Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In-silico Approach to Investigate the Phytochemicals of Terminalia arjuna as Multitarget Inhibitors of Proteins Involved with Lung Cancer

Author(s): Tathagata Adhikary and Piyali Basak*

Volume 21, Issue 2, 2024

Published on: 20 October, 2022

Page: [329 - 338] Pages: 10

DOI: 10.2174/1570180819666220913150304

Price: $65

Abstract

Background: Existing medications for treating cancer are reported to exhibit severe side effects, therefore, there is an urgent need to address these unprecedented health risks. With the advancements in ethnobotanical studies and research on phytochemicals, information on several medicinal plants is being revisited nowadays. Terminalia arjuna is a widely used medicinal plant in ayurvedic and Unani medicine for curing several diseases. Although the bioactives from this plant are reported to possess anticarcinogenic, antiproliferative and antioxidant activities, information on the potentials of its specific phytoconstituents on the inhibition of receptor molecules associated with lung cancer is scarce.

Objectives: The primary goal of this study is to virtually screen the phytochemicals of Terminalia arjuna as potential drug candidate molecules for lung cancer. Considering all major reported receptor molecules that inevitably take part in lung cancer, it highlights the phytochemicals as novel multitargeted inhibitors of proteins responsible for lung cancer.

Methods: A thorough literature review was done to select twenty-seven receptor molecules associated with lung cancer cases. The molecular docking study using PyRx predicts protein-ligand interactions and identifies potential drug targets. Evaluating the ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties of the phytochemicals present in Terminalia arjuna, this study takes into account thirty-four bioactive compounds as the chosen ligands in molecular docking. The binding affinity, inhibition constant (Ki), and the interacting residues of these phytochemicals with the receptors are compared with the docking results of twelve selected standard anticancer drugs. The study finally categorizes the phytochemicals that can potentially act as multitargeted inhibitors of proteins associated with lung cancer.

Results: The results from PyRx highlighted the phytoconstituents having a higher binding affinity with inhibition constant comparable to the standard drugs. Among the standard anticancer drugs, alectinib, pralsetinib, and ibrutinib are marked as potent inhibitors of several lung cancer receptors. The phytochemicals of Terminalia arjuna proved to be the potential candidates against ALK2, ALK5, DDR2, BRAF, KRAS, Tankyrase, vasopressin V2, VEGFR1 and VEGFR2 mediated lung cancer but the effectiveness (in comparison to the standard drugs) is limited against Bcl-2, IL22R1, NCAM, RET, MET and ROS1 receptors.

Conclusion: The findings indicate that phytochemicals namely luteolin, friedelin, oleanolic acid, and 14,16-dianhydrogitoxigenin bind strongly to multiple receptors under consideration with high affinity and hence could be investigated as effective alternatives for treating lung cancer with minimal side effects.

Keywords: Terminalia arjuna, docking, ADMET, lung cancer, multi-targeted, phytochemicals

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Petrovska, B. Historical review of medicinal plants′ usage. Pharmacogn. Rev., 2012, 6(11), 1-5.
[http://dx.doi.org/10.4103/0973-7847.95849] [PMID: 22654398]
[3]
Stickel, F.; Schuppan, D. Herbal medicine in the treatment of liver diseases. Dig. Liver Dis., 2007, 39(4), 293-304.
[http://dx.doi.org/10.1016/j.dld.2006.11.004] [PMID: 17331820]
[4]
Amalraj, A.; Gopi, S. Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review. J. Tradit. Complement. Med., 2017, 7(1), 65-78.
[http://dx.doi.org/10.1016/j.jtcme.2016.02.003] [PMID: 28053890]
[5]
Singh, S.; Verma, S.K.; Kumar, S. Analysis of anti-cancer potential of Terminalia arjuna. Int. J. Adv. Sci. Res. Manag., 2017, 2(11), 82-87.
[6]
Liu, S.J.; Liu, M.; Li, H.J.; Simmen, R.C.M.; Johann, D.J. Jr Anticancer activity of aqueous extracts of Terminalia arjuna (TA). Bark. FASEB J., 2019, 33(S1), 816-819.
[http://dx.doi.org/10.1096/fasebj.2019.33.1_supplement.816.9]
[7]
Verma, N.; Vinayak, M. Effect of Terminalia arjuna on antioxidant defense system in cancer. Mol. Biol. Rep., 2009, 36(1), 159-164.
[http://dx.doi.org/10.1007/s11033-008-9279-3] [PMID: 18537039]
[8]
Sharma, B.; Khan, F. A.; Nawaz, S. T. Effect of Terminalia Arjuna stem bark on antioxidant status in the lungs of rats exposed to Benzo (a) pyrene,
[9]
Kuo, P.L.; Hsu, Y.L.; Lin, T.C.; Chang, J.K.; Lin, C.C. Induction of cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells by casuarinin from the bark of Terminalia arjuna Linn. Anticancer Drugs, 2005, 16(4), 409-415.
[http://dx.doi.org/10.1097/00001813-200504000-00007] [PMID: 15746577]
[10]
Rao, B.C.S.; Singh, R.H.; Tripathi, K. Effect of Terminalia arjuna (W&A) on regression of LVH in hypertensives: A clinical study. J. Res. Ayurveda Siddha, 2001, 22(3–4), 216-227.
[11]
Dwivedi, S.; Chopra, D. Revisiting Terminalia arjuna–an ancient cardiovascular drug. J. Tradit. Complement. Med., 2014, 4(4), 224-231.
[http://dx.doi.org/10.4103/2225-4110.139103] [PMID: 25379463]
[12]
Pavlaki, M.; Zucker, S. Matrix metalloproteinase inhibitors (MMPIs): The beginning of phase I or the termination of phase III clinical trials. Cancer Metastasis Rev., 2003, 22(2/3), 177-203.
[http://dx.doi.org/10.1023/A:1023047431869] [PMID: 12784996]
[13]
Zubair, M.S.; Anam, S.; Khumaidi, A.; Susanto, Y.; Hidayat, M.; Ridhay, A. Molecular docking approach to identify potential anticancer compounds from Begonia (Begonia sp), 2016, 1755(1)
[http://dx.doi.org/ 10.1063/1.4958513]
[14]
Guo, R.; Zhang, Y.; Li, X.; Song, X.; Li, D.; Zhao, Y. Discovery of ERBB3 inhibitors for non-small cell lung cancer (NSCLC) via virtual screening. J. Mol. Model., 2016, 22(6), 135.
[http://dx.doi.org/10.1007/s00894-016-3007-z] [PMID: 27188722]
[15]
Baby, B.; Antony, P.; Vijayan, R. Interactions of quercetin with receptor tyrosine kinases associated with human lung carcinoma. Nat. Prod. Res., 2018, 32(24), 2928-2931.
[http://dx.doi.org/10.1080/14786419.2017.1385015] [PMID: 29022361]
[16]
Ben David, Y.; Chetrit, A.; Hirsh-Yechezkel, G.; Friedman, E.; Beck, B.D.; Beller, U.; Ben-Baruch, G.; Fishman, A.; Levavi, H.; Lubin, F.; Menczer, J.; Piura, B.; Struewing, J.P.; Modan, B. Effect of BRCA mutations on the length of survival in epithelial ovarian tumors. J. Clin. Oncol., 2002, 20(2), 463-466.
[http://dx.doi.org/10.1200/JCO.2002.20.2.463] [PMID: 11786575]
[17]
Quintanal-Villalonga, A.; Paz-Ares, L.; Ferrer, I.; Molina-Pinelo, S. Tyrosine kinase receptor landscape in lung cancer: Therapeutical implications, 2016, 2016, 9214056.
[18]
Mehta, P.; Bothiraja, C.; Mahadik, K.; Kadam, S.; Pawar, A. Phytoconstituent based dry powder inhalers as biomedicine for the management of pulmonary diseases. Biomed. Pharmacother., 2018, 108, 828-837.
[http://dx.doi.org/10.1016/j.biopha.2018.09.094] [PMID: 30372894]
[19]
Reddy, P.S.; Lokhande, K.B.; Nagar, S.; Reddy, V.D.; Murthy, P.S.; Swamy, K.V. Molecular modeling, docking, dynamics and simulation of gefitinib and its derivatives with EGFR in non-small cell lung cancer. Curr. Computeraided Drug Des., 2018, 14(3), 246-252.
[http://dx.doi.org/10.2174/1573409914666180228111433] [PMID: 29493460]
[20]
Ju, Y.S.; Lee, W.C.; Shin, J.Y.; Lee, S.; Bleazard, T.; Won, J.K.; Kim, Y.T.; Kim, J.I.; Kang, J.H.; Seo, J.S. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res., 2012, 22(3), 436-445.
[http://dx.doi.org/10.1101/gr.133645.111] [PMID: 22194472]
[21]
Sasaki, H.; Shitara, M.; Yokota, K.; Okuda, K.; Hikosaka, Y.; Moriyama, S.; Yano, M.; Fujii, Y. DDR2 polymorphisms and mRNA expression in lung cancers of Japanese patients. Oncol. Lett., 2012, 4(1), 33-37.
[http://dx.doi.org/10.3892/ol.2012.684] [PMID: 22807955]
[22]
Pitini, V.; Arrigo, C.; Di Mirto, C.; Mondello, P.; Altavilla, G. Response to dasatinib in a patient with SQCC of the lung harboring a discoid-receptor-2 and synchronous chronic myelogenous leukemia. Lung Cancer, 2013, 82(1), 171-172.
[http://dx.doi.org/10.1016/j.lungcan.2013.07.004] [PMID: 23932362]
[23]
Rikova, K.; Guo, A.; Zeng, Q.; Possemato, A.; Yu, J.; Haack, H.; Nardone, J.; Lee, K.; Reeves, C.; Li, Y.; Hu, Y.; Tan, Z.; Stokes, M.; Sullivan, L.; Mitchell, J.; Wetzel, R.; MacNeill, J.; Ren, J.M.; Yuan, J.; Bakalarski, C.E.; Villen, J.; Kornhauser, J.M.; Smith, B.; Li, D.; Zhou, X.; Gygi, S.P.; Gu, T.L.; Polakiewicz, R.D.; Rush, J.; Comb, M.J. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, 2007, 131(6), 1190-1203.
[http://dx.doi.org/10.1016/j.cell.2007.11.025] [PMID: 18083107]
[24]
George, J.; Lim, J.S.; Jang, S.J.; Cun, Y. Ozretić L.; Kong, G.; Leenders, F.; Lu, X.; Fernández-Cuesta, L.; Bosco, G.; Müller, C.; Dahmen, I.; Jahchan, N.S.; Park, K.S.; Yang, D.; Karnezis, A.N.; Vaka, D.; Torres, A.; Wang, M.S.; Korbel, J.O.; Menon, R.; Chun, S.M.; Kim, D.; Wilkerson, M.; Hayes, N.; Engelmann, D.; Pützer, B.; Bos, M.; Michels, S.; Vlasic, I.; Seidel, D.; Pinther, B.; Schaub, P.; Becker, C.; Altmüller, J.; Yokota, J.; Kohno, T.; Iwakawa, R.; Tsuta, K.; Noguchi, M.; Muley, T.; Hoffmann, H.; Schnabel, P.A.; Petersen, I.; Chen, Y.; Soltermann, A.; Tischler, V.; Choi, C.; Kim, Y.H.; Massion, P.P.; Zou, Y.; Jovanovic, D.; Kontic, M.; Wright, G.M.; Russell, P.A.; Solomon, B.; Koch, I.; Lindner, M.; Muscarella, L.A.; la Torre, A.; Field, J.K.; Jakopovic, M.; Knezevic, J.; Castaños-Vélez, E.; Roz, L.; Pastorino, U.; Brustugun, O.T.; Lund-Iversen, M.; Thunnissen, E.; Köhler, J.; Schuler, M.; Botling, J.; Sandelin, M.; Sanchez-Cespedes, M.; Salvesen, H.B.; Achter, V.; Lang, U.; Bogus, M.; Schneider, P.M.; Zander, T.; Ansén, S.; Hallek, M.; Wolf, J.; Vingron, M.; Yatabe, Y.; Travis, W.D.; Nürnberg, P.; Reinhardt, C.; Perner, S.; Heukamp, L.; Büttner, R.; Haas, S.A.; Brambilla, E.; Peifer, M.; Sage, J.; Thomas, R.K. Comprehensive genomic profiles of small cell lung cancer. Nature, 2015, 524(7563), 47-53.
[http://dx.doi.org/10.1038/nature14664] [PMID: 26168399]
[25]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717]
[26]
Schyman, P.; Liu, R.; Desai, V.; Wallqvist, A. vNN web server for ADMET predictions. Front. Pharmacol., 2017, 8, 889.
[http://dx.doi.org/10.3389/fphar.2017.00889] [PMID: 29255418]
[27]
Cheng, F. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties; ACS Publications, , 2012.
[28]
Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.P.; Cao, D.S. ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform., 2018, 10(1), 29.
[http://dx.doi.org/10.1186/s13321-018-0283-x] [PMID: 29943074]
[29]
Akhter, S.; Hossain, M.W.; Sultana, S.; Ferdous Jharna, J.; Sultana Meghla, N.; Alam, R.; Anis-Ul-Haque, K.M.; Mashiar Rahman, M. Ruellia prostrata Poir. activity evaluated by phytoconstituents, antioxidant, anti-inflammatory, antibacterial activity, and in silico molecular functions. J. Saudi Chem. Soc., 2022, 26(1), 101401.
[http://dx.doi.org/10.1016/j.jscs.2021.101401]
[30]
Epa, U.S. User’s guide for test (version 5.1)(toxicity estimation software tool): A program to estimate toxicity from molecular structure; , 2020. Available from: [https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
[31]
Lagunin, A.; Zakharov, A.; Filimonov, D.; Poroikov, V. QSAR modelling of rat acute toxicity on the basis of PASS prediction. Mol. Inform., 2011, 30(2-3), 241-250.
[http://dx.doi.org/10.1002/minf.201000151] [PMID: 27466777]
[32]
Biovia, D.S. Discovery studio modeling environment; Dassault Systèmes San Diego; , 2017. Available from: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/
[33]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[34]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx.Chemical biology; Springer, 2015, pp. 243-250.
[35]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[36]
Fährrolfes, R. ProteinsPlus: A web portal for structure analysis of macromolecules. Nucleic Acids Res., 2017, 45, W337-W343.
[http://dx.doi.org/10.1093/nar/gkx333]
[37]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[38]
Cournia, Z.; Allen, B.; Sherman, W. Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. J. Chem. Inf. Model., 2017, 57(12), 2911-2937.
[http://dx.doi.org/10.1021/acs.jcim.7b00564] [PMID: 29243483]
[39]
Rahman, M.; Browne, J.J.; Van Crugten, J.; Hasan, M.F.; Liu, L.; Barkla, B.J. In silico, molecular docking and in vitro antimicrobial activity of the major rapeseed seed storage proteins. Front. Pharmacol., 2020, 11, 1340.
[http://dx.doi.org/10.3389/fphar.2020.01340] [PMID: 33013372]
[40]
Barakat, A.; Al-Qahtani, B.M.; Al-Majid, A.M.; Shaik, M.A.M.R.; Al-Agamy, M.H.M.; Wadood, A. Synthesis, characterization, antimicrobial activity and molecular docking studies of combined pyrazol-barbituric acid pharmacophores. Trop. J. Pharm. Res., 2016, 15(10), 2197-2207.
[http://dx.doi.org/10.4314/tjpr.v15i10.19]
[41]
Tang, N.P.; Zhou, B.; Wang, B.; Yu, R.B.; Ma, J. Flavonoids intake and risk of lung cancer: A meta-analysis. Jpn. J. Clin. Oncol., 2009, 39(6), 352-359.
[http://dx.doi.org/10.1093/jjco/hyp028] [PMID: 19351659]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy