[1]
Ortega-Gómez, A.; Perretti, M.; Soehnlein, O. Resolution of inflammation: An integrated view. EMBO Mol. Med., 2013, 5(5), 661-674.
[http://dx.doi.org/10.1002/emmm.201202382] [PMID: 23592557]
[http://dx.doi.org/10.1002/emmm.201202382] [PMID: 23592557]
[2]
Buckley, C.D.; Gilroy, D.W.; Serhan, C.N. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity, 2014, 40(3), 315-327.
[http://dx.doi.org/10.1016/j.immuni.2014.02.009] [PMID: 24656045]
[http://dx.doi.org/10.1016/j.immuni.2014.02.009] [PMID: 24656045]
[3]
Schepetkin, I.A.; Khlebnikov, A.I.; Giovannoni, M.P.; Kirpotina, L.N.; Cilibrizzi, A.; Quinn, M.T. Development of small molecule non-peptide formyl peptide receptor (FPR) ligands and molecular modeling of their recognition. Curr. Med. Chem., 2014, 21(13), 1478-1504.
[http://dx.doi.org/10.2174/0929867321666131218095521] [PMID: 24350845]
[http://dx.doi.org/10.2174/0929867321666131218095521] [PMID: 24350845]
[4]
Wang, X.; Zhu, M.; Erik, H.; Veronica, C-T.; Eyjolfsdottir, H.; Graff, C.; Nennesmo, I.; Palmblad, J.; Eriksdotter, M.; Sambamurti, K.; Fitzgerald, J.M.; Serhan, C.N.; Granholm, A-C.; Schultzberg, M. Resolution of inflammation is altered in Alzheimer’s disease. Bone, 2011, 23(1), 1-7.
[http://dx.doi.org/10.1016/S8756-3282(01)00697-4] [PMID: 12110404]
[http://dx.doi.org/10.1016/S8756-3282(01)00697-4] [PMID: 12110404]
[5]
Krashia, P.; Cordella, A.; Nobili, A.; La Barbera, L.; Federici, M.; Leuti, A.; Campanelli, F.; Natale, G.; Marino, G.; Calabrese, V.; Vedele, F.; Ghiglieri, V.; Picconi, B.; Di Lazzaro, G.; Schirinzi, T.; Sancesario, G.; Casadei, N.; Riess, O.; Bernardini, S.; Pisani, A.; Calabresi, P.; Viscomi, M.T.; Serhan, C.N.; Chiurchiù, V.; D’Amelio, M.; Mercuri, N.B. Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson’s disease. Nat. Commun., 2019, 10(1), 3945.
[http://dx.doi.org/10.1038/s41467-019-11928-w] [PMID: 30602773]
[http://dx.doi.org/10.1038/s41467-019-11928-w] [PMID: 30602773]
[6]
Derada Troletti, C.; Enzmann, G.; Chiurchiù, V.; Kamermans, A.; Tietz, S.M.; Norris, P.C.; Jahromi, N.H.; Leuti, A.; van der Pol, S.M.A.; Schouten, M.; Serhan, C.N.; de Vries, H.E.; Engelhardt, B.; Kooij, G. Pro-resolving lipid mediator lipoxin A4 attenuates neuro-inflammation by modulating T cell responses and modifies the spinal cord lipidome. Cell Rep., 2021, 35(9), 109201.
[http://dx.doi.org/10.1016/j.celrep.2021.109201] [PMID: 34077725]
[http://dx.doi.org/10.1016/j.celrep.2021.109201] [PMID: 34077725]
[7]
Caso, V.M.; Manzo, V.; Pecchillo Cimmino, T.; Conti, V.; Caso, P.; Esposito, G.; Russo, V.; Filippelli, A.; Ammendola, R.; Cattaneo, F. Regulation of inflammation and oxidative stress by formyl peptide receptors in cardiovascular disease progression. Life (Basel), 2021, 11(3), 243.
[http://dx.doi.org/10.3390/life11030243] [PMID: 33804219]
[http://dx.doi.org/10.3390/life11030243] [PMID: 33804219]
[8]
Le, Y.; Oppenheim, J.; Wang, J. Pleiotropic roles of formyl peptide receptors. Cytokine Growth Factor Rev., 2001, 12(1), 91-105.
[http://dx.doi.org/10.1016/S1359-6101(01)00003-X] [PMID: 11312121]
[http://dx.doi.org/10.1016/S1359-6101(01)00003-X] [PMID: 11312121]
[9]
Migeotte, I.; Communi, D.; Parmentier, M. Formyl peptide receptors: A promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev., 2006, 17(6), 501-519.
[http://dx.doi.org/10.1016/j.cytogfr.2006.09.009] [PMID: 17084101]
[http://dx.doi.org/10.1016/j.cytogfr.2006.09.009] [PMID: 17084101]
[10]
Chiang, N.; Fierro, I.M.; Gronert, K.; Serhan, C.N. Activation of lipoxin A(4) receptors by aspirin-triggered lipoxins and select peptides evokes ligand-specific responses in inflammation. J. Exp. Med., 2000, 191(7), 1197-1208.
[http://dx.doi.org/10.1084/jem.191.7.1197] [PMID: 10748237]
[http://dx.doi.org/10.1084/jem.191.7.1197] [PMID: 10748237]
[11]
He, R.; Sang, H.; Ye, R.D. Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPRL1/LXA4R. Blood, 2003, 101(4), 1572-1581.
[http://dx.doi.org/10.1182/blood-2002-05-1431] [PMID: 12393391]
[http://dx.doi.org/10.1182/blood-2002-05-1431] [PMID: 12393391]
[12]
Nanamori, M.; Cheng, X.; Mei, J.; Sang, H.; Xuan, Y.; Zhou, C.; Wang, M.W.; Ye, R.D. A novel nonpeptide ligand for formyl peptide receptor-like 1. Mol. Pharmacol., 2004, 66(5), 1213-1222.
[http://dx.doi.org/10.1124/mol.104.004309] [PMID: 15308762]
[http://dx.doi.org/10.1124/mol.104.004309] [PMID: 15308762]
[13]
Stama, M.L.; Ślusarczyk, J.; Lacivita, E.; Kirpotina, L.N.; Schepetkin, I.A.; Chamera, K.; Riganti, C.; Perrone, R.; Quinn, M.T.; Basta-Kaim, A.; Leopoldo, M. Novel ureidopropanamide based N-formyl peptide receptor 2 (FPR2) agonists with potential application for central nervous system disorders characterized by neuroinflammation. Eur. J. Med. Chem., 2017, 141, 703-720.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.023] [PMID: 29102463]
[http://dx.doi.org/10.1016/j.ejmech.2017.09.023] [PMID: 29102463]
[14]
Trojan, E.; Tylek, K.; Schröder, N.; Kahl, I.; Brandenburg, L.O.; Mastromarino, M.; Leopoldo, M.; Basta-Kaim, A.; Lacivita, E. The N-Formyl Peptide Receptor 2 (FPR2) against MR-39 improves ex vivo and in vivo amyloid beta (1-42)-induced neuroinflammation in mouse models of Alzheimer’s disease. Mol. Neurobiol., 2021, 58(12), 6203-6221.
[http://dx.doi.org/10.1007/s12035-021-02543-2] [PMID: 34468933]
[http://dx.doi.org/10.1007/s12035-021-02543-2] [PMID: 34468933]
[15]
Trojan, E.; Tylek, K.; Leśkiewicz, M.; Lasoń, W.; Brandenburg, L.O.; Leopoldo, M.; Lacivita, E.; Basta-Kaim, A. The N-Formyl Peptide Receptor 2 (FPR2) Agonist MR-39 exhibits anti-inflammatory activity in LPS-stimulated organotypic hippocampal cultures. Cells, 2021, 10(6), 1524.
[http://dx.doi.org/10.3390/cells10061524] [PMID: 34204273]
[http://dx.doi.org/10.3390/cells10061524] [PMID: 34204273]
[16]
Mastromarino, M.; Favia, M.; Schepetkin, I.A.; Kirpotina, L.N.; Trojan, E.; Niso, M.; Carrieri, A.; Leśkiewicz, M.; Regulska, M.; Darida, M.; Rossignolo, F.; Fontana, S.; Quinn, M.T.; Basta-Kaim, A.; Leopoldo, M.; Lacivita, E. Design, synthesis, biological evaluation, and computational studies of novel ureidopropanamides as Formyl Peptide Receptor 2 (FPR2) agonists to target the resolution of inflammation in central nervous system disorders. J. Med. Chem., 2022, 65(6), 5004-5028.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02203] [PMID: 35257581]
[http://dx.doi.org/10.1021/acs.jmedchem.1c02203] [PMID: 35257581]
[17]
Ammendola, R.; Parisi, M.; Esposito, G.; Cattaneo, F. Pro-resolving FPR2 agonists regulate nadph oxidase-dependent phosphorylation of HSP27, OSR1, and MARCKS and activation of the respective upstream kinases. Antioxidants, 2021, 10(1), 134.
[http://dx.doi.org/10.3390/antiox10010134] [PMID: 33477989]
[http://dx.doi.org/10.3390/antiox10010134] [PMID: 33477989]
[18]
Napolitano, F.; Rossi, F.W.; Pesapane, A.; Varricchio, S.; Ilardi, G.; Mascolo, M.; Staibano, S.; Lavecchia, A.; Ragno, P.; Selleri, C.; Marone, G.; Matucci-Cerinic, M.; de Paulis, A.; Montuori, N. N-formyl peptide receptors induce radical oxygen production in fibroblasts derived from systemic sclerosis by interacting with a cleaved form of urokinase receptor. Front. Immunol., 2018, 9, 574.
[http://dx.doi.org/10.3389/fimmu.2018.00574] [PMID: 29670612]
[http://dx.doi.org/10.3389/fimmu.2018.00574] [PMID: 29670612]
[19]
Marasco, W.A.; Phan, S.H.; Krutzsch, H.; Showell, H.J.; Feltner, D.E.; Nairn, R.; Becker, E.L.; Ward, P.A. Purification and identification of formylmethionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J. Biol. Chem., 1984, 259(9), 5430-5439.
[http://dx.doi.org/10.1016/S0021-9258(18)91029-X] [PMID: 6371005]
[http://dx.doi.org/10.1016/S0021-9258(18)91029-X] [PMID: 6371005]
[20]
Deng, X.; Ueda, H.; Su, S.B.; Gong, W.; Dunlop, N.M.; Gao, J.L.; Murphy, P.M.; Wang, J.M. A synthetic peptide derived from human immunodeficiency virus type 1 gp120 downregulates the expression and function of chemokine receptors CCR5 and CXCR4 in monocytes by activating the 7-transmembrane G-protein-coupled receptor FPRL1/LXA4R. Blood, 1999, 94(4), 1165-1173.
[http://dx.doi.org/10.1182/blood.V94.4.1165] [PMID: 10438703]
[http://dx.doi.org/10.1182/blood.V94.4.1165] [PMID: 10438703]
[21]
Trojan, E.; Bryniarska, N.; Leśkiewicz, M.; Regulska, M.; Chamera, K.; Szuster-Głuszczak, M.; Leopoldo, M.; Lacivita, E.; Basta-Kaim, A. The contribution of formyl peptide receptor dysfunction to the course of neuroinflammation: A potential role in the brain pathology. Curr. Neuropharmacol., 2020, 18(3), 229-249.
[http://dx.doi.org/10.2174/1570159X17666191019170244] [PMID: 31629396]
[http://dx.doi.org/10.2174/1570159X17666191019170244] [PMID: 31629396]
[22]
Domingues, C.; da Cruz e Silva, O.A.B; Henriques, A.G Impact of cytokines and chemokines on Alzheimer’s disease neuropathological hallmarks. Curr. Alzheimer Res., 2017, 14(8), 870-882.
[http://dx.doi.org/10.2174/1567205014666170317113606] [PMID: 28317487]
[http://dx.doi.org/10.2174/1567205014666170317113606] [PMID: 28317487]
[23]
Serhan, C.N.; Hamberg, M.; Samuelsson, B. Lipoxins: Novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc. Nat. Acad. Sci. USA, 1984, 81((17 I)), 5335-5339.
[http://dx.doi.org/10.1073/pnas.81.17.5335]
[http://dx.doi.org/10.1073/pnas.81.17.5335]
[24]
Godson, C.; Mitchell, S.; Harvey, K.; Petasis, N.A.; Hogg, N.; Brady, H.R. Cutting edge: Lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol., 2000, 164(4), 1663-1667.
[http://dx.doi.org/10.4049/jimmunol.164.4.1663] [PMID: 10657608]
[http://dx.doi.org/10.4049/jimmunol.164.4.1663] [PMID: 10657608]
[25]
Zhu, J.J; Yu, B.; Fu, C.; He, M.; Zhi, Z. LXA4 protects against hypoxic-ischemic damage in neonatal rats by reducing the inflammatory response via the IκB/NF-KB pathway. Int. Immunopharmacol., 2020, 89, 107095.
[http://dx.doi.org/10.1016/j.intimp.2020.107095] [PMID: 33096360]
[http://dx.doi.org/10.1016/j.intimp.2020.107095] [PMID: 33096360]
[26]
Wu, S.H.; Wang, M.J.; Lü, J.; Chen, X.Q. Signal transduction involved in lipoxin A4-induced protection of tubular epithelial cells against hypoxia/reoxygenation injury. Mol. Med. Rep., 2017, 15(4), 1682-1692.
[http://dx.doi.org/10.3892/mmr.2017.6195] [PMID: 28259922]
[http://dx.doi.org/10.3892/mmr.2017.6195] [PMID: 28259922]
[27]
Martini, A.C.; Berta, T.; Forner, S.; Chen, G.; Bento, A.F.; Ji, R.R.; Rae, G.A. Lipoxin A4 inhibits microglial activation and reduces neuroinflammation and neuropathic pain after spinal cord hemisection. J. Neuroinflammation, 2016, 13(1), 75.
[http://dx.doi.org/10.1186/s12974-016-0540-8] [PMID: 27059991]
[http://dx.doi.org/10.1186/s12974-016-0540-8] [PMID: 27059991]
[28]
Guo, Z.; Hu, Q.; Xu, L.; Guo, Z.N.; Ou, Y.; He, Y.; Yin, C.; Sun, X.; Tang, J.; Zhang, J.H. Lipoxin A4 reduces inflammation through formyl peptide receptor 2/p38 MAPK signaling pathway in subarachnoid hemorrhage rats. Stroke, 2016, 47(2), 490-497.
[http://dx.doi.org/10.1161/STROKEAHA.115.011223] [PMID: 26732571]
[http://dx.doi.org/10.1161/STROKEAHA.115.011223] [PMID: 26732571]
[29]
Wu, J.; Ding, D.; Li, Q.; Wang, X.; Sun, Y.; Li, L.J. Lipoxin A4 regulates lipopolysaccharide-induced BV2 microglial activation and differentiation via the notch signaling pathway. Front. Cell. Neurosci., 2019, 13, 19.
[http://dx.doi.org/10.3389/fncel.2019.00019] [PMID: 30778288]
[http://dx.doi.org/10.3389/fncel.2019.00019] [PMID: 30778288]
[30]
Dufton, N.; Perretti, M. Therapeutic anti-inflammatory potential of formyl-peptide receptor agonists. Pharmacol. Ther., 2010, 127(2), 175-188.
[http://dx.doi.org/10.1016/j.pharmthera.2010.04.010] [PMID: 20546777]
[http://dx.doi.org/10.1016/j.pharmthera.2010.04.010] [PMID: 20546777]
[31]
Cattaneo, F.; Parisi, M.; Ammendola, R. Distinct signaling cascades elicited by different formyl peptide receptor 2 (FPR2) agonists. Int. J. Mol. Sci., 2013, 14(4), 7193-7230.
[http://dx.doi.org/10.3390/ijms14047193] [PMID: 23549262]
[http://dx.doi.org/10.3390/ijms14047193] [PMID: 23549262]
[32]
Krishnamoorthy, S.; Recchiuti, A.; Chiang, N.; Yacoubian, S.; Lee, C.H.; Yang, R.; Petasis, N.A.; Serhan, C.N. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc. Natl. Acad. Sci. USA, 2010, 107(4), 1660-1665.
[http://dx.doi.org/10.1073/pnas.0907342107] [PMID: 20080636]
[http://dx.doi.org/10.1073/pnas.0907342107] [PMID: 20080636]
[33]
Dona, M.; Fredman, G.; Schwab, J.M.; Chiang, N.; Arita, M.; Goodarzi, A.; Cheng, G.; von Andrian, U.H.; Serhan, C.N. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood, 2008, 112(3), 848-855.
[http://dx.doi.org/10.1182/blood-2007-11-122598] [PMID: 18480426]
[http://dx.doi.org/10.1182/blood-2007-11-122598] [PMID: 18480426]
[34]
Li, H.; Wu, Z.; Feng, D.; Gong, J.; Yao, C.; Wang, Y.; Yuan, S.; Yao, S.; Shang, Y. BML-111, a lipoxin receptor agonist, attenuates ventilator-induced lung injury in rats. Shock, 2014, 41(4), 311-316.
[http://dx.doi.org/10.1097/SHK.0000000000000104] [PMID: 24365886]
[http://dx.doi.org/10.1097/SHK.0000000000000104] [PMID: 24365886]
[35]
Tian, Y.; Zhang, Y.; Zhang, R.; Qiao, S.; Fan, J. Resolvin D2 recovers neural injury by suppressing inflammatory mediators expression in lipopolysaccharide-induced Parkinson’s disease rat model. Biochem. Biophys. Res. Commun., 2015, 460(3), 799-805.
[http://dx.doi.org/10.1016/j.bbrc.2015.03.109] [PMID: 25824039]
[http://dx.doi.org/10.1016/j.bbrc.2015.03.109] [PMID: 25824039]
[36]
Xu, J.; Gao, X.; Yang, C.; Chen, L.; Chen, Z. Resolvin D1 attenuates mpp+-induced parkinson disease via inhibiting inflammation in PC12 cells. Med. Sci. Monit., 2017, 23, 2684-2691.
[http://dx.doi.org/10.12659/MSM.901995] [PMID: 28572562]
[http://dx.doi.org/10.12659/MSM.901995] [PMID: 28572562]
[37]
Cooray, S.N.; Gobbetti, T.; Montero-Melendez, T.; McArthur, S.; Thompson, D.; Clark, A.J.L.; Flower, R.J.; Perretti, M. Ligand-specific conformational change of the G-protein-coupled receptor ALX/FPR2 determines proresolving functional responses. Proc. Natl. Acad. Sci. USA, 2013, 110(45), 18232-18237.
[http://dx.doi.org/10.1073/pnas.1308253110] [PMID: 24108355]
[http://dx.doi.org/10.1073/pnas.1308253110] [PMID: 24108355]
[38]
Bena, S.; Brancaleone, V.; Wang, J.M.; Perretti, M.; Flower, R.J. Annexin A1 interaction with the FPR2/ALX receptor: Identification of distinct domains and downstream associated signaling. J. Biol. Chem., 2012, 287(29), 24690-24697.
[http://dx.doi.org/10.1074/jbc.M112.377101] [PMID: 22610094]
[http://dx.doi.org/10.1074/jbc.M112.377101] [PMID: 22610094]
[39]
Filep, J.G. Biasing the lipoxin A 4/formyl peptide receptor 2 pushes inflammatory resolution. Proc. Natl. Acad. Sci. USA, 2013, 110(45), 18033-18034.
[http://dx.doi.org/10.1073/pnas.1317798110] [PMID: 24154723]
[http://dx.doi.org/10.1073/pnas.1317798110] [PMID: 24154723]
[40]
Giacobbe, J.; Benoiton, B.; Zunszain, P.; Pariante, C.M.; Borsini, A. The anti-inflammatory role of omega-3 polyunsaturated fatty acids metabolites in pre-clinical models of psychiatric, neurodegenerative, and neurological disorders. Front. Psychiatry, 2020, 11, 122.
[http://dx.doi.org/10.3389/fpsyt.2020.00122] [PMID: 32180741]
[http://dx.doi.org/10.3389/fpsyt.2020.00122] [PMID: 32180741]
[41]
Ye, X.H.; Wu, Y.; Guo, P.P.; Wang, J.; Yuan, S.Y.; Shang, Y.; Yao, S.L. Lipoxin A4 analogue protects brain and reduces inflammation in a rat model of focal cerebral ischemia reperfusion. Brain Res., 2010, 1323, 174-183.
[http://dx.doi.org/10.1016/j.brainres.2010.01.079] [PMID: 20138164]
[http://dx.doi.org/10.1016/j.brainres.2010.01.079] [PMID: 20138164]
[42]
He, M.; Cheng, N.; Gao, W.; Zhang, M.; Zhang, Y.; Ye, R.D.; Wang, M. Characterization of Quin-C1 for its anti-inflammatory property in a mouse model of bleomycin-induced lung injury. Acta Pharmacol. Sin., 2011, 32(5), 601-610.
[http://dx.doi.org/10.1038/aps.2011.4] [PMID: 21499285]
[http://dx.doi.org/10.1038/aps.2011.4] [PMID: 21499285]
[43]
Tylek, K.; Trojan, E.; Leśkiewicz, M.; Regulska, M.; Bryniarska, N.; Curzytek, K.; Lacivita, E.; Leopoldo, M.; Basta-Kaim, A. Time-dependent protective and Pro-resolving effects of FPR2 agonists on lipopolysaccharide-exposed microglia cells involve inhibition of NF-κB and MAPKs pathways. Cells, 2021, 10(9), 2373.
[http://dx.doi.org/10.3390/cells10092373] [PMID: 34572022]
[http://dx.doi.org/10.3390/cells10092373] [PMID: 34572022]