Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

The Importance of mir-491-5p in Various Cancers

Author(s): Mahsa Fakeri, Seyed Masoud Armandzadeh, Samad Sadigh Olyaei, Zahra Foruzandeh and Mohammad Reza Alivand*

Volume 23, Issue 9, 2023

Published on: 21 October, 2022

Page: [921 - 933] Pages: 13

DOI: 10.2174/1566524023666220909124042

Price: $65

Abstract

MicroRNAs are non-coding ribonucleic acids that are evolutionarily protected. MiRNAs control the expression of genes after transcription by mRNA decomposition or the inhibition of their translation. These molecular structures control physiological and pathological processes; therefore, many of them can play vital roles as oncogenes or tumor inhibitors. Besides, the occurrence of various mutations in miRNAs can lead to cancer. In this review article, we want to peruse the role of miR-491-5p in various cancers. In recent years, many experiments and studies have been performed on the involvement of miR-491-5p in cancer, invasion, and cell metastasis. Metastasis is an event that makes cancer more advanced and harder to treat. When cancer is invasive, the cancer cells invade nearby tissues or other organs and develop cancer. Tumor studies have shown that miR-491-5p can inhibit cell growth, invasion, and metastasis. Thus, expression enhancement of miR-491-5p disrupts cell migration and improves cancer.

Keywords: non-coding RNAs, MicroRNAs, Cancer, Mir-491-5p

[1]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[2]
Soheilifar MH, Vaseghi H, Seif F, et al. Concomitant overexpression of mir‐182‐5p and mir‐182‐3p raises the possibility of IL‐17–producing Treg formation in breast cancer by targeting CD3d, ITK, FOXO1, and NFATs: A meta‐analysis and experimental study. Cancer Sci 2021; 112(2): 589-603.
[http://dx.doi.org/10.1111/cas.14764] [PMID: 33283362]
[3]
Di Palo A, Siniscalchi C, Salerno M, Russo A, Gravholt CH, Potenza N. What microRNAs could tell us about the human X chromosome. Cell Mol Life Sci 2020; 77(20): 4069-80.
[http://dx.doi.org/10.1007/s00018-020-03526-7] [PMID: 32356180]
[4]
Ardekani AM, Naeini MM. The role of MicroRNAs in human diseases. Avicenna J Med Biotechnol 2010; 2(4): 161-79.
[PMID: 23407304]
[5]
Ranganathan K, Sivasankar V. MicroRNAs - biology and clinical applications. J Oral Maxillofac Pathol 2014; 18(2): 229-34.
[http://dx.doi.org/10.4103/0973-029X.140762] [PMID: 25328304]
[6]
Asli N, Pitulescu M, Kessel M. MicroRNAs in organogenesis and disease. Curr Mol Med 2008; 8(8): 698-710.
[http://dx.doi.org/10.2174/156652408786733739] [PMID: 19075669]
[7]
Foruzandeh Z, Zeinali-Sehrig F, Nejati K, et al. CircRNAs as potent biomarkers in ovarian cancer: A systematic scoping review. Cell Mol Biol Lett 2021; 26(1): 41.
[http://dx.doi.org/10.1186/s11658-021-00284-7] [PMID: 34556024]
[8]
Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10(10): 704-14.
[http://dx.doi.org/10.1038/nrg2634] [PMID: 19763153]
[9]
Ishida M, Selaru FM. miRNA-based therapeutic strategies. Curr Anesthesiol Rep 2013; 1(1): 63-70.
[PMID: 23524956]
[10]
Boon RA, Vickers KC. Intercellular transport of microRNAs. Arterioscler Thromb Vasc Biol 2013; 33(2): 186-92.
[http://dx.doi.org/10.1161/ATVBAHA.112.300139] [PMID: 23325475]
[11]
Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, function and role in cancer. Curr Genomics 2010; 11(7): 537-61.
[http://dx.doi.org/10.2174/138920210793175895] [PMID: 21532838]
[12]
Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev 2015; 87: 3-14.
[http://dx.doi.org/10.1016/j.addr.2015.05.001] [PMID: 25979468]
[13]
Scalavino V, Liso M, Serino G. Role of microRNAs in the regulation of dendritic cell generation and function. Int J Mol Sci 2020; 21(4): 1319.
[http://dx.doi.org/10.3390/ijms21041319] [PMID: 32075292]
[14]
Lan H, Lu H, Wang X, Jin H. MicroRNAs as potential biomarkers in cancer: Opportunities and challenges. BioMed Res Int 2015; 2015: 1-17.
[http://dx.doi.org/10.1155/2015/125094] [PMID: 25874201]
[15]
Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019; 11(1): 25.
[http://dx.doi.org/10.1186/s13148-018-0587-8] [PMID: 30744689]
[16]
Bertoli G, Cava C, Castiglioni I. MicroRNAs: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 2015; 5(10): 1122-43.
[http://dx.doi.org/10.7150/thno.11543] [PMID: 26199650]
[17]
Otmani K, Lewalle P. Tumor suppressor miRNA in cancer cells and the tumor microenvironment: Mechanism of deregulation and clinical implications. Front Oncol 2021; 11: 708765.
[http://dx.doi.org/10.3389/fonc.2021.708765] [PMID: 34722255]
[18]
Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol 2014; 9(1): 287-314.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104715] [PMID: 24079833]
[19]
Dai X, Kaushik AC, Zhang J. The emerging role of major regulatory RNAs in cancer control. Front Oncol 2019; 9: 920.
[http://dx.doi.org/10.3389/fonc.2019.00920] [PMID: 31608229]
[20]
Guo J, Luo C, Yang Y, et al. MiR-491-5p, as a tumor suppressor, prevents migration and invasion of breast cancer by targeting ZNF-703 to regulate AKT/mTOR pathway. Cancer Manag Res 2021; 13: 403-13.
[http://dx.doi.org/10.2147/CMAR.S279747] [PMID: 33488122]
[21]
Klinge CM. miRNAs regulated by estrogens, tamoxifen, and endocrine disruptors and their downstream gene targets. Mol Cell Endocrinol 2015; 418(3): 273-97.
[22]
Howard EW, Yang X. MicroRNA regulation in estrogen receptor-positive breast cancer and endocrine therapy. Biol Proced Online 2018; 20(1): 17.
[http://dx.doi.org/10.1186/s12575-018-0082-9] [PMID: 30214383]
[23]
Singh R, Mo YY. Role of microRNAs in breast cancer. Cancer Biol Ther 2013; 14(3): 201-12.
[http://dx.doi.org/10.4161/cbt.23296] [PMID: 23291983]
[24]
Huang WC, Chi HC, Tung SL, et al. Identification of the novel tumor suppressor role of FOCAD/miR-491-5p to inhibit cancer stemness, drug resistance and metastasis via regulating RABIF/MMP signaling in triple negative breast cancer. Cells 2021; 10(10): 2524.
[http://dx.doi.org/10.3390/cells10102524] [PMID: 34685504]
[25]
Hui Z, Yiling C, Wenting Y, XuQun H, ChuanYi Z, Hui L. MiR-491-5p functions as a tumor suppressor by targeting JMJD2B in ERα-positive breast cancer. FEBS Lett 2015; 589(7): 812-21.
[http://dx.doi.org/10.1016/j.febslet.2015.02.014] [PMID: 25725194]
[26]
Tan GZ, Li M, Tan X, Shi ML, Mou K. MiR-491 suppresses migration and invasion via directly targeting TPX2 in breast cancer. Eur Rev Med Pharmacol Sci 2019; 23(22): 9996-10004.
[PMID: 31799669]
[27]
Chan SH, Wang LH. Regulation of cancer metastasis by microRNAs. J Biomed Sci 2015; 22(1): 9.
[http://dx.doi.org/10.1186/s12929-015-0113-7] [PMID: 25614041]
[28]
Safi A, Bastami M, Delghir S, Ilkhani K, Seif F, Alivand MR. miRNAs modulate the dichotomy of cisplatin resistance or sensitivity in breast cancer: An update of therapeutic implications. Anti-Cancer Agents Med Chem 2021; 21(9): 1069-81.
[29]
Feng Y, Spezia M, Huang S, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018; 5(2): 77-106.
[http://dx.doi.org/10.1016/j.gendis.2018.05.001] [PMID: 30258937]
[30]
Simmons PS, Jayasinghe YL, Wold LE, Melton LJ III. Breast carcinoma in young women. Obstet Gynecol 2011; 118(3): 529-36.
[http://dx.doi.org/10.1097/AOG.0b013e31822a69db] [PMID: 21860280]
[31]
National Collaborating Centre for Cancer (UK). Advanced Breast Cancer: Diagnosis and Treatment. NICE Clinical Guidelines, 2009. Available from: https://www.ncbi.nlm.nih.gov/books/NBK61870/
[32]
Ilkhani K, Delgir S, Safi A, et al. Clinical and in silico outcomes of the expression of miR-130a-5p and miR-615-3p in tumor compared with non-tumor adjacent tissues of patients with BC. Anti-Cancer Agents Med Chem 2021; 21(7): 927-35.
[http://dx.doi.org/10.2174/1871520620666200924105352]
[33]
Unger-Saldaña K. Challenges to the early diagnosis and treatment of breast cancer in developing countries. World J Clin Oncol 2014; 5(3): 465-77.
[http://dx.doi.org/10.5306/wjco.v5.i3.465] [PMID: 25114860]
[34]
Foruzandeh Z, Dorabadi DG, Sadeghi F, et al. Circular RNAs as novel biomarkers in triple-negative breast cancer: A systematic review. Mol Biol Rep 2022; 10: 1-6.
[http://dx.doi.org/10.1007/s11033-022-07502-1] [PMID: 35534586]
[35]
Shi W, Hu D, Xing Y, et al. Deciphering the oncogenic role of VPS28 modulated by miR-491-5p in breast cancer cells using in silico and functional analysis. Front Mol Biosci 2021; 8: 634183.
[http://dx.doi.org/10.3389/fmolb.2021.634183] [PMID: 34395516]
[36]
Xu Y, Hou R, Lu Q, et al. MiR-491-5p negatively regulates cell proliferation and motility by targeting PDGFRA in prostate cancer. Am J Cancer Res 2017; 7(12): 2545-53.
[PMID: 29312807]
[37]
Ju G, Liu B, Ji M, et al. Folic acid–modified miR-491-5p–loaded ZIF-8 nanoparticles inhibit castration-resistant prostate cancer by regulating the expression of EPHX1. Front Bioeng Biotechnol 2021; 9: 706536.
[http://dx.doi.org/10.3389/fbioe.2021.706536] [PMID: 34881229]
[38]
Sun R, Liu Z, Tong D, et al. miR-491-5p, mediated by foxi1, functions as a tumor suppressor by targeting Wnt3a/β-catenin signaling in the development of gastric cancer. Cell Death Dis 2017; 8(3): e2714.
[http://dx.doi.org/10.1038/cddis.2017.134] [PMID: 28358374]
[39]
He S, Lu Y, Liu X, et al. Wnt3a: Functions and implications in cancer. Chin J Cancer 2015; 34(12): 554-62.
[PMID: 26369691]
[40]
Yu T, Wang L, Li W, et al. Downregulation of miR‐491‐5p promotes gastric cancer metastasis by regulating SNAIL and FGFR 4. Cancer Sci 2018; 109(5): 1393-403.
[http://dx.doi.org/10.1111/cas.13583] [PMID: 29569792]
[41]
Liu Z, Lü Y, Jiang Q, Yang Y, Dang C, Sun R. miR-491 inhibits BGC-823 cell migration via targeting HMGA2. Int J Biol Markers 2019; 34(4): 364-72.
[http://dx.doi.org/10.1177/1724600819874488] [PMID: 31668113]
[42]
LucianòAMPérez-OlivaABMuleroVDel BufaloD.Bcl-xL: A focus on melanoma pathobiology. Int J Mol Sci 2021; 22(5): 2777.
[http://dx.doi.org/10.3390/ijms22052777] [PMID: 33803452]
[43]
Zhang J, Ren J, Hao S, et al. MiRNA-491-5p inhibits cell proliferation, invasion and migration via targeting JMJD2B and serves as a potential biomarker in gastric cancer. Am J Transl Res 2018; 10(2): 525-34.
[PMID: 29511447]
[44]
Huang WC, Chan SH, Jang TH, et al. miRNA-491-5p and GIT1 serve as modulators and biomarkers for oral squamous cell carcinoma invasion and metastasis. Cancer Res 2014; 74(3): 751-64.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1297] [PMID: 24335959]
[45]
Rishabh K, Khadilkar S, Kumar A, Kalra I, Kumar AP, Kunnumakkara AB. MicroRNAs as modulators of oral tumorigenesis—A focused review. Int J Mol Sci 2021; 22(5): 2561.
[http://dx.doi.org/10.3390/ijms22052561] [PMID: 33806361]
[46]
Kademani D. Oral Cancer. Mayo Clin Proc 2007; 82(7): 878-87.
[http://dx.doi.org/10.4065/82.7.878] [PMID: 17605971]
[47]
Joseph BK. Oral cancer: Prevention and detection. Med Princ Pract 2002; 11(S1): 32-5.
[http://dx.doi.org/10.1159/000057776] [PMID: 12123114]
[48]
Bagan J, Sarrion G, Jimenez Y. Oral cancer: Clinical features. Oral Oncol 2010; 46(6): 414-7.
[http://dx.doi.org/10.1016/j.oraloncology.2010.03.009] [PMID: 20400366]
[49]
Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol 2015; 8(9): 11884-94.
[PMID: 26617944]
[50]
Khan MH, Naushad QN. Oral squamous cell carcinoma in a 10 year old boy. Mymensingh Med J 2011; 20(1): 145-50.
[PMID: 21240180]
[51]
Chen T, Li Y, Cao W, Liu Y. miR-491-5p inhibits osteosarcoma cell proliferation by targeting PKM2. Oncol Lett 2018; 16(5): 6472-8.
[http://dx.doi.org/10.3892/ol.2018.9451] [PMID: 30405785]
[52]
Yin Z, Ding H, He E, Chen J, Li M. Up-regulation of microRNA-491-5p suppresses cell proliferation and promotes apoptosis by targeting FOXP4 in human osteosarcoma. Cell Prolif 2017; 50(1): e12308.
[http://dx.doi.org/10.1111/cpr.12308] [PMID: 27704627]
[53]
Wu X, Xiao Y, Zhou Y, Zhou Z, Yan W. LncRNA FOXP4-AS1 is activated by PAX5 and promotes the growth of prostate cancer by sequestering miR-3184-5p to upregulate FOXP4. Cell Death Dis 2019; 10(7): 472.
[http://dx.doi.org/10.1038/s41419-019-1699-6] [PMID: 31209207]
[54]
Palmini G, Marini F, Brandi M. What Is New in the miRNA world regarding osteosarcoma and chondrosarcoma? Molecules 2017; 22(3): 417.
[http://dx.doi.org/10.3390/molecules22030417] [PMID: 28272374]
[55]
Veys C, Jammes M, Rédini F, et al. Tumor Suppressive Role of miR-342-5p and miR-491-5p in human osteosarcoma cells. Pharmaceuticals 2022; 15(3): 362.
[http://dx.doi.org/10.3390/ph15030362] [PMID: 35337159]
[56]
Lu L, Cai M, Peng M, Wang F, Zhai X. miR-491-5p functions as a tumor suppressor by targeting IGF2 in colorectal cancer. Cancer Manag Res 2019; 11: 1805-16.
[http://dx.doi.org/10.2147/CMAR.S183085] [PMID: 30863186]
[57]
Xiao Y, Hu F, Li M, et al. Interaction between linc01615 and miR-491-5p regulates the survival and metastasis of colorectal cancer cells. Transl Cancer Res 2020; 9(4): 2638-47.
[http://dx.doi.org/10.21037/tcr.2020.03.03] [PMID: 35117623]
[58]
Wei W, Guo Q, Guo C, et al. Ginsenoside Rh2 suppresses metastasis and growth of colon cancer via miR-491. J Oncol 2021; 2021: 1-7.
[http://dx.doi.org/10.1155/2021/6815713] [PMID: 34603449]
[59]
Xu Q, Dou C, Liu X, et al. Oviductus Ranae Protein Hydrolysate (ORPH) inhibits the growth, metastasis and glycolysis of HCC by targeting miR-491-5p/PKM2 axis. Biomed Pharmacother 2018; 107: 1692-704.
[http://dx.doi.org/10.1016/j.biopha.2018.07.071] [PMID: 30257387]
[60]
Xia C, Zhang D, Li Y, et al. Inhibition of hepatocellular carcinoma cell proliferation, migration, and invasion by a disintegrin and metalloproteinase-17 inhibitor TNF484. J Res Med Sci 2019; 24: 26.
[PMID: 31007696]
[61]
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The role of PKM2 in metabolic reprogramming: insights into the regulatory roles of non-coding RNAs. Int J Mol Sci 2021; 22(3): 1171.
[http://dx.doi.org/10.3390/ijms22031171] [PMID: 33503959]
[62]
Dai J, Zhou N, Wu R, et al. LncRNA MALAT1 regulating lung carcinoma progression via the miR-491-5p/UBE2C axis. Pathol Oncol Res 2021; 27: 610159.
[http://dx.doi.org/10.3389/pore.2021.610159] [PMID: 34257576]
[63]
Qi G, Li L. LncRNA TTN-AS1 promotes progression of non-small cell lung cancer via regulating miR-491-5p/ZNF503 axis. Onco Targets Ther 2020; 13: 6361-71.
[http://dx.doi.org/10.2147/OTT.S238890] [PMID: 32669856]
[64]
Wang Q, Yan C, Zhang P, et al. Microarray identifies a key carcinogenic circular RNA 0008594 that is related to non-small-cell lung cancer development and lymph node metastasis and promotes NSCLC progression by regulating the miR-760-mediated PI3K/AKT and MEK/ERK pathways. Front Oncol 2021; 11: 757541.
[http://dx.doi.org/10.3389/fonc.2021.757541] [PMID: 34858831]
[65]
Denoyelle C, Lambert B, Meryet-Figuière M, et al. miR-491-5p-induced apoptosis in ovarian carcinoma depends on the direct inhibition of both BCL-XL and EGFR leading to BIM activation. Cell Death Dis 2014; 5(10): e1445.
[http://dx.doi.org/10.1038/cddis.2014.389] [PMID: 25299770]
[66]
Li X, Liu Y, Granberg KJ, et al. Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma. Oncogene 2015; 34(13): 1619-28.
[http://dx.doi.org/10.1038/onc.2014.98] [PMID: 24747968]
[67]
Su C, Li H, Gao W. TRIM28 is overexpressed in glioma and associated with tumor progression. OncoTargets Ther 2018; 11: 6447-58.
[http://dx.doi.org/10.2147/OTT.S168630] [PMID: 30349292]
[68]
Butowski NA. Epidemiology and diagnosis of brain tumors. Continuum 2015; 21(2): 301-13.
[http://dx.doi.org/10.1212/01.CON.0000464171.50638.fa]
[69]
Petrescu GED, Sabo AA, Torsin LI, Calin GA, Dragomir MP. MicroRNA based theranostics for brain cancer: Basic principles. J Exp Clin Cancer Res 2019; 38(1): 231.
[http://dx.doi.org/10.1186/s13046-019-1180-5] [PMID: 31142339]
[70]
Guo R, Wang Y, Shi WY, Liu B, Hou SQ, Liu L. MicroRNA miR-491-5p targeting both TP53 and Bcl-XL induces cell apoptosis in SW1990 pancreatic cancer cells through mitochondria mediated pathway. Molecules 2012; 17(12): 14733-47.
[http://dx.doi.org/10.3390/molecules171214733] [PMID: 23519249]
[71]
Tesfaye AA, Azmi AS, Philip PA. miRNA and gene expression in pancreatic ductal adenocarcinoma. Am J Pathol 2019; 189(1): 58-70.
[http://dx.doi.org/10.1016/j.ajpath.2018.10.005] [PMID: 30558723]
[72]
Kang W, Zhang J, Huang T, et al. NOTCH3, a crucial target of miR-491-5p/miR-875-5p, promotes gastric carcinogenesis by upregulating PHLDB2 expression and activating Akt pathway. Oncogene 2021; 40(9): 1578-94.
[http://dx.doi.org/10.1038/s41388-020-01579-3] [PMID: 33452458]
[73]
Xiu M, Wang Y, Li B, et al. The role of notch3 signaling in cancer stemness and chemoresistance: Molecular mechanisms and targeting strategies. Front Mol Biosci 2021; 8: 694141.
[http://dx.doi.org/10.3389/fmolb.2021.694141] [PMID: 34195229]
[74]
Zhao Q, Zhai YX, Liu HQ, Shi YA, Li XB. MicroRNA-491-5p suppresses cervical cancer cell growth by targeting hTERT. Oncol Rep 2015; 34(2): 979-86.
[http://dx.doi.org/10.3892/or.2015.4013] [PMID: 26034994]
[75]
Bañuelos-Villegas EG, Pérez-yPérez MF, Alvarez-Salas LM. Cervical cancer, papillomavirus, and miRNA dysfunction. Front Mol Biosci 2021; 8: 758337.
[http://dx.doi.org/10.3389/fmolb.2021.758337] [PMID: 34957212]
[76]
Dastmalchi N, Safaralizadeh R, Banan KSM, et al. An updated review of the cross-talk between microRNAs and epigenetic factors in cancers. Curr Med Chem 2021; 28(42): 8722-32.
[http://dx.doi.org/10.2174/0929867328666210514125955] [PMID: 33992051]
[77]
Hoareau-Aveilla C, Meggetto F. Crosstalk between microRNA and DNA methylation offers potential biomarkers and targeted therapies in ALK-positive lymphomas. Cancers 2017; 9(12): 100.
[http://dx.doi.org/10.3390/cancers9080100] [PMID: 28771164]
[78]
Suzuki H, Maruyama R, Yamamoto E, Kai M. DNA methylation and microRNA dysregulation in cancer. Mol Oncol 2012; 6(6): 567-78.
[http://dx.doi.org/10.1016/j.molonc.2012.07.007] [PMID: 22902148]
[79]
Wang X, Jiang F, Mu J, et al. Arsenic trioxide attenuates the invasion potential of human liver cancer cells through the demethylation-activated microRNA-491. Toxicol Lett 2014; 227(2): 75-83.
[http://dx.doi.org/10.1016/j.toxlet.2014.03.016] [PMID: 24680928]
[80]
Forterre A, Komuro H, Aminova S, Harada M. A comprehensive review of cancer MicroRNA therapeutic delivery strategies. Cancers 2020; 12(7): 1852.
[http://dx.doi.org/10.3390/cancers12071852] [PMID: 32660045]
[81]
Shadbad MA, Safaei S, Brunetti O, et al. A systematic review on the therapeutic potentiality of PD-L1-inhibiting microRNAs for triple-negative breast cancer: Toward single-cell sequencing-guided biomimetic delivery. Genes 2021; 12(8): 1206.
[http://dx.doi.org/10.3390/genes12081206] [PMID: 34440380]
[82]
Shadbad MA, Asadzadeh Z, Derakhshani A, et al. A scoping review on the potentiality of PD-L1-inhibiting microRNAs in treating colorectal cancer: Toward single-cell sequencing-guided biocompatible-based delivery. Biomed Pharmacother 2021; 143: 112213.
[http://dx.doi.org/10.1016/j.biopha.2021.112213] [PMID: 34560556]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy