Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Perspective on Cav-1 for its Potential as Newer Therapeutics for Parkinson’s Disease

Author(s): Gurpreet Singh, Tryphena K. Pushpa, Sunil Kumar Gupta, Saurabh Srivastava, Dharmendra Kumar Khatri* and Shashi Bala Singh*

Volume 22, Issue 10, 2023

Published on: 07 October, 2022

Page: [1429 - 1438] Pages: 10

DOI: 10.2174/1871527321666220909150406

open access plus

conference banner
Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disease affecting around 10 million people worldwide. Dopamine agonists that mimic the action of natural dopamine in the brain are the prominent drugs used in the management of PD symptoms. However, the therapy is limited to symptomatic relief with serious side effects. Phytocompounds have become the preferable targets of research in the quest for new pharmaceutical compounds. In addition, current research is directed towards determining a newer specific target for the better treatment and management of PD. Cav-1, a membrane protein present on the caveolae of the plasma membrane, acts as a transporter for lipid molecules in the cells. Cav-1 has been implicated in the pathogenesis of neurodegenerative diseases, like Alzheimer’s disease (AD), PD, etc. In this review, we have extensively discussed the role of Cav-1 protein in the pathogenesis of PD. In addition, molecular docking of some selective phytochemical compounds against Cav-1 protein (Q03135) was performed to understand their role. The best phytochemical compounds were screened based on their molecular interaction and binding affinity with the Cav-1 protein model.

Keywords: Phytochemicals, Parkinson’s disease, Cav-1, Molecular, NRF2, DJ-1, Blood brain permeability.

Graphical Abstract

[1]
Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers 2017; 3(1): 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[2]
Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna) 2017; 124(8): 901-5.
[http://dx.doi.org/10.1007/s00702-017-1686-y] [PMID: 28150045]
[3]
Je G, Arora S, Raithatha S, et al. Epidemiology of Parkinson’s disease in rural Gujarat, India. Neuroepidemiology 2021; 55(3): 188-95.
[http://dx.doi.org/10.1159/000515030] [PMID: 33951636]
[4]
van der Holst HM, De Leeuw FE. Prevalence rate of Parkinson’s disease-1 2021.
[5]
Mackenzie IRA. The pathology of Parkinson’s disease. B C Med J 2001; 43(3): 142-7.
[6]
Goldstein DS, Holmes C, Lopez GJ, Wu T, Sharabi Y. Cerebrospinal fluid biomarkers of central dopamine deficiency predict Parkin-son’s disease. Parkinsonism Relat Disord 2018; 50: 108-12.
[http://dx.doi.org/10.1016/j.parkreldis.2018.02.023] [PMID: 29475591]
[7]
Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord 2011; 26(6): 1049-55.
[http://dx.doi.org/10.1002/mds.23732] [PMID: 21626550]
[8]
Gröger A, Kolb R, Schäfer R, Klose U. Dopamine reduction in the substantia nigra of Parkinson’s disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PLoS One 2014; 9(1): e84081.
[http://dx.doi.org/10.1371/journal.pone.0084081] [PMID: 24416192]
[9]
Elkouzi A, Vedam-Mai V, Eisinger RS, Okun MS. Emerging therapies in Parkinson disease - repurposed drugs and new approaches. Nat Rev Neurol 2019; 15(4): 204-23.
[http://dx.doi.org/10.1038/s41582-019-0155-7] [PMID: 30867588]
[10]
Mori A, Chen JF, Uchida S, Durlach C, King SM, Jenner P. The pharmacological potential of adenosine A2A receptor antagonists for treat-ing Parkinson’s disease. Molecules 2022; 27(7): 2366.
[http://dx.doi.org/10.3390/molecules27072366] [PMID: 35408767]
[11]
Ortner NJ. Voltage-Gated Ca2+ channels in dopaminergic substantia nigra neurons: therapeutic targets for neuroprotection in Parkinson’s disease? Front Synaptic Neurosci 2021; 13: 636103.
[http://dx.doi.org/10.3389/fnsyn.2021.636103] [PMID: 33716705]
[12]
Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 2015; 4(1): 19.
[http://dx.doi.org/10.1186/s40035-015-0042-0] [PMID: 26464797]
[13]
Kumar H, Koppula S, Kim IS, Vasant More S, Kim BW, Choi DK. Nuclear factor erythroid 2-related factor 2 signaling in Parkinson disease: A promising multi therapeutic target against oxidative stress, neuroinflammation and cell death. CNS Neurol Disord Drug Targets 2013; 11(8): 1015-29.
[http://dx.doi.org/10.2174/1871527311211080012] [PMID: 23244425]
[14]
Stoker TB, Barker RA. Recent developments in the treatment of Parkinson’s disease. F1000 Res 2020; 9: 862.
[http://dx.doi.org/10.12688/f1000research.25634.1] [PMID: 32789002]
[15]
Xilouri M, Brekk OR, Kirik D, Stefanis L. LAMP2A as a therapeutic target in Parkinson disease. Autophagy 2013; 9(12): 2166-8.
[http://dx.doi.org/10.4161/auto.26451] [PMID: 24145820]
[16]
Brown PM, Pratt AG, Isaacs JD. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat Rev Rheumatol 2016; 12(12): 731-42.
[http://dx.doi.org/10.1038/nrrheum.2016.175] [PMID: 27784891]
[17]
Decressac M, Björklund A. TFEB: Pathogenic role and therapeutic target in Parkinson disease. Autophagy 2013; 9(8): 1244-6.
[http://dx.doi.org/10.4161/auto.25044] [PMID: 23715007]
[18]
da Costa IM, Cavalcanti JRLP, de Queiroz DB, et al. Supplementation with herbal extracts to promote behavioral and neuroprotective effects in experimental models of Parkinson’s disease: A systematic review. Phytother Res 2017; 31(7): 959-70.
[http://dx.doi.org/10.1002/ptr.5813] [PMID: 28544038]
[19]
Wiciński M, Górski K, Walczak M, et al. Neuroprotective properties of linagliptin: Focus on biochemical mechanisms in cerebral ischemia, vascular dysfunction and certain neurodegenerative diseases. Int J Mol Sci 2019; 20(16): 4052.
[http://dx.doi.org/10.3390/ijms20164052] [PMID: 31434198]
[20]
Thomas CM, Smart EJ. Caveolae structure and function. J Cell Mol Med 2008; 12(3): 796-809.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00295.x] [PMID: 18315571]
[21]
Ariotti N, Parton RG. SnapShot: Caveolae, caveolins, and cavins. Cell 2013; 154(3): 704-704.e1.
[http://dx.doi.org/10.1016/j.cell.2013.07.009] [PMID: 23911330]
[22]
Simón L, Campos A, Leyton L, Quest AFG. Caveolin-1 function at the plasma membrane and in intracellular compartments in cancer. Cancer Metastasis Rev 2020; 39(2): 435-53.
[http://dx.doi.org/10.1007/s10555-020-09890-x] [PMID: 32458269]
[23]
Tiwari A, Copeland CA, Han B, Hanson CA, Raghunathan K, Kenworthy AK. Caveolin-1 is an aggresome-inducing protein. Sci Rep 2016; 6(1): 38681.
[http://dx.doi.org/10.1038/srep38681] [PMID: 27929047]
[24]
Wang H, Wang AX, Liu Z, Chai W, Barrett EJ. The trafficking/interaction of eNOS and caveolin-1 induced by insulin modulates endothe-lial nitric oxide production. Mol Endocrinol 2009; 23(10): 1613-23.
[http://dx.doi.org/10.1210/me.2009-0115] [PMID: 19608646]
[25]
Kurzchalia TV, Dupree P, Monier S. VIP21-Caveolin, a protein of the trans -golgi network and caveolae. FEBS Lett 1994; 346(1): 88-91.
[http://dx.doi.org/10.1016/0014-5793(94)00466-8] [PMID: 8206165]
[26]
Wang S, Ichinomiya T, Terada Y, Wang D, Patel HH, Head BP. Synapsin-promoted caveolin-1 overexpression maintains mitochondrial morphology and function in PSAPP Alzheimer’s disease mice. Cells 2021; 10(9): 2487.
[http://dx.doi.org/10.3390/cells10092487] [PMID: 34572135]
[27]
Cameron PL, Ruffin JW, Bollag R, Rasmussen H, Cameron RS. Identification of caveolin and caveolin-related proteins in the brain. J Neurosci 1997; 17(24): 9520-35.
[http://dx.doi.org/10.1523/JNEUROSCI.17-24-09520.1997] [PMID: 9391007]
[28]
Pietri M, Dakowski C, Hannaoui S, et al. PDK1 decreases TACE-mediated α-secretase activity and promotes disease progression in pri-on and Alzheimer’s diseases. Nat Med 2013; 19(9): 1124-31.
[http://dx.doi.org/10.1038/nm.3302] [PMID: 23955714]
[29]
Wiest I, Wiemers T, Kraus MJ, et al. Multivariate platelet analysis differentiates between patients with Alzheimer’s disease and healthy controls at first clinical diagnosis. J Alzheimers Dis 2019; 71(3): 993-1004.
[http://dx.doi.org/10.3233/JAD-190574] [PMID: 31450503]
[30]
Cha SH, Choi YR, Heo CH, et al. Loss of parkin promotes lipid rafts-dependent endocytosis through accumulating caveolin-1: Implications for Parkinson’s disease. Mol Neurodegener 2015; 10(1): 63.
[http://dx.doi.org/10.1186/s13024-015-0060-5] [PMID: 26627850]
[31]
Yu DM, Jung SH, An HT, et al. Caveolin-1 deficiency induces premature senescence with mitochondrial dysfunction. Aging Cell 2017; 16(4): 773-84.
[http://dx.doi.org/10.1111/acel.12606] [PMID: 28514055]
[32]
Meade RM, Fairlie DP, Mason JM. Alpha-synuclein structure and Parkinson’s disease – lessons and emerging principles. Mol Neurodegener 2019; 14(1): 29.
[http://dx.doi.org/10.1186/s13024-019-0329-1] [PMID: 31331359]
[33]
Schulz-Schaeffer WJ. The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkin-son’s disease dementia. Acta Neuropathol 2010; 120(2): 131-43.
[http://dx.doi.org/10.1007/s00401-010-0711-0] [PMID: 20563819]
[34]
Dawson TM. Parkin and defective ubiquitination in Parkinson’s disease. J Neural Transm Suppl 2006; 70: 209-13.
[35]
Madeira A, Yang J, Zhang X, et al. Caveolin-1 interacts with alpha-synuclein and mediates toxic actions of cellular alpha-synuclein over-expression. Neurochem Int 2011; 59(2): 280-9.
[http://dx.doi.org/10.1016/j.neuint.2011.05.017] [PMID: 21693152]
[36]
Hashimoto M, Takenouchi T, Rockenstein E, Masliah E. α-Synuclein up-regulates expression of caveolin-1 and down-regulates extracel-lular signal-regulated kinase activity in B103 neuroblastoma cells: Role in the pathogenesis of Parkinson’s disease. J Neurochem 2003; 85(6): 1468-79.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01791.x] [PMID: 12787066]
[37]
Pampalakis G, Sykioti VS, Ximerakis M, et al. KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species. Oncotarget 2017; 8(9): 14502-15.
[http://dx.doi.org/10.18632/oncotarget.13264] [PMID: 27845893]
[38]
Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ. Synuclein activates microglia in a model of Parkinson’s dis-ease. Neurobiol Aging 2008; 29(11): 1690-701.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.04.006] [PMID: 17537546]
[39]
Jia GL, Huang Q, Cao YN, et al. Cav‐1 participates in the development of diabetic neuropathy pain through the TLR4 signaling pathway. J Cell Physiol 2020; 235(3): 2060-70.
[http://dx.doi.org/10.1002/jcp.29106] [PMID: 31318049]
[40]
Niesman IR, Patton M, Zemke N, Levy K, Ali SS, Head BP. Caveolin regulation of microglial activation and proliferation FASEB 2011; 25(Suppl 1): 1007.1-1.
[http://dx.doi.org/10.1096/fasebj.25.1_supplement.1007.1]
[41]
Wu H, Deng R, Chen X, et al. Caveolin-1 is critical for lymphocyte trafficking into central nervous system during experimental autoim-mune encephalomyelitis. J Neurosci 2016; 36(19): 5193-9.
[http://dx.doi.org/10.1523/JNEUROSCI.3734-15.2016] [PMID: 27170118]
[42]
Jia S, Li B, Huang J, Verkhratsky A, Peng L. Regulation of glycogen content in astrocytes via Cav-1/PTEN/AKT/GSK-3β pathway by three anti-bipolar drugs. Neurochem Res 2018; 43(8): 1692-701.
[http://dx.doi.org/10.1007/s11064-018-2585-9] [PMID: 29968232]
[43]
Chen Z, Nie SD, Qu ML, et al. The autophagic degradation of Cav-1 contributes to PA-induced apoptosis and inflammation of astro-cytes. Cell Death Dis 2018; 9(7): 771.
[http://dx.doi.org/10.1038/s41419-018-0795-3] [PMID: 29991726]
[44]
Montesinos J, Gil A, Guerri C. Nalmefene prevents alcohol‐induced neuroinflammation and alcohol drinking preference in adolescent female mice: Role of TLR4. Alcohol Clin Exp Res 2017; 41(7): 1257-70.
[http://dx.doi.org/10.1111/acer.13416] [PMID: 28493563]
[45]
Sudha K, Rao AV, Rao S, Rao A. Free radical toxicity and antioxidants in Parkinson’s disease. Neurol India 2003; 51(1): 60-2.
[PMID: 12865518]
[46]
Wei Z, Li X, Li X, Liu Q, Cheng Y. Oxidative stress in Parkinson’s disease: A systematic review and meta-analysis. Front Mol Neurosci 2018; 11: 236.
[http://dx.doi.org/10.3389/fnmol.2018.00236] [PMID: 30026688]
[47]
France-Lanord V, Brugg B, Michel PP, Agid Y, Ruberg M. Mitochondrial free radical signal in ceramide-dependent apoptosis: A putative mechanism for neuronal death in Parkinson’s disease. J Neurochem 1997; 69(4): 1612-21.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69041612.x] [PMID: 9326290]
[48]
Hemmati-Dinarvand M. saedi S, Valilo M, et al. Oxidative stress and Parkinson’s disease: Conflict of oxidant-antioxidant systems. Neurosci Lett 2019; 709: 134296.
[http://dx.doi.org/10.1016/j.neulet.2019.134296] [PMID: 31153970]
[49]
Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol 2003; 53 (Suppl. 3): S26-38.
[http://dx.doi.org/10.1002/ana.10483] [PMID: 12666096]
[50]
Surendran S, Rajasankar S. Parkinson’s disease: Oxidative stress and therapeutic approaches. Neurol Sci 2010; 31(5): 531-40.
[http://dx.doi.org/10.1007/s10072-010-0245-1] [PMID: 20221655]
[51]
Bento-Pereira C, Dinkova-Kostova AT. Activation of transcription factor Nrf2 to counteract mitochondrial dysfunction in Parkinson’s disease. Med Res Rev 2021; 41(2): 785-802.
[http://dx.doi.org/10.1002/med.21714] [PMID: 32681666]
[52]
Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function Free Radic Biol Med 2015; 88(Pt B): 179-88.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.036] [PMID: 25975984]
[53]
Petrillo S, Schirinzi T, Di Lazzaro G, et al. Systemic activation of Nrf2 pathway in Parkinson’s disease. Mov Disord 2020; 35(1): 180-4.
[http://dx.doi.org/10.1002/mds.27878] [PMID: 31682033]
[54]
Gureev AP, Popov VN. Nrf2/ARE pathway as a therapeutic target for the treatment of Parkinson diseases. Neurochem Res 2019; 44(10): 2273-9.
[http://dx.doi.org/10.1007/s11064-018-02711-2] [PMID: 30617864]
[55]
Hushpulian DM, Ammal Kaidery N, Ahuja M, et al. Challenges and limitations of targeting the keap1-Nrf2 pathway for neurotherapeu-tics: Bach1 de-repression to the rescue. Front Aging Neurosci 2021; 13: 673205.
[http://dx.doi.org/10.3389/fnagi.2021.673205] [PMID: 33897412]
[56]
Li W, Liu H, Zhou JS, et al. Caveolin-1 inhibits expression of antioxidant enzymes through direct interaction with nuclear erythroid 2 p45-related factor-2 (Nrf2). J Biol Chem 2012; 287(25): 20922-30.
[http://dx.doi.org/10.1074/jbc.M112.352336] [PMID: 22547061]
[57]
Liu Q, Gao Y, Ci X. Role of Nrf2 and its activators in respiratory diseases. Oxid Med Cell Longev 2019; 2019: 7090534.
[http://dx.doi.org/10.1155/2019/7090534]
[58]
Deramaudt TB, Dill C, Bonay M. Regulation of oxidative stress by Nrf2 in the pathophysiology of infectious diseases. Med Mal Infect 2013; 43(3): 100-7.
[http://dx.doi.org/10.1016/j.medmal.2013.02.004] [PMID: 23499316]
[59]
Chang CF, Chen SF, Lee TS, Lee HF, Chen SF, Shyue SK. Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage. Am J Pathol 2011; 178(4): 1749-61.
[http://dx.doi.org/10.1016/j.ajpath.2010.12.023] [PMID: 21435456]
[60]
Petriello MC, Han SG, Newsome BJ, Hennig B. PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling. Toxicol Appl Pharmacol 2014; 277(2): 192-9.
[http://dx.doi.org/10.1016/j.taap.2014.03.018] [PMID: 24709675]
[61]
Carvey PM, Hendey B, Monahan AJ. The blood-brain barrier in neurodegenerative disease: A rhetorical perspective. J Neurochem 2009; 111(2): 291-314.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06319.x] [PMID: 19659460]
[62]
Tajes M, Ramos-Fernández E, Weng-Jiang X, et al. The blood-brain barrier: Structure, function and therapeutic approaches to cross it. Mol Membr Biol 2014; 31(5): 152-67.
[http://dx.doi.org/10.3109/09687688.2014.937468] [PMID: 25046533]
[63]
Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[64]
Jeon MT, Kim KS, Kim ES, et al. Emerging pathogenic role of peripheral blood factors following BBB disruption in neurodegenerative disease. Ageing Res Rev 2021; 68: 101333.
[http://dx.doi.org/10.1016/j.arr.2021.101333] [PMID: 33774194]
[65]
Gray MT, Woulfe JM. Striatal blood-brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab 2015; 35(5): 747-50.
[http://dx.doi.org/10.1038/jcbfm.2015.32] [PMID: 25757748]
[66]
Iravani MM, Leung CCM, Sadeghian M, Haddon CO, Rose S, Jenner P. The acute and the long-term effects of nigral lipopolysaccharide administration on dopaminergic dysfunction and glial cell activation. Eur J Neurosci 2005; 22(2): 317-30.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04220.x] [PMID: 16045485]
[67]
Chung YC, Ko HW, Bok EG, et al. The role of neuroinflammation on the pathogenesis of Parkinson’s disease. BMB Rep 2010; 43(4): 225-32.
[http://dx.doi.org/10.5483/BMBRep.2010.43.4.225] [PMID: 20423606]
[68]
Zhao YL, Song JN, Zhang M. Role of caveolin-1 in the biology of the blood-brain barrier. Rev Neurosci 2014; 25(2): 247-54.
[http://dx.doi.org/10.1515/revneuro-2013-0039] [PMID: 24501156]
[69]
Wang P, Liu Y, Shang X, Xue Y. CRM197-induced blood-brain barrier permeability increase is mediated by upregulation of caveolin-1 protein. J Mol Neurosci 2011; 43(3): 485-92.
[http://dx.doi.org/10.1007/s12031-010-9471-5] [PMID: 21080104]
[70]
Nag S, Venugopalan R, Stewart DJ. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood–brain barrier breakdown. Acta Neuropathol 2007; 114(5): 459-69.
[http://dx.doi.org/10.1007/s00401-007-0274-x] [PMID: 17687559]
[71]
Andreone BJ, Chow BW, Tata A, et al. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveo-lae-mediated transcytosis. Neuron 2017; 94(3): 581-594.e5.
[http://dx.doi.org/10.1016/j.neuron.2017.03.043] [PMID: 28416077]
[72]
Deng J, Huang Q, Wang F, et al. The role of caveolin-1 in blood-brain barrier disruption induced by focused ultrasound combined with microbubbles. J Mol Neurosci 2012; 46(3): 677-87.
[http://dx.doi.org/10.1007/s12031-011-9629-9] [PMID: 21861133]
[73]
Smith GM, Gallo G. The role of mitochondria in axon development and regeneration. Dev Neurobiol 2018; 78(3): 221-37.
[http://dx.doi.org/10.1002/dneu.22546] [PMID: 29030922]
[74]
Monzio Compagnoni G, Di Fonzo A, Corti S, Comi GP, Bresolin N, Masliah E. The role of mitochondria in neurodegenerative diseases: The lesson from Alzheimer’s disease and Parkinson’s disease. Mol Neurobiol 2020; 57(7): 2959-80.
[http://dx.doi.org/10.1007/s12035-020-01926-1] [PMID: 32445085]
[75]
Macdonald R, Barnes K, Hastings C, Mortiboys H. Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: Can mitochondria be targeted therapeutically? Biochem Soc Trans 2018; 46(4): 891-909.
[http://dx.doi.org/10.1042/BST20170501] [PMID: 30026371]
[76]
Li X, Cui XX, Chen YJ, et al. Therapeutic potential of a prolyl hydroxylase inhibitor FG-4592 for Parkinson’s diseases in vitro and in vivo: Regulation of redox biology and mitochondrial function. Front Aging Neurosci 2018; 10: 121.
[http://dx.doi.org/10.3389/fnagi.2018.00121] [PMID: 29755339]
[77]
Wang YH, Yu HT, Pu XP, Du GH. Baicalein prevents 6-hydroxydopamine-induced mitochondrial dysfunction in SH-SY5Y cells via inhibition of mitochondrial oxidation and up-regulation of DJ-1 protein expression. Molecules 2013; 18(12): 14726-38.
[http://dx.doi.org/10.3390/molecules181214726] [PMID: 24288000]
[78]
Boveris A, Navarro A. Brain mitochondrial dysfunction in aging. IUBMB Life 2008; 60(5): 308-14.
[http://dx.doi.org/10.1002/iub.46] [PMID: 18421773]
[79]
Kim JM, Cha SH, Choi YR, Jou I, Joe EH, Park SM. DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression. Sci Rep 2016; 6(1): 28823.
[http://dx.doi.org/10.1038/srep28823] [PMID: 27346864]
[80]
Gioiosa L, Raggi C, Ricceri L, et al. Altered emotionality, spatial memory and cholinergic function in caveolin-1 knock-out mice. Behav Brain Res 2008; 188(2): 255-62.
[http://dx.doi.org/10.1016/j.bbr.2007.11.002] [PMID: 18083242]
[81]
Egbuna C, Kumar S, Ifemeje JC, Ezzat SM, Kaliyaperumal S. Phytochemicals as Lead Compounds for New Drug Discovery. 1st Ed. Amsterdam, Netherlands: Elsevier, 2019.
[82]
Srivastava R. A review on phytochemical, pharmacological, and pharmacognostical profile of Wrightia tinctoria: Adulterant of kurchi. Pharmacogn Rev 2014; 8(15): 36-44.
[http://dx.doi.org/10.4103/0973-7847.125528] [PMID: 24600194]
[83]
Azimi H, Fallah-Tafti M, Khakshur AA, Abdollahi M. A review of phytotherapy of acne vulgaris: Perspective of new pharmacological treatments. Fitoterapia 2012; 83(8): 1306-17.
[http://dx.doi.org/10.1016/j.fitote.2012.03.026] [PMID: 22521501]
[84]
Rizwanullah M, Amin S, Mir SR, Fakhri KU, Rizvi MMA. Phytochemical based nanomedicines against cancer: Current status and future prospects. J Drug Target 2018; 26(9): 731-52.
[http://dx.doi.org/10.1080/1061186X.2017.1408115] [PMID: 29157022]
[85]
Khalivulla SI, Mohammed A, Mallikarjuna K. Novel phytochemical constituents and their potential to manage diabetes. Curr Pharm Des 2021; 27(6): 775-88.
[http://dx.doi.org/10.2174/1381612826666201222154159] [PMID: 33355047]
[86]
Uddin MS, Hossain MF, Mamun AA, et al. Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration. Sci Total Environ 2020; 725: 138313.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138313] [PMID: 32464743]
[87]
Kim MS, Lee JI, Lee WY, Kim SE. Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson’s disease. Phytother Res 2004; 18(8): 663-6.
[http://dx.doi.org/10.1002/ptr.1486] [PMID: 15472919]
[88]
Rabiei Z, Solati K, Amini-Khoei H. Phytotherapy in treatment of Parkinson’s disease: A review. Pharm Biol 2019; 57(1): 355-62.
[http://dx.doi.org/10.1080/13880209.2019.1618344] [PMID: 31141426]
[89]
K M. v C. Phytoconstituents in the management of pesticide induced Parkinson’s disease- A review. Biomed Pharmacol J 2019; 12(3): 1417-24.
[http://dx.doi.org/10.13005/bpj/1770]
[90]
Velmurugan B, Rathinasamy B, Lohanathan B, Thiyagarajan V, Weng CF. Neuroprotective role of phytochemicals. Molecules 2018; 23(10): 2485.
[http://dx.doi.org/10.3390/molecules23102485] [PMID: 30262792]
[91]
Javed H, Meeran MFN, Azimullah S, et al. α-Bisabolol, a dietary bioactive phytochemical attenuates dopaminergic neurodegeneration through modulation of oxidative stress, neuroinflammation and apoptosis in rotenone-induced rat model of Parkinson’s disease. Biomolecules 2020; 10(10): 1421.
[http://dx.doi.org/10.3390/biom10101421] [PMID: 33049992]
[92]
Naoi M, Maruyama W, Shamoto-Nagai M. Disease-modifying treatment of Parkinson’s disease by phytochemicals: Targeting multiple pathogenic factors. J Neural Transm (Vienna) 2022; 129(5-6): 737-53.
[PMID: 34654977]
[93]
Beyer K, Ariza A. The therapeutical potential of alpha-synuclein antiaggregatory agents for dementia with Lewy bodies. Curr Med Chem 2008; 15(26): 2748-59.
[http://dx.doi.org/10.2174/092986708786242868] [PMID: 18991634]
[94]
Sun J, Zhang X, Wang C, Teng Z, Li Y. Curcumin decreases hyperphosphorylation of tau by down-regulating caveolin-1/GSK-3β in N2a/APP695swe cells and APP/PS1 double transgenic Alzheimer’s disease mice. Am J Chin Med 2017; 45(8): 1667-82.
[http://dx.doi.org/10.1142/S0192415X17500902] [PMID: 29132216]
[95]
Liu W, Yin NC, Liu H, Nan KJ. Cav-1 promote lung cancer cell proliferation and invasion through lncRNA HOTAIR. Gene 2018; 641: 335-40.
[http://dx.doi.org/10.1016/j.gene.2017.10.070] [PMID: 29080835]
[96]
Surguchov A. Caveolin: A new link between diabetes and ad. Cell Mol Neurobiol 2020; 40(7): 1059-66.
[http://dx.doi.org/10.1007/s10571-020-00796-4] [PMID: 31974905]
[97]
Roy A, Kucukural A, Zhang Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc 2010; 5(4): 725-38.
[http://dx.doi.org/10.1038/nprot.2010.5] [PMID: 20360767]
[98]
Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 2006; 34 (Suppl. 2): W116-8.
[http://dx.doi.org/10.1093/nar/gkl282] [PMID: 16844972]

© 2024 Bentham Science Publishers | Privacy Policy