedies in biomedical applications. Chem. Res. Toxicol., 2021, 34(1), 24-46.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00172] [PMID: 33319996]
[20]
Sargent, L.M.; Hubbs, A.F.; Young, S.H.; Kashon, M.L.; Dinu, C.Z.; Salisbury, J.L.; Benkovic, S.A.; Lowry, D.T.; Murray, A.R.; Kisin, E.R.; Siegrist, K.J.; Battelli, L.; Mastovich, J.; Sturgeon, J.L.; Bunker, K.L.; Shvedova, A.A.; Reynolds, S.H. Single-walled carbon nanotube-induced mitotic disruption. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2012, 745(1-2), 28-37.
[http://dx.doi.org/10.1016/j.mrgentox.2011.11.017] [PMID: 22178868]
[21]
Dong, J.; Ma, Q. Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology, 2015, 9(5), 658-676.
[http://dx.doi.org/10.3109/17435390.2015.1009187] [PMID: 25676622]
[22]
Kozlovskaya, V.; Dolmat, M.; Kharlampieva, E. Polymeric particulates of controlled rigidity for biomedical applications. ACS Appl. Polym. Mater., 2021, 3(5), 2274-2289.
[http://dx.doi.org/10.1021/acsapm.1c00157]
[23]
Porter, M.; Lin, R.; Monroe, M. Self-assembling supramolecular nanostructures for drug delivery. 2019. Available from: www.worldscientific.com
[http://dx.doi.org/10.1142/9789811201035_0001]
[24]
Shimizu, T.; Ding, W.; Kameta, N. Soft-matter nanotubes: A platform for diverse functions and applications. Chem. Rev., 2020, 120(4), 2347-2407.
[http://dx.doi.org/10.1021/acs.chemrev.9b00509] [PMID: 32013405]
[25]
Wakasugi, A.; Asakawa, M.; Kogiso, M.; Shimizu, T.; Sato, M.; Maitani, Y. Organic nanotubes for drug loading and cellular delivery. Int. J. Pharm., 2011, 413(1-2), 271-278.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.038] [PMID: 21540092]
[26]
Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular nanotube architectures based on amphiphilic molecules. Chem. Rev., 2005, 105(4), 1401-1444.
[http://dx.doi.org/10.1021/cr030072j] [PMID: 15826016]
[27]
Kameta, N.; Minamikawa, H.; Masuda, M.; Mizuno, G.; Shimizu, T. Controllable biomolecule release from self-assembled organic nanotubes with asymmetric surfaces: pH and temperature dependence. Soft Matter, 2008, 4(8), 1681-1687.
[http://dx.doi.org/10.1039/b803742f] [PMID: 32907162]
[28]
Moribe, K.; Makishima, T.; Higashi, K.; Liu, N.; Limwikrant, W.; Ding, W.; Masuda, M.; Shimizu, T.; Yamamoto, K. Encapsulation of poorly water-soluble drugs into organic nanotubes for improving drug dissolution. Int. J. Pharm., 2014, 469(1), 190-196.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.005] [PMID: 24746412]
[29]
Masumi, A.; Naohiro, K. Masaki, k.; Mitsutoshi M. Development of mass synthesis method of organic nanotubes for practical use -Toward a market-competitive material by integrating molecular design/synthesis technology and safety evaluation. Synthesiol. Engl. Ed., 2009, 1, 169-176.
[30]
Burgess, N.C.; Sharp, T.H.; Thomas, F. Modular design of self-assembling peptide-based nanotubes. J. Am. Chem. Soc., 2015, 137(33), 10554-10562.
[http://dx.doi.org/10.1021/jacs.5b03973]
[31]
Su, B.; Wu, Y.; Jiang, L. The art of aligning One-Dimensional (1D) nanostructures. Chem. Soc. Rev., 2012, 41(23), 7832-7856.
[http://dx.doi.org/10.1039/c2cs35187k] [PMID: 22990498]
[32]
Shen, J.; Liu, G.; Han, Y.; Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater., 2021, 6(4), 294-312.
[http://dx.doi.org/10.1038/s41578-020-00268-7]
[33]
Qu, X.; Komatsu, T. Molecular capture in protein nanotubes. ACS Nano, 2010, 4(1), 563-573.
[http://dx.doi.org/10.1021/nn901474y] [PMID: 20020754]
[34]
Yui, H.; Shimizu, Y.; Kamiya, S.; Yamashita, I.; Masuda, M.; Ito, K.; Shimizu, T. Encapsulation of ferritin within a hollow cylinder of glycolipid nanotubes. Chem. Lett., 2005, 34(2), 232-233.
[http://dx.doi.org/10.1246/cl.2005.232]
[35]
Chen, J.; Zhang, B.; Xia, F.; Xie, Y.; Jiang, S.; Su, R.; Lu, Y.; Wu, W. Transmembrane delivery of anticancer drugs through self-assembly of cyclic peptide nanotubes. Nanoscale, 2016, 8(13), 7127-7136.
[http://dx.doi.org/10.1039/C5NR06804E] [PMID: 26964879]
[36]
Shishir, M.R.I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol., 2018, 78, 34-60.
[http://dx.doi.org/10.1016/j.tifs.2018.05.018]
[37]
Gong, B.; Shao, Z. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: Formation and mass transport characteristics. Acc. Chem. Res., 2013, 46(12), 2856-2866.
[http://dx.doi.org/10.1021/ar400030e] [PMID: 23597055]
[38]
Kameta, N.; Asakawa, M.; Masuda, M. Self-assembled organic nanotubes embedding hydrophobic molecules within solid bilayer membranes. Soft Matter, 2011, 7, 85-90.
[http://dx.doi.org/10.1039/C0SM00375A]
[39]
Kameta, N.; Masuda, M.; Shimizu, T. Two-step naked-eye detection of lectin by hierarchical organization of soft nanotubes into liquid crystal and gel phases. Chem. Commun., 2015, 51(31), 6816-6819.
[http://dx.doi.org/10.1039/C5CC01464F] [PMID: 25787759]
[40]
Schnur, J.M.; Price, R.; Schoen, P. Lipid-based tubule microstructures. Science, 1993, 262(5140), 1669-1676.
[41]
Shen, H.; Eisenberg, A. Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H2O. Macromolecules, 2000, 33(7), 2561-2572.
[http://dx.doi.org/10.1021/ma991161u]
[42]
Shimizu, T. Self-assembly of discrete organic nanotubes. Bull. Chem. Soc. Jpn., 2018, 91(4), 623-668.
[http://dx.doi.org/10.1246/bcsj.20170424]
[43]
Shimizu, T.; Hato, M. Self-assembling properties of synthetic peptidic lipids. Biochim. Biophys. Acta Biomembr., 1993, 1147(1), 50-58.
[http://dx.doi.org/10.1016/0005-2736(93)90315-Q]
[44]
Stewart, S.; Liu, G.; Brus, L.E. Plenum. In: Bonding (Berlin); Von Schnering, H.G., Ed.; WILEY-VCH: Weinheim, 1997; 87, pp. 157.
[45]
Park, C.; Lee, H.; Lee, S. Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation. Proc. Natl. Acad. Sci. USA, 2006, 103(5), 1199-1203.
[http://dx.doi.org/10.1073/pnas.0505364103]
[46]
Huang, Z.; Zhao, D.M.; Deng, X.; Zhang, J.; Zhang, Y.M.; Yu, X.Q. Functionalized asymmetric bola-type amphiphiles for efficient gene and drug delivery. Nanomaterials, 2018, 8(2), 115.
[http://dx.doi.org/10.3390/nano8020115] [PMID: 29462991]
[47]
Ishikawa, K.; Kameta, N.; Aoyagi, M.; Asakawa, M.; Shimizu, T. Soft nanotubes with a hydrophobic channel hybridized with Au nanoparticles: Photothermal dispersion/aggregation control of C60 in water. Adv. Funct. Mater., 2013, 23(13), 1677-1683.
[http://dx.doi.org/10.1002/adfm.201202160]
[48]
Ding, W.; Wada, M.; Minamikawa, H.; Kameta, N.; Masuda, M.; Shimizu, T. Cisplatin-encapsulated organic nanotubes by endo-complexation in the hollow cylinder. Chem. Commun., 2012, 48(69), 8625-8627.
[http://dx.doi.org/10.1039/c2cc33970f] [PMID: 22790784]
[49]
Liu, N.; Higashi, K.; Kikuchi, J.; Ando, S.; Kameta, N.; Ding, W.; Masuda, M.; Shimizu, T.; Ueda, K.; Yamamoto, K.; Moribe, K. Molecular-level understanding of the encapsulation and dissolution of poorly water-soluble ibuprofen by functionalized organic nanotubes using solid-state NMR spectroscopy. J. Phys. Chem. B, 2016, 120(19), 4496-4507.
[http://dx.doi.org/10.1021/acs.jpcb.6b00939] [PMID: 27123961]
[50]
Alegre, R.J.V.; Herrera, R.P.; Díaz, D.D. Self‐assembly of hollow organic nanotubes driven by arene regioisomerism. ChemPlusChem, 2020, 85(11), 2372-2375.
[http://dx.doi.org/10.1002/cplu.202000473]
[51]
Wu, D.; Ding, W.; Kameta, N. Selective construction of single-walled asymmetrical nanotube by platinum (II)-coordination/] dissociation. Mater. Lett., 2019, 242, 107-110.
[http://dx.doi.org/10.1016/j.matlet.2019.01.107]
[52]
Hu, B.; Yuan, Y.; Yan, Y.; Zhou, X.; Li, Y.; Kan, Q.; Li, S. Preparation and evaluation of a novel anticancer drug delivery carrier for 5-Fluorouracil using synthetic bola-amphiphile based on lysine as polar heads. Mater. Sci. Eng. C, 2017, 75, 637-645.
[http://dx.doi.org/10.1016/j.msec.2017.02.106] [PMID: 28415509]
[53]
Mejías, F.J.R.; Trasobares, S.; López, H.M.; Varela, R.M.; Molinillo, J.M.G.; Calvino, J.J.; Macías, F.A. In situ eco encapsulation of bioactive agrochemicals within fully organic nanotubes. ACS Appl. Mater. Interfaces, 2019, 11(45), 41925-41934.
[http://dx.doi.org/10.1021/acsami.9b14714] [PMID: 31633337]
[54]
Basalious, E.B.; Shamma, R.N. Novel self-assembled nano-tubular mixed micelles of Pluronics P123, Pluronic F127 and phosphatidylcholine for oral delivery of nimodipine: In vitro characterization, ex vivo transport and in vivo pharmacokinetic studies. Int. J. Pharm., 2015, 493(1-2), 347-356.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.075] [PMID: 26241752]
[55]
Jia, M.; Deng, C.; Luo, J.; Zhang, P.; Sun, X.; Zhang, Z.; Gong, T. A novel dexamethasone-loaded liposome alleviates rheumatoid arthritis in rats. Int. J. Pharm., 2018, 540(1-2), 57-64.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.001] [PMID: 29408684]
[56]
Wang, Q.; He, L.; Fan, D.; Liang, W.; Wang, X.; Fang, J. PLA 2 triggered release of drugs from self-assembled lipid tubules for arthritis treatments. ACS Appl. Bio Mater., 2020, 3(9), 6488-6496.
[http://dx.doi.org/10.1021/acsabm.0c00883] [PMID: 35021780]
[57]
Kawauchi, H.; Takahashi, R.; Kameta, N.; Fujii, S.; Lee, J.H.; Shimizu, T.; Sakurai, K. Encapsulation of albumin in organic nanotube channel: Structural investigation by small-angle X-ray scattering. ACS Appl. Bio Mater., 2019, 2(4), 1652-1659.
[http://dx.doi.org/10.1021/acsabm.9b00047] [PMID: 35026899]
[58]
Wang, J.; Ding, X.; Guo, X. Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications in drug delivery and protein recognition. Adv. Colloid Interface Sci., 2019, 269, 187-202.
[http://dx.doi.org/10.1016/j.cis.2019.04.004] [PMID: 31082545]
[59]
Rafiee, Z.K.A. Synthesis of calixarene-polyglycerol conjugates and their self-assembly toward nano and microtubes. RSC Adv, 2016, 6, 17470-17473.
[60]
Dey, S.; Chatterjee, S.; Patel, A.; Pradhan, N.; Srivastava, D.; Patra, N.; Bhattacharyya, A.; Manna, D. Photoresponsive transformation from spherical to nanotubular assemblies: Anticancer drug delivery using macrocyclic cationic gemini amphiphiles. Chem. Commun., 2021, 57(38), 4646-4649.
[http://dx.doi.org/10.1039/D1CC01468D] [PMID: 33881081]
[61]
Sun, Y.; Davis, E.W. Facile fabrication of polydopamine nanotubes for combined chemo-photothermal therapy. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(43), 6828-6839.
[http://dx.doi.org/10.1039/C9TB01338E] [PMID: 31609368]
[62]
Roldo, M.; Barbu, E.; Brown, J.F.; Laight, D.W.; Smart, J.D.; Tsibouklis, J. Azo compounds in colon-specific drug delivery. Expert Opin. Drug Deliv., 2007, 4(5), 547-560.
[http://dx.doi.org/10.1517/17425247.4.5.547] [PMID: 17880276]
[63]
Cao, H.; Duan, P.; Zhu, X.; Jiang, J.; Liu, M. Self-assembled organic nanotubes through instant gelation and universal capacity for guest molecule encapsulation. Chemistry, 2012, 18(18), 5546-5550.
[http://dx.doi.org/10.1002/chem.201103654] [PMID: 22447534]
[64]
Van Den, G.; Maris, B.; Samyn, C.; Augustijns, P.; Kinget, R. Use of azo polymers for colon-specific. J. Pharm. Sci., 1997, 86(12), 1321-1327.
[65]
Eom, T.; Yoo, W.; Kim, S.; Khan, A. Biologically activatable azobenzene polymers targeted at drug delivery and imaging applications. Biomaterials, 2018, 185, 333-347.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.020] [PMID: 30268898]
[66]
Jang, D.; Pramanik, S.K.; Das, A.; Baek, W.; Heo, J.M.; Ro, H.J.; Jun, S.; Park, B.J.; Kim, J.M. Photoinduced reversible bending and guest molecule release of azobenzene-containing polydiacetylene nanotubes. Sci. Rep., 2019, 9(1), 15982.
[http://dx.doi.org/10.1038/s41598-019-52462-5] [PMID: 31690756]
[67]
Beingessner, R.L.; Fan, Y.; Fenniri, H. Molecular and supramolecular chemistry of rosette nanotubes. RSC Adv, 2016, 6(79), 75820-75838.
[http://dx.doi.org/10.1039/C6RA16315G]
[68]
Song, S.; Chen, Y.; Yan, Z.; Fenniri, H.; Webster, T.J. Self-assembled rosette nanotubes for incorporating hydrophobic drugs in physiological environments. Int. J. Nanomed, 2011, 6, 101-107.
[PMID: 21289987]
[69]
Chen, Y.; Song, S.; Yan, Z.; Fenniri, H.; Webster, T.J. Self-assembled rosette nanotubes encapsulate and slowly release dexamethasone. Int. J. Nanomed, 2011, 6, 1035-1044.
[PMID: 21720515]
[70]
Fan, Y.; Pauer, A.C.; Gonzales, A.A.; Fenniri, H. Enhanced antibiotic activity of ampicillin conjugated to gold nanoparticles on PEGylated rosette nanotubes. Int. J. Nanomed, 2019, 14, 7281-7289.
[http://dx.doi.org/10.2147/IJN.S209756] [PMID: 31686808]
[71]
Cho, J.Y.; Bhowmik, P.; Polowick, P.L.; Dodard, S.G.; El-Bakkari, M.; Nowak, G.; Fenniri, H.; Hemraz, U.D. Cellular delivery of plasmid DNA into wheat microspores using rosette nanotubes. ACS Omega, 2020, 5(38), 24422-24433.
[http://dx.doi.org/10.1021/acsomega.0c02830] [PMID: 33015458]
[72]
Larnaudie, S.C.; Brendel, J.C.; Romero, C.I.; Sanchez, C.C.; Catrouillet, S.; Sanchis, J.; Coverdale, J.P.C.; Song, J.I.; Habtemariam, A.; Sadler, P.J.; Jolliffe, K.A.; Perrier, S. Cyclic peptide–polymer nanotubes as efficient and highly potent drug delivery systems for organometallic anticancer complexes. Biomacromolecules, 2018, 19(1), 239-247.
[http://dx.doi.org/10.1021/acs.biomac.7b01491] [PMID: 29156128]
[73]
Vijayaraj, R.; Van Damme, S.; Bultinck, P.; Subramanian, V. Theoretical studies on the transport mechanism of 5-fluorouracil through cyclic peptide based nanotubes. Phys. Chem. Chem. Phys., 2013, 15(4), 1260-1270.
[http://dx.doi.org/10.1039/C2CP42038D] [PMID: 23229174]
[74]
Cheetham, A.G.; Zhang, P.; Lin, Y.; Lock, L.L.; Cui, H. Supramolecular nanostructures formed by anticancer drug assembly. J. Am. Chem. Soc., 2013, 135(8), 2907-2910.
[http://dx.doi.org/10.1021/ja3115983] [PMID: 23379791]
[75]
Liu, H.; Chen, J.; Shen, Q.; Fu, W.; Wu, W. Molecular insights on the cyclic peptide nanotube-mediated transportation of antitumor drug 5-fluorouracil. Mol. Pharm., 2010, 7(6), 1985-1994.
[http://dx.doi.org/10.1021/mp100274f] [PMID: 20964368]
[76]
Joozdani, F.A.; Taghdir, M. A molecular dynamics investigation on transporting mechanism of glucose through a cyclic peptide nanotube. J. Biomol. Struct. Dyn., 2021, 39(6), 2230-2241.
[http://dx.doi.org/10.1080/07391102.2020.1751292] [PMID: 32249695]
[77]
Wang, Y.; Yi, S.; Sun, L.; Huang, Y.; Lenaghan, S.C.; Zhang, M. Doxorubicin-loaded cyclic peptide nanotube bundles overcome chemoresistance in breast cancer cells. J. Biomed. Nanotechnol., 2014, 10(3), 445-454.
[http://dx.doi.org/10.1166/jbn.2014.1724] [PMID: 24730240]
[78]
Lockwood, D.J.S.T. Nanostructure science and technology series. , 2021. Available from: http://www.springer.com/series/6331
[79]
Ohnsorg, M.L.; Prendergast, P.C.; Robinson, L.L.; Bockman, M.R.; Bates, F.S.; Reineke, T.M. Bottlebrush polymer excipients enhance drug solubility: Influence of end-group hydrophilicity and thermoresponsiveness. ACS Macro Lett., 2021, 10(3), 375-381.
[http://dx.doi.org/10.1021/acsmacrolett.0c00890] [PMID: 35549060]
[80]
Tu, X.Y.; Meng, C.; Wang, Y.F.; Ma, L.W.; Wang, B.Y.; He, J.L.; Ni, P.H.; Ji, X.L.; Liu, M.Z.; Wei, H. Fabrication of thermosensitive cyclic brush copolymer with enhanced therapeutic efficacy for anticancer drug delivery. Macromol. Rapid Commun., 2018, 39(5), 1700744.
[http://dx.doi.org/10.1002/marc.201700744] [PMID: 29314488]
[81]
Ellacott, S.H.; Sanchez, C.C.; Mansfield, E.D.H.; Rho, J.Y.; Song, J.I.; Peltier, R.; Perrier, S. Comparative study of the cellular uptake and intracellular behavior of a library of cyclic peptide–polymer nanotubes with different self-assembling properties. Biomacromolecules, 2021, 22(2), 710-722.
[http://dx.doi.org/10.1021/acs.biomac.0c01512] [PMID: 33350825]
[82]
Larnaudie, S.C.; Sanchis, J.; Nguyen, T.H.; Peltier, R.; Catrouillet, S.; Brendel, J.C.; Porter, C.J.H.; Jolliffe, K.A.; Perrier, S. Cyclic peptide-poly(HPMA) nanotubes as drug delivery vectors: In vitro assessment, pharmacokinetics and biodistribution. Biomaterials, 2018, 178, 570-582.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.047] [PMID: 29680158]
[83]
Hou, J.L. Hydrogen Bonded Organic Nanotubes. In: Li, Z.T., Wu, L.Z. (Eds.) Hydrogen Bonded Supramolecular Structures. Lecture Notes in Chemistry; Springer: Berlin, Heidelberg, 2015; pp. 249-267.
[http://dx.doi.org/10.1007/978-3-662-45756-6_8]
[84]
Shimizu, T. Molecular self-assembly into one-dimensional nanotube architectures and exploitation of their functions. Bull. Chem. Soc. Jpn., 2008, 81(12), 1554-1566.
[http://dx.doi.org/10.1246/bcsj.81.1554]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy