Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Long Non-coding RNA DLGAP1-AS1 and DLGAP1-AS2: Two Novel Oncogenes in Multiple Cancers

Author(s): Fangnan Zhao, Fangshun Tan, Lu Tang, Zhuoying Du, Xiaoya Chen, Yuzhi Yang, Gang Zhou* and Chengfu Yuan*

Volume 30, Issue 25, 2023

Published on: 10 November, 2022

Page: [2822 - 2834] Pages: 13

DOI: 10.2174/0929867329666220919114919

Price: $65

Abstract

Background: The change of lncRNA expression is known to affect the progression of tumors. This has fueled numerous investigations aiming at the mystery of lncRNA. Clear lncRNA has been the hotspot of antisense RNAs research. More and more lncRNAs have been proven to take effect as oncogenes of multitudinous cancers and accelerate tumor progression. This review elucidates the pathophysiological functions of lncRNA DLGAP1-AS1 and lncRNA DLGAP1-AS2 in a variety of tumors.

Methods: Via systematic analysis and in-depth study about relevant articles in PubMed, this article analyzes and summarizes the mechanism of antisense transcripts DLGAP1- AS1 and DLGAP1-AS2 in tumor development.

Results: DLGAP1-AS1 and DLGAP1-AS2 can exert their effect as oncogenes on various cancers. The expression of DLGAP1-AS1 is aberrantly high in various tumors, including GC, BC, HCC, glioblastoma and CRC. Concurrently, in LC, RC, HCC, GC, glioma and CCA, DLGAP1-AS2 is also discovered to be highly expressed. And they have a strong pertinence with a poor prognosis. The disorder of DLGAP1-AS1 and DLGAP1- AS2 in different tumors has different malignant impacts on tumors, not only to invasion, apoptosis, multiplication and EMT of tumor cells but also to drug resistance and radioresistance. In addition, DLGAP1-AS2 was revealed to have the ability to predict the prognosis of WT and RCC.

Conclusion: The regulatory effects of DLGAP1-AS1 and DLGAP1-AS2 on tumors make them possible to be clinical markers for the early diagnosis of tumors and effective therapeutic targets.

Keywords: Long non-coding RNA, DLGAP1-AS1, DLGAP1-AS2, tumor, prognosis, biomarkers therapeutic target

[1]
Xu, J.; Zhang, J.; Zhang, W. Antisense RNA: The new favorite in genetic research. J. Zhejiang Univ. Sci. B, 2018, 19(10), 739-749.
[http://dx.doi.org/10.1631/jzus.B1700594] [PMID: 30269442]
[2]
Liu, L.; Li, X.; Shi, Y.; Chen, H. Long noncoding RNA DLGAP1-AS1 promotes the progression of glioma by regulating the miR-1297/EZH2 axis. Aging (Albany NY), 2021, 13(8), 12129-12142.
[http://dx.doi.org/10.18632/aging.202923] [PMID: 33901010]
[3]
Hu, K.; Ao, X. Long non-coding RNA DLGAP1 antisense RNA 1 accelerates glioma progression via the microRNA-628-5p/DEAD-box helicase 59 pathway. Clinics (São Paulo), 2022, 77, 100002.
[http://dx.doi.org/10.1016/j.clinsp.2021.100002] [PMID: 35113786]
[4]
Zhu, X.; Jiang, S.; Wu, Z.; Liu, T.; Zhang, W.; Wu, L.; Xu, L.; Shao, M. Long non-coding RNA TTN antisense RNA 1 facilitates hepatocellular carcinoma progression via regulating miR-139-5p/SPOCK1 axis. Bioengineered, 2021, 12(1), 578-588.
[http://dx.doi.org/10.1080/21655979.2021.1882133] [PMID: 33517826]
[5]
Guo, X.; Li, H.; Zhang, M.; Li, R. LncRNA GAS6 antisense RNA 1 facilitates the tumorigenesis of clear cell renal cell carcinoma by regulating the AMP-ativated protein kinase/mTOR signaling pathway. Oncol. Lett., 2021, 22(4), 727.
[http://dx.doi.org/10.3892/ol.2021.12988] [PMID: 34429767]
[6]
Ren, J.; Xu, N.; Zhou, R.; Huang, F.; Zhang, H.; Li, W. Long non-coding RNA PCED1B antisense RNA 1 promotes gastric cancer progression via modulating microRNA-215-3p / C-X-C motif chemokine receptor 1 axis. Bioengineered, 2021, 12(1), 6083-6095.
[http://dx.doi.org/10.1080/21655979.2021.1971503] [PMID: 34516330]
[7]
Zhang, Z.B.; Liu, N. Long non-coding RNA KTN1-AS1 promotes progression in pancreatic cancer through regulating microRNA-23b-3p/high-mobility group box 2 axis. Aging (Albany NY), 2021, 13(16), 20820-20835.
[http://dx.doi.org/10.18632/aging.203481] [PMID: 34461605]
[8]
Wang, Y.; Li, L.; Zhang, X.; Zhao, X. Long non-coding RNA OIP5-AS1 suppresses microRNA-92a to augment proliferation and metastasis of ovarian cancer cells through upregulating ITGA6. J. Ovarian Res., 2022, 15(1), 25.
[http://dx.doi.org/10.1186/s13048-021-00937-3] [PMID: 35168644]
[9]
Miao, W.; Li, N.; Gu, B.; Yi, G.; Su, Z.; Cheng, H. LncRNA DLGAP1-AS2 modulates glioma development by up-regulating YAP1 expression. J. Biochem., 2020, 167(4), 411-418.
[http://dx.doi.org/10.1093/jb/mvz108] [PMID: 31899508]
[10]
Grunberg, N.; Pevsner-Fischer, M.; Goshen-Lago, T.; Diment, J.; Stein, Y.; Lavon, H.; Mayer, S.; Levi-Galibov, O.; Friedman, G.; Ofir-Birin, Y.; Syu, L.J.; Migliore, C.; Shimoni, E.; Stemmer, S.M.; Brenner, B.; Dlugosz, A.A.; Lyden, D.; Regev-Rudzki, N.; Ben-Aharon, I.; Scherz-Shouval, R. Cancer-associated fibroblasts promote aggressive gastric cancer phenotypes via heat shock factor 1–mediated secretion of extracellular vesicles. Cancer Res., 2021, 81(7), 1639-1653.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-2756] [PMID: 33547159]
[11]
Pardo, O.E.; Castellano, L.; Munro, C.E.; Hu, Y.; Mauri, F.; Krell, J.; Lara, R.; Pinho, F.G.; Choudhury, T.; Frampton, A.E.; Pellegrino, L.; Pshezhetskiy, D.; Wang, Y.; Waxman, J.; Seckl, M.J.; Stebbing, J. miR-515-5p controls cancer cell migration through MARK 4 regulation. EMBO Rep., 2016, 17(4), 570-584.
[http://dx.doi.org/10.15252/embr.201540970] [PMID: 26882547]
[12]
Li, L.; Lai, Q.; Zhang, M.; Jia, J. Long non-coding RNA DLGAP1-AS1 promotes the progression of gastric cancer via miR-515-5p/MARK4 axis. Braz. J. Med. Biol. Res., 2021, 54(8), e10062.
[http://dx.doi.org/10.1590/1414-431x2020e10062] [PMID: 34037089]
[13]
Zu, F.; Han, H.; Sheng, W.; Sun, J.; Zang, H.; Liang, Y.; Liu, Q. Identification of a competing endogenous RNA axis related to gastric cancer. Aging (Albany NY), 2020, 12(20), 20540-20560.
[http://dx.doi.org/10.18632/aging.103926] [PMID: 33080572]
[14]
Huang, T.; Cao, L.; Feng, N.; Xu, B.; Dong, Y.; Wang, M. N6 -methyladenosine (m6 A)-mediated lncRNA DLGAP1-AS1enhances breast canceradriamycin resistance through miR-299-3p/WTAP feedback loop. Bioengineered, 2021, 12(2), 10935-10944.
[http://dx.doi.org/10.1080/21655979.2021.2000198] [PMID: 34866525]
[15]
Kim, D.W.; Talati, C.; Kim, R. Hepatocellular carcinoma (HCC): Beyond sorafenib—chemotherapy. J. Gastrointest. Oncol., 2017, 8(2), 256-265.
[http://dx.doi.org/10.21037/jgo.2016.09.07] [PMID: 28480065]
[16]
Peng, X.; Wei, F.; Hu, X. Long noncoding RNA DLGAP1-AS1 promotes cell proliferation in hepatocellular carcinoma via sequestering miR-486-5p. J. Cell. Biochem., 2020, 121(2), 1953-1962.
[http://dx.doi.org/10.1002/jcb.29430] [PMID: 31633236]
[17]
Lin, Y.; Jian, Z.; Jin, H.; Wei, X.; Zou, X.; Guan, R.; Huang, J. Long non-coding RNA DLGAP1-AS1 facilitates tumorigenesis and epithelial–mesenchymal transition in hepatocellular carcinoma via the feedback loop of miR-26a/b-5p/IL-6/JAK2/STAT3 and Wnt/β-catenin pathway. Cell Death Dis., 2020, 11(1), 34.
[http://dx.doi.org/10.1038/s41419-019-2188-7] [PMID: 31949128]
[18]
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119(6), 1420-1428.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[19]
Basak, D.; Uddin, M.N.; Hancock, J. The role of oxidative stress and its counteractive utility in Colorectal Cancer (CRC). Cancers (Basel), 2020, 12(11), 3336.
[http://dx.doi.org/10.3390/cancers12113336] [PMID: 33187272]
[20]
Qu, L.; Chen, Y.; Zhang, F.; He, L. The lncRNA DLGAP1-AS1/miR-149-5p/TGFB2 axis contributes to colorectal cancer progression and 5-FU resistance by regulating smad2 pathway. Mol. Ther. Oncolytics, 2021, 20, 607-624.
[http://dx.doi.org/10.1016/j.omto.2021.01.003] [PMID: 33816780]
[21]
Wang, Z.; Han, Y.; Li, Q.; Wang, B.; Ma, J. LncRNA DLGAP1-AS1 accelerates glioblastoma cell proliferation through targeting miR-515-5p/ROCK1/NFE2L1 axis and activating Wnt signaling pathway. Brain Behav., 2021, 11(10), e2321.
[http://dx.doi.org/10.1002/brb3.2321] [PMID: 34536977]
[22]
Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet, 2021, 398(10299), 535-554.
[http://dx.doi.org/10.1016/S0140-6736(21)00312-3] [PMID: 34273294]
[23]
van der Hoorn, I.A.E.; Flórez-Grau, G.; van den Heuvel, M.M.; de Vries, I.J.M.; Piet, B. Recent advances and future perspective of dc-based therapy in NSCLC. Front. Immunol., 2021, 12, 704776.
[http://dx.doi.org/10.3389/fimmu.2021.704776] [PMID: 34262573]
[24]
Wang, L.; Tang, L.; Ge, T.; Zhu, F.; Liu, D.; Guo, H.; Qian, P.; Xu, N. LncRNA DLGAP1-AS2 regulates miR-503/cyclin D1 to promote cell proliferation in non-small cell lung cancer. BMC Pulm. Med., 2021, 21(1), 277.
[http://dx.doi.org/10.1186/s12890-021-01633-0] [PMID: 34454450]
[25]
Stanzione, A.; Verde, F.; Romeo, V.; Boccadifuoco, F.; Mainenti, P.P.; Maurea, S. Radiomics and machine learning applications in rectal cancer: Current update and future perspectives. World J. Gastroenterol., 2021, 27(32), 5306-5321.
[http://dx.doi.org/10.3748/wjg.v27.i32.5306] [PMID: 34539134]
[26]
Fanale, D.; Castiglia, M.; Bazan, V.; Russo, A. Involvement of non-coding rnas in chemo- and radioresistance of colorectal cancer. Adv. Exp. Med. Biol., 2016, 937, 207-228.
[http://dx.doi.org/10.1007/978-3-319-42059-2_11] [PMID: 27573902]
[27]
Lim, S.H.; Jang, J.; Park, J.O.; Kim, K.M.; Kim, S.T.; Park, Y.S.; Lee, J.; Kim, H.C. CD133-positive tumor cell content is a predictor of early recurrence in colorectal cancer. J. Gastrointest. Oncol., 2014, 5(6), 447-456.
[PMID: 25436124]
[28]
Xiao, S.Y.; Yan, Z.G.; Zhu, X.D.; Qiu, J.; Lu, Y.C.; Zeng, F.R. LncRNA DLGAP1-AS2 promotes the radioresistance of rectal cancer stem cells by upregulating CD151 expression via E2F1. Transl. Oncol., 2022, 18, 101304.
[http://dx.doi.org/10.1016/j.tranon.2021.101304] [PMID: 35144091]
[29]
Chen, K.; Zhang, Z.; Yu, A.; Li, J.; Liu, J.; Zhang, X. lncRNA DLGAP1-AS2 knockdown inhibits hepatocellular carcinoma cell migration and invasion by regulating miR-154-5p methylation. BioMed Res. Int., 2020, 2020, 6575724.
[http://dx.doi.org/10.1155/2020/6575724] [PMID: 33195697]
[30]
Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.T.; Lordick, F. Gastric cancer. Lancet, 2020, 396(10251), 635-648.
[http://dx.doi.org/10.1016/S0140-6736(20)31288-5] [PMID: 32861308]
[31]
Lu, J.; Xu, Y.; Xie, W.; Tang, Y.; Zhang, H.; Wang, B.; Mao, J.; Rui, T.; Jiang, P.; Zhang, W. Long noncoding RNA DLGAP1-AS2 facilitates Wnt1 transcription through physically interacting with Six3 and drives the malignancy of gastric cancer. Cell Death Discov., 2021, 7(1), 255.
[http://dx.doi.org/10.1038/s41420-021-00649-z] [PMID: 34545072]
[32]
Soltani, R.; Amini, M.; Mazaheri Moghaddam, M.; Jebelli, A.; Ahmadiyan, S.; Bidar, N.; Baradaran, B.; MotieGhader, H.; Asadi, M.; Mokhtarzadeh, A. LncRNA DLGAP1-AS2 overexpression associates with gastric tumorigenesis: A promising diagnostic and therapeutic target. Mol. Biol. Rep., 2022, 49, 6817-6826.
[http://dx.doi.org/10.1007/s11033-021-07038-w] [PMID: 34981339]
[33]
Poonan, P.; Agoni, C.; Ibrahim, M.A.A.; Soliman, M.E.S. Glioma-targeted therapeutics: Computer-aided drug design prospective. Protein J., 2021, 40(5), 601-655.
[http://dx.doi.org/10.1007/s10930-021-10021-w] [PMID: 34590194]
[34]
Liu, Z.; Pan, L.; Yan, X.; Duan, X. The long noncoding RNA DLGAP1-AS2 facilitates cholangiocarcinoma progression via miR-505 and GALNT10. FEBS Open Bio, 2021, 11(2), 413-422.
[http://dx.doi.org/10.1002/2211-5463.13061] [PMID: 33301605]
[35]
Sarcognato, S.; Sacchi, D.; Fassan, M.; Fabris, L.; Cadamuro, M.; Zanus, G.; Cataldo, I.; Capelli, P.; Baciorri, F.; Cacciatore, M.; Guido, M. Cholangiocarcinoma. Pathologica, 2021, 113(3), 158-169.
[http://dx.doi.org/10.32074/1591-951X-252] [PMID: 34294934]
[36]
Wu, Q.; Liu, H.O.; Liu, Y.D.; Liu, W.S.; Pan, D.; Zhang, W.J.; Yang, L.; Fu, Q.; Xu, J.J.; Gu, J.X. Decreased expression of hepatocyte nuclear factor 4α (Hnf4α)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity. J. Biol. Chem., 2015, 290(2), 1170-1185.
[http://dx.doi.org/10.1074/jbc.M114.601203] [PMID: 25422324]
[37]
Zhang, G.; Lu, J.; Yang, M.; Wang, Y.; Liu, H.; Xu, C. Elevated GALNT10 expression identifies immunosuppressive microenvironment and dismal prognosis of patients with high grade serous ovarian cancer. Cancer Immunol. Immunother., 2020, 69(2), 175-187.
[http://dx.doi.org/10.1007/s00262-019-02454-1] [PMID: 31853576]
[38]
Ren, P.; Hu, M. A three long non-coding RNA signature to improve survival prediction in patients with Wilms’ tumor. Oncol. Lett., 2019, 18(6), 6164-6170.
[http://dx.doi.org/10.3892/ol.2019.10990] [PMID: 31788091]
[39]
Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal cell carcinoma. Nat. Rev. Dis. Primers, 2017, 3(1), 17009.
[http://dx.doi.org/10.1038/nrdp.2017.9] [PMID: 28276433]
[40]
Cao, H.; Tong, H.; Zhu, J.; Xie, C.; Qin, Z.; Li, T.; Liu, X.; He, W. A glycolysis-based long non-coding RNA signature accurately predicts prognosis in renal carcinoma patients. Front. Genet., 2021, 12, 638980.
[http://dx.doi.org/10.3389/fgene.2021.638980] [PMID: 33868376]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy