Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

In Silico Design of Molecular Analogues of 2-Butyl-5- pentylbenzene-1,3-diol (Stemphol) as Drug Prototypes for Treatment of Chemical Dependents of Cannabis Sativa

Author(s): Henrique Barros de Lima, Jaderson Vieira Ferreira*, Gisele do Amaral Chaves, Mateus Alves Batista, Lenir Cabral Correia, Lucilene Rocha de Souza, Carlos H.T.P. Silva, Carlton A. Taft and Lorane Izabel da Silva Hage-Melim*

Volume 12, Issue 3, 2022

Published on: 20 October, 2022

Page: [179 - 195] Pages: 17

DOI: 10.2174/1877946812666220919105403

Price: $65

Abstract

Background: The chemical dependency caused by recreational drug abuse is highly detrimental to humans and has direct implications for society. Cannabis sativa is still at the top ranking of most used drugs in the world, and its major chemical component is Δ9-THC. This molecule is the main cause of addiction in chronic users, and its action is measured by the CB1 receptor present in the CNS. So far, there is no approved drug for the treatment of abstinence in C. sativa.

Objective: In this sense, the objective of this research is to propose analogues of stemphol (2-methyl-5-pentylbenzene-1,3-diol) molecule that can serve as treatment for withdrawal crises in C. sativa addicts, initially through in silico methods.

Methods: 28 structural modifications were carried out in the molecule stemphol. These were subjected to in silico predictions of pharmacokinetics, toxicology, pharmacological activity, synthetic viability and the prediction of drug-receptor interaction through molecular docking. For this, the software and web servers PreADMET, DEREK 2.1, PASS, SEA, SYLVIA 2.4 and GOLD were used.

Results: 22 analogues demonstrated good pharmacokinetic results, and 16 analogues gave no warning of hepatotoxicity, mutagenicity, nephropathies and carcinogenicity in mammals. Biological activity predictions were performed on the PASS server, resulting in 28 analogues exhibiting adenylate cyclase inhibition and/or MAP kinase stimulating activity; in SEA, the performance of the CB1 receptor was analyzed, resulting in 20 analogues with action on CB1 receptors in humans. The selected analogues 1, 4, 16, 17, 19, 24, 25 and 26 were submitted to synthetic accessibility prediction in the SYLVIA software because they presented better results in terms of their pharmacokinetic, toxicological and predictive properties.

Conclusion: Of these, analogues 17 and 25 provided a very satisfactory result in the interaction with the CB1 receptor through the molecular docking method, and can be considered great proposals for future in vitro and in vivo studies, with the ability to further elucidate their actions.

Keywords: Chemical dependency, Cannabis sativa, Withdrawal Syndrome.

Next »
Graphical Abstract

[1]
Bonnet, U.; Canbay, A.; Specka, M.; Scherbaum, N. Long-term heavy recreational cannabis use and serum delta-9-tetrahydrocannabinol levels are not associated with an impaired liver function in cannabis dependents. J. Psychoactive Drugs, 2018, 50(4), 355-360.
[http://dx.doi.org/10.1080/02791072.2018.1482031] [PMID: 30052163]
[2]
Marques, A.C.P.R.; Cruz, M.S. Teenagers and drug use. Rev. Bras. Psiquiatr., 2000, 22(Suppl. 2), 32-36.
[http://dx.doi.org/10.1590/S1516-44462000000600009]
[3]
Fantegrossi, W.E.; Wilson, C.D.; Berquist, M.D. Pro-psychotic effects of synthetic cannabinoids: Interactions with cen-tral dopamine, serotonin, and glutamate systems. Drug Metab. Rev., 2018, 50(1), 65-73.
[http://dx.doi.org/10.1080/03602532.2018.1428343] [PMID: 29385930]
[4]
Piscitelli, F.; Pagano, E.; Lauritano, A.; Izzo, A.A.; Di Marzo, V. Development of a rapid LC-MS/MS method for the quantification of cannabidiol, cannabidivarin, Δ 9 -tetrahydrocannabivarin, and cannabigerol in mouse peripheral tis-sues. Anal. Chem., 2017, 89(8), 4749-4755.
[http://dx.doi.org/10.1021/acs.analchem.7b01094] [PMID: 28343385]
[5]
Zuardi, A.W.; Crippa, J.A.S.; Hallak, J.E.C. Cannabis sativa: The plant that can induce unwanted effects and also treat them. Rev. Bras. Psiquiatr., 2010, 32(Suppl. 1), S1-S2.
[PMID: 20512263]
[6]
Knevitz, M.F.; Buccini, D.F. Psychopharmacs in the treatment of chemical dependence: A review. Int. J. Health Sci., 2018, 7(1), 205-219.
[http://dx.doi.org/10.33362/ries.v7i1.1124]
[7]
Marino, B.L.B.; Sousa, K.P.A.; dos Santos, C.B.R.; Taft, C.A.; da Silva, C.H.T.P.; Hage-Melim, L.I. An in silico study of natural compounds as potential MAO-B inhibitors for the treatment of Parkinson’s disease. In: Functional Properties of Advanced Engineering Materials and Biomolecules; Springer Cham: NY city, 2021, pp. 591-617.
[http://dx.doi.org/10.1007/978-3-030-62226-8_20]
[8]
Ferreira, J.V.; Chaves, G.A.; Marino, B.L.B.; Sousa, K.P.A.; Souza, L.R.; Brito, M.F.B.; Teixeira, H.R.C.; da Silva, C.H.T.P.; Santos, C.B.R.; Hage-Melim, L.I.S. Cannabinoid type 1 receptor (CB1) bioligand with therapeutic potential for withdrawal syndrome in chemical dependents Cannabis sativa. ChemMedChem, 2017, 12(16), 1408-1416.
[http://dx.doi.org/10.1002/cmdc.201700129] [PMID: 28417566]
[9]
Jumpathong, J.; Peberdy, J.; Fujii, I.; Lumyong, S. Chemical investigation of novel ascomycetes using PCR based screening approaches. World J. Microbiol. Biotechnol., 2011, 27(8), 1947-1953.
[http://dx.doi.org/10.1007/s11274-011-0651-4]
[10]
Moda, T.L. In silico modeling of pharmacokinetic properties for the evaluation of new drug candidates, Doctoral Thesis University of Sao Paulo, 2011.
[http://dx.doi.org/10.11606/T.76.2011.tde-19102011-141448]
[11]
Lather, A.; Sharma, S.; Khatkar, A. Virtual Screening of Novel Glucosamine-6-Phosphate Synthase Inhibitors. Comb. Chem. High Throughput Screen., 2018, 21(3), 182-193.
[http://dx.doi.org/10.2174/1386207321666180330114457] [PMID: 29600755]
[12]
Ridings, J.E.; Barratt, M.D.; Cary, R.; Earnshaw, C.G.; Eggington, C.E.; Ellis, M.K.; Judson, P.N.; Langowski, J.J.; Marchant, C.A.; Payne, M.P.; Watson, W.P.; Yih, T.D. Computer prediction of possible toxic action from chemical structure: an update on the DEREK system. Toxicology, 1996, 106(1-3), 267-279.
[http://dx.doi.org/10.1016/0300-483X(95)03190-Q] [PMID: 8571398]
[13]
Gopi Mohan, C.; Gandhi, T.; Garg, D.; Shinde, R. Computer-assisted methods in chemical toxicity prediction. Mini Rev. Med. Chem., 2007, 7(5), 499-507.
[http://dx.doi.org/10.2174/138955707780619554] [PMID: 17504185]
[14]
Cariello, N.F.; Wilson, J.D.; Britt, B.H.; Wedd, D.J.; Burlinson, B.; Gombar, V. Comparison of the computer programs derek and topkat to predict bacterial mutagenicity. Deductive estimate of risk from existing knowledge. Toxicity predic-tion by komputer assisted technology. Mutagenesis, 2002, 17(4), 321-329.
[http://dx.doi.org/10.1093/mutage/17.4.321] [PMID: 12110629]
[15]
Poroikov, V.V.; Filimonov, D.A.; Ihlenfeldt, W.D.; Gloriozova, T.A.; Lagunin, A.A.; Borodina, Y.V.; Stepanchikova, A.V.; Nicklaus, M.C. PASS biological activity spectrum predictions in the enhanced open NCI database browser. J. Chem. Inf. Comput. Sci., 2003, 43(1), 228-236.
[http://dx.doi.org/10.1021/ci020048r] [PMID: 12546557]
[16]
Pedersoli-Mantoani, S.; Silva, V.; Taft, C.; Silva, C. Pharmacophore-based drug design of novel potential tau ligands for Alzheimer’s disease treatment. Curr. Phys. Chem., 2014, 4(1), 35-44.
[http://dx.doi.org/10.2174/18779468113036660020]
[17]
Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Predic-tion of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heterocycl. Compd., 2014, 50(3), 444-457.
[http://dx.doi.org/10.1007/s10593-014-1496-1]
[18]
Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol., 2007, 25(2), 197-206.
[http://dx.doi.org/10.1038/nbt1284] [PMID: 17287757]
[19]
Martin, Y.C.; Kofron, J.L.; Traphagen, L.M. Do structurally similar molecules have similar biological activity? J. Med. Chem., 2002, 45(19), 4350-4358.
[http://dx.doi.org/10.1021/jm020155c] [PMID: 12213076]
[20]
Mason, J.S.; Morize, I.; Menard, P.R.; Cheney, D.L.; Hulme, C.; Labaudiniere, R.F. New 4-point pharmacophore meth-od for molecular similarity and diversity applications: overview of the method and applications, including a novel ap-proach to the design of combinatorial libraries containing privileged substructures. J. Med. Chem., 1999, 42(17), 3251-3264.
[http://dx.doi.org/10.1021/jm9806998] [PMID: 10464012]
[21]
Lounkine, E.; Keiser, M.J.; Whitebread, S.; Mikhailov, D.; Hamon, J.; Jenkins, J.L.; Lavan, P.; Weber, E.; Doak, A.K.; Côté, S.; Shoichet, B.K.; Urban, L. Large-scale prediction and testing of drug activity on side-effect targets. Nature, 2012, 486(7403), 361-367.
[http://dx.doi.org/10.1038/nature11159] [PMID: 22722194]
[22]
Bonnet, P. Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A compar-ative assessment between medicinal and computational chemists. Eur. J. Med. Chem., 2012, 54, 679-689.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.024] [PMID: 22749644]
[23]
Boda, K.; Seidel, T.; Gasteiger, J. Structure and reaction based evaluation of synthetic accessibility. J. Comput. Aided Mol. Des., 2007, 21(6), 311-325.
[http://dx.doi.org/10.1007/s10822-006-9099-2] [PMID: 17294248]
[24]
Aver, G.M.; Kreutz, O.C.; Suyenaga, E.S. Methods of obtaining drugs from the perspective of medicinal chemistry. Conhecimento Online, 2015, 2(7), 62-72.
[25]
Dos Santos, R.B.; Sales do Vale, W.F.; Sena da Costa, C.L. Structural design, development and analysis of in silico pharmacokinetic properties of salicylic acid analogues for cosmetic purposes. Scientific Station (UNIFAP), 2017, 7(1), 103-112.
[http://dx.doi.org/10.18468/estcien.2017v7n1.p103-112]
[26]
Kulkarni, A.; Han, Y.; Hopfinger, A.J. Predicting Caco-2 cell permeation coefficients of organic molecules using mem-brane-interaction QSAR analysis. J. Chem. Inf. Comput. Sci., 2002, 42(2), 331-342.
[http://dx.doi.org/10.1021/ci010108d] [PMID: 11911703]
[27]
Armstrong, A.W.; Armstrong, E.J.; Golan, D.E.; Tashjian, A.H.J. Principles of Pharmacology: The pathophysiological basis of pharmacotherapy; Guanabara Koogan: Rio de Janeiro, 2009.
[28]
Klopman, G.; Stefan, L.R.; Saiakhov, R.D. ADME evaluation. Eur. J. Pharm. Sci., 2002, 17(4-5), 253-263.
[http://dx.doi.org/10.1016/S0928-0987(02)00219-1] [PMID: 12453615]
[29]
Irvine, J.D.; Takahashi, L.; Lockhart, K.; Cheong, J.; Tolan, J.W.; Selick, H.E.; Grove, J.R. MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci., 1999, 88(1), 28-33.
[http://dx.doi.org/10.1021/js9803205] [PMID: 9874698]
[30]
Ungell, A.L.B. Caco-2 replace or refine? Drug Discov. Today Technol., 2004, 1, pp. (4)423-30.
[31]
Brunton, L.; Hilal-Dandan, R. Goodman and Gilman’s: Manual of Pharmacology and Therapaeutics, 2nd ed; McGraw-Hill Ediction: New York, 2008.
[32]
Rubin, L.L.; Staddon, J.M. The cell biology of the blood-brain barrier. Annu. Rev. Neurosci., 1999, 22(1), 11-28.
[http://dx.doi.org/10.1146/annurev.neuro.22.1.11] [PMID: 10202530]
[33]
Ma, X.; Chen, C.; Yang, J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol. Sin., 2005, 26(4), 500-512.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00068.x] [PMID: 15780201]
[34]
Muster, W.; Breidenbach, A.; Fischer, H.; Kirchner, S.; Müller, L.; Pähler, A. Computational toxicology in drug devel-opment. Drug Discov. Today, 2008, 13(7-8), 303-310.
[http://dx.doi.org/10.1016/j.drudis.2007.12.007] [PMID: 18405842]
[35]
Barratt, M.D.; Langowski, J.J. Validation and subsequent development of the DEREK skin sensitization rulebase by analysis of the BgVV list of contact allergens. J. Chem. Inf. Comput. Sci., 1999, 39(2), 294-298.
[http://dx.doi.org/10.1021/ci980204n] [PMID: 10192944]
[36]
Nacca, N.; Vatti, D.; Sullivan, R.; Sud, P.; Su, M.; Marraffa, J. The synthetic cannabinoid withdrawal syndrome. J. Addict. Med., 2013, 7(4), 296-298.
[http://dx.doi.org/10.1097/ADM.0b013e31828e1881] [PMID: 23609214]
[37]
Foye, W.O.; Lemke, T.L.; Williams, D.A.; Roche, V.F.; Zito, W.S. Foye’s principles of medicinal chemistry; Lippincott Williams & Wilkins: Baltimore, 2008.
[38]
Abood, M.E.; Ditto, K.E.; Noel, M.A.; Showalter, V.M.; Tao, Q. Isolation and expression of a mouse CB1 cannabinoid receptor gene. Biochem. Pharmacol., 1997, 53(2), 207-214.
[http://dx.doi.org/10.1016/S0006-2952(96)00727-7] [PMID: 9037253]
[39]
Hua, T.; Vemuri, K.; Nikas, S.P.; Laprairie, R.B.; Wu, Y.; Qu, L.; Pu, M.; Korde, A.; Jiang, S.; Ho, J.H.; Han, G.W.; Ding, K.; Li, X.; Liu, H.; Hanson, M.A.; Zhao, S.; Bohn, L.M.; Makriyannis, A.; Stevens, R.C.; Liu, Z.J. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature, 2017, 547(7664), 468-471.
[http://dx.doi.org/10.1038/nature23272] [PMID: 28678776]
[40]
Hua, T.; Li, X.; Wu, L.; Iliopoulos-Tsoutsouvas, C.; Wang, Y.; Wu, M.; Shen, L.; Brust, C.A.; Nikas, S.P.; Song, F.; Song, X.; Yuan, S.; Sun, Q.; Wu, Y.; Jiang, S.; Grim, T.W.; Benchama, O.; Stahl, E.L.; Zvonok, N.; Zhao, S.; Bohn, L.M.; Ma-kriyannis, A.; Liu, Z.J. Activation and signaling mechanism revealed by cannabinoid receptor-GI complex structures. Cell, 2020, 180(4), 655-665.e18.
[http://dx.doi.org/10.1016/j.cell.2020.01.008] [PMID: 32004463]
[41]
Shao, Z.; Yin, J.; Chapman, K.; Grzemska, M.; Clark, L.; Wang, J.; Rosenbaum, D.M. High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature, 2016, 540(7634), 602-606.
[http://dx.doi.org/10.1038/nature20613] [PMID: 27851727]
[42]
Ji, B.; Liu, S.; He, X.; Man, V.H.; Xie, X.Q.; Wang, J. Prediction of the binding affinities and selectivity for CB1 and CB2 ligands using homology modeling, molecular docking, molecular dynamics simulations, and MM-PBSA binding free en-ergy calculations. ACS Chem. Neurosci., 2020, 11(8), 1139-1158.
[http://dx.doi.org/10.1021/acschemneuro.9b00696] [PMID: 32196303]
[43]
Yuan, Y.; Pei, J.; Lai, L. LigBuilder 2: A practical de novo drug design approach. J. Chem. Inf. Model., 2011, 51(5), 1083-1091.
[http://dx.doi.org/10.1021/ci100350u] [PMID: 21513346]
[44]
Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular com-plexity and fragment contributions. J. Cheminform., 2009, 1(1), 8.
[http://dx.doi.org/10.1186/1758-2946-1-8] [PMID: 20298526]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy