Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Resilience of Pseudomonas aeruginosa to Antibiotics and the Designing of Antimicrobial Peptides to Overcome Microbial Resistance

Author(s): Daniel Juárez-López, Estefanía Morales-Ruiz, Leonardo D. Herrera-Zúñiga, Zuriel González-Carrera, Elizabeth Cuevas-Reyes, Gerardo Corzo, Alejandro Schcolnik-Cabrera* and Elba Villegas*

Volume 30, Issue 1, 2023

Published on: 18 October, 2022

Page: [72 - 103] Pages: 32

DOI: 10.2174/0929867329666220907100505

Price: $65

Abstract

Pseudomonas aeruginosa (P. aeruginosa) is a bacterium of medical concern known for its potential to persist in diverse environments due to its metabolic capacity. Its survival ability is linked to its relatively large genome of 5.5-7 Mbp, from which several genes are employed in overcoming conventional antibiotic treatments and promoting resistance. The worldwide prevalence of antibiotic-resistant clones of P. aeruginosa necessitates novel approaches to researching their multiple resistance mechanisms, such as the use of antimicrobial peptides (AMPs). In this review, we briefly discuss the epidemiology of the resistant strains of P. aeruginosa and then describe their resistance mechanisms. Next, we explain the biology of AMPs, enlist the present database platforms that describe AMPs, and discuss their usefulness and limitations in treating P. aeruginosa strains. Finally, we present 13 AMPs with theoretical action against P. aeruginosa, all of which we evaluated in silico in this work. Our results suggest that the AMPs we evaluated have a carpet-like mode of action with a membranolytic function in Gram-positive and Gramnegative bacteria, with a clear potential of synthesis for in vitro evaluation.

Keywords: Pseudomonas aeruginosa, antimicrobial peptides, in silico design, AMP, antimicrobial resistance

[1]
Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv., 2019, 37(1), 177-192.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.013] [PMID: 30500353]
[2]
Cabot, G.; Zamorano, L.; Moyà, B.; Juan, C.; Navas, A.; Blázquez, J.; Oliver, A. Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrob. Agents Chemother., 2016, 60(3), 1767-1778.
[http://dx.doi.org/10.1128/AAC.02676-15] [PMID: 26729493]
[3]
Yayan, J.; Ghebremedhin, B.; Rasche, K. Antibiotic resistance of Pseudomonas aeruginosa in pneumonia at a single university hospital center in Germany over a 10-year period. PLoS One, 2015, 10(10), e0139836.
[http://dx.doi.org/10.1371/journal.pone.0139836] [PMID: 26430738]
[4]
Yasir, M.; Dutta, D.; Hossain, K.R.; Chen, R.; Ho, K.K.K.; Kuppusamy, R.; Clarke, R.J.; Kumar, N.; Willcox, M.D.P. Mechanism of action of surface immobilized antimicrobial peptides against Pseudomonas aeruginosa. Front. Microbiol., 2020, 10, 3053.
[http://dx.doi.org/10.3389/fmicb.2019.03053] [PMID: 32038530]
[5]
Gales, A.C.; Jones, R.N.; Turnidge, J.; Rennie, R.; Ramphal, R. Characterization of Pseudomonas aeruginosa isolates: Occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin. Infect. Dis., 2001, 32(Suppl. 2), S146-S155.
[http://dx.doi.org/10.1086/320186] [PMID: 11320454]
[6]
Poole, K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J. Mol. Microbiol. Biotechnol., 2001, 3(2), 255-264.
[PMID: 11321581]
[7]
Diggle, S.P.; Whiteley, M. Microbe Profile: Pseudomonas aeruginosa: Opportunistic pathogen and lab rat. Microbiology (Reading), 2020, 166(1), 30-33.
[http://dx.doi.org/10.1099/mic.0.000860] [PMID: 31597590]
[8]
Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev., 2009, 22(4), 582-610.
[http://dx.doi.org/10.1128/CMR.00040-09] [PMID: 19822890]
[9]
Kerckhoffs, A.P.M.; Ben-Amor, K.; Samsom, M.; van der Rest, M.E.; de Vogel, J.; Knol, J.; Akkermans, L.M.A. Molecular analysis of faecal and duodenal samples reveals significantly higher prevalence and numbers of Pseudomonas aeruginosa in irritable bowel syndrome. J. Med. Microbiol., 2011, 60(2), 236-245.
[http://dx.doi.org/10.1099/jmm.0.022848-0] [PMID: 20947663]
[10]
Bou, R.; Lorente, L.; Aguilar, A.; Perpiñán, J.; Ramos, P.; Peris, M.; Gonzalez, D. Hospital economic impact of an outbreak of Pseudomonas aeruginosa infections. J. Hosp. Infect., 2009, 71(2), 138-142.
[http://dx.doi.org/10.1016/j.jhin.2008.07.018] [PMID: 18799237]
[11]
Klockgether, J.; Cramer, N.; Wiehlmann, L.; Davenport, C.F.; Tümmler, B. Pseudomonas aeruginosa genomic structure and diversity. Front. Microbiol., 2011, 2, 150.
[http://dx.doi.org/10.3389/fmicb.2011.00150] [PMID: 21808635]
[12]
Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa Lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol., 2017, 7, 39.
[http://dx.doi.org/10.3389/fcimb.2017.00039] [PMID: 28261568]
[13]
Freschi, L.; Vincent, A.T.; Jeukens, J.; Emond-Rheault, J.G.; Kukavica-Ibrulj, I.; Dupont, M.J.; Charette, S.J.; Boyle, B.; Levesque, R.C. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol. Evol., 2019, 11(1), 109-120.
[http://dx.doi.org/10.1093/gbe/evy259] [PMID: 30496396]
[14]
Li, Z.; Bai, H.; Jia, S.; Yuan, H.; Gao, L-H.; Liang, H. Design of functional polymer nanomaterials for antimicrobial therapy and combatting resistance. Mater. Chem. Front., 2021, 5(3), 1236-1252.
[http://dx.doi.org/10.1039/D0QM00837K]
[15]
Dias, L.M.; Ferrisse, T.M.; Medeiros, K.S.; Cilli, E.M.; Pavarina, A.C. Use of photodynamic therapy associated with antimicrobial peptides for bacterial control: A systematic review and meta-analysis. Int. J. Mol. Sci., 2022, 23(6), 3226.
[http://dx.doi.org/10.3390/ijms23063226] [PMID: 35328647]
[16]
Judzewitsch, P.R.; Corrigan, N.; Wong, E.H.H.; Boyer, C. Photo‐enhanced antimicrobial activity of polymers containing an embedded photosensitiser. Angew. Chem. Int. Ed., 2021, 60(45), 24248-24256.
[http://dx.doi.org/10.1002/anie.202110672] [PMID: 34453390]
[17]
Gao, Y.; Wang, J.; Hu, D.; Deng, Y.; Chen, T.; Jin, Q.; Ji, J. Bacteria-targeted supramolecular photosensitizer delivery vehicles for photodynamic ablation against biofilms. Macromol. Rapid Commun., 2019, 40(4), 1800763.
[http://dx.doi.org/10.1002/marc.201800763] [PMID: 30500097]
[18]
Zhou, Y.; Deng, W.; Mo, M.; Luo, D.; Liu, H.; Jiang, Y.; Chen, W.; Xu, C. Stimuli-responsive nanoplatform-assisted photodynamic therapy against bacterial infections. Front. Med. (Lausanne), 2021, 8, 729300.
[http://dx.doi.org/10.3389/fmed.2021.729300] [PMID: 34604266]
[19]
Shi, X.; Zhang, C.Y.; Gao, J.; Wang, Z. Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(5), e1560.
[http://dx.doi.org/10.1002/wnan.1560] [PMID: 31058443]
[20]
Wu, M.F.; Deichelbohrer, M.; Tschernig, T.; Laschke, M.W.; Szentmáry, N.; Hüttenberger, D.; Foth, H.J.; Seitz, B.; Bischoff, M. Chlorin e6 mediated photodynamic inactivation for multidrug resistant Pseudomonas aeruginosa keratitis in mice in vivo. Sci. Rep., 2017, 7(1), 44537.
[http://dx.doi.org/10.1038/srep44537] [PMID: 28295043]
[21]
Pérez-Laguna, V.; García-Luque, I.; Ballesta, S.; Pérez-Artiaga, L.; Lampaya-Pérez, V.; Rezusta, A.; Gilaberte, Y. Photodynamic therapy using methylene blue, combined or not with gentamicin, against Staphylococcus aureus and Pseudomonas aeruginosa. Photodiagn. Photodyn. Ther., 2020, 31, 101810.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101810] [PMID: 32437976]
[22]
Gao, Q.; Huang, D.; Deng, Y.; Yu, W.; Jin, Q.; Ji, J.; Fu, G. Chlorin e6 (Ce6)-loaded supramolecular polypeptide micelles with enhanced photodynamic therapy effect against Pseudomonas aeruginosa. Chem. Eng. J., 2021, 417, 129334.
[http://dx.doi.org/10.1016/j.cej.2021.129334]
[23]
Gao, Y.; Fang, H.; Fang, L.; Liu, D.; Liu, J.; Su, M.; Fang, Z.; Ren, W.; Jiao, H. The modification and design of antimicrobial peptide. Curr. Pharm. Des., 2018, 24(8), 904-910.
[http://dx.doi.org/10.2174/1381612824666180213130318] [PMID: 29436993]
[24]
GLASS. Global antimicrobial resistance and use surveillance system (GLASS) report 2021, in Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO 2021.
[25]
Restrepo, M.I.; Babu, B.L.; Reyes, L.F.; Chalmers, J.D.; Soni, N.J.; Sibila, O.; Faverio, P.; Cilloniz, C.; Rodriguez-Cintron, W.; Aliberti, S. Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia: A multinational point prevalence study of hospitalised patients. Eur. Respir. J., 2018, 52(2), 1701190.
[http://dx.doi.org/10.1183/13993003.01190-2017] [PMID: 29976651]
[26]
Harris, A.D.; Jackson, S.S.; Robinson, G.; Pineles, L.; Leekha, S.; Thom, K.A.; Wang, Y.; Doll, M.; Pettigrew, M.M.; Johnson, J.K. Pseudomonas aeruginosa colonization in the intensive care unit: Prevalence, risk factors, and clinical outcomes. Infect. Control Hosp. Epidemiol., 2016, 37(5), 544-548.
[http://dx.doi.org/10.1017/ice.2015.346] [PMID: 26832307]
[27]
Ding, C.; Yang, Z.; Wang, J.; Liu, X.; Cao, Y.; Pan, Y.; Han, L.; Zhan, S. Prevalence of Pseudomonas aeruginosa and antimicrobial-resistant Pseudomonas aeruginosa in patients with pneumonia in mainland China: A systematic review and meta-analysis. Int. J. Infect. Dis., 2016, 49, 119-128.
[http://dx.doi.org/10.1016/j.ijid.2016.06.014] [PMID: 27329135]
[28]
Obritsch, M.D.; Fish, D.N.; MacLaren, R.; Jung, R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob. Agents Chemother., 2004, 48(12), 4606-4610.
[http://dx.doi.org/10.1128/AAC.48.12.4606-4610.2004] [PMID: 15561832]
[29]
Olsson, A.; Wistrand-Yuen, P.; Nielsen, E.I.; Friberg, L.E.; Sandegren, L.; Lagerbäck, P.; Tängdén, T. Efficacy of antibiotic combinations against multidrug-resistant Pseudomonas aeruginosa in automated time-lapse microscopy and static time-kill experiments. Antimicrob. Agents Chemother., 2020, 64(6), e02111-e02119.
[http://dx.doi.org/10.1128/AAC.02111-19] [PMID: 32179531]
[30]
PUCRA. PUCRA, Plan Universitario de Control de la Resistencia Antimicrobiana. Segundo Reporte de los Hospitales de la Red del PUCRA: Resistencia antimicrobiana y consumo de antimicrobianos; U.N.A.d: México, 2019.
[31]
Ullah, N.; Guler, E.; Guvenir, M.; Arikan, A.; Suer, K. Isolation, identification, and antibiotic susceptibility patterns of Pseudomonas aeruginosa strains from various clinical samples in a university hospital in northern Cyprus. Cyprus J. Med. Sci., 2019, 4(3), 225-228.
[http://dx.doi.org/10.5152/cjms.2019.931]
[32]
ECDC. European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report 2019; ECDC: Stockholm, 2020.
[33]
Shortridge, D.; Castanheira, M.; Pfaller, M.A.; Flamm, R.K. Ceftolozane-tazobactam activity against Pseudomonas aeruginosa clinical isolates from U.S. hospitals: Report from the PACTS antimicrobial surveillance program, 2012 to 2015. Antimicrob. Agents Chemother., 2017, 61(7), e00465-e17.
[http://dx.doi.org/10.1128/AAC.00465-17] [PMID: 28483953]
[34]
Feretzakis, G.; Loupelis, E.; Sakagianni, A.; Skarmoutsou, N.; Michelidou, S.; Velentza, A.; Martsoukou, M.; Valakis, K.; Petropoulou, S.; Koutalas, E.A. 2-Year single-centre audit on antibiotic resistance of Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae strains from an intensive care unit and other wards in a general public hospital in Greece. Antibiotics (Basel), 2019, 8(2), 62.
[http://dx.doi.org/10.3390/antibiotics8020062] [PMID: 31096587]
[35]
World Health Organization. Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities., 2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK493061/
[36]
Maliwan, N.; Grieble, H.G.; Bird, T.J. Hospital Pseudomonas aeruginosa: Surveillance of resistance to gentamicin and transfer of aminoglycoside R factor. Antimicrob. Agents Chemother., 1975, 8(4), 415-420.
[http://dx.doi.org/10.1128/AAC.8.4.415] [PMID: 811159]
[37]
Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet, 2016, 387(10014), 176-187.
[http://dx.doi.org/10.1016/S0140-6736(15)00473-0] [PMID: 26603922]
[38]
Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/2475067] [PMID: 27274985]
[39]
Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med., 2006, 119(6)(Suppl. 1), S3-S10.
[http://dx.doi.org/10.1016/j.amjmed.2006.03.011] [PMID: 16735149]
[40]
López, C.A.; Zgurskaya, H.; Gnanakaran, S. Molecular characterization of the outer membrane of Pseudomonas aeruginosa. Biochim. Biophys. Acta Biomembr., 2020, 1862(3), 183151.
[http://dx.doi.org/10.1016/j.bbamem.2019.183151] [PMID: 31846648]
[41]
Chevalier, S.; Bouffartigues, E.; Bodilis, J.; Maillot, O.; Lesouhaitier, O.; Feuilloley, M.G.J.; Orange, N.; Dufour, A.; Cornelis, P. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol. Rev., 2017, 41(5), 698-722.
[http://dx.doi.org/10.1093/femsre/fux020] [PMID: 28981745]
[42]
Lambert, P.A. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J. R. Soc. Med., 2002, 95(Suppl. 41), 22-26.
[PMID: 12216271]
[43]
Quinn, J.P.; Dudek, E.J.; DiVincenzo, C.A.; Lucks, D.A.; Lerner, S.A. Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections. J. Infect. Dis., 1986, 154(2), 289-294.
[http://dx.doi.org/10.1093/infdis/154.2.289] [PMID: 3088133]
[44]
Sanbongi, Y.; Shimizu, A.; Suzuki, T.; Nagaso, H.; Ida, T.; Maebashi, K.; Gotoh, N. Classification of OprD sequence and correlation with antimicrobial activity of carbapenem agents in Pseudomonas aeruginosa clinical isolates collected in Japan. Microbiol. Immunol., 2009, 53(7), 361-367.
[http://dx.doi.org/10.1111/j.1348-0421.2009.00137.x] [PMID: 19563394]
[45]
Ude, J.; Tripathi, V.; Buyck, J.M.; Söderholm, S.; Cunrath, O.; Fanous, J.; Claudi, B.; Egli, A.; Schleberger, C.; Hiller, S.; Bumann, D. Outer membrane permeability: Antimicrobials and diverse nutrients bypass porins in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 2021, 118(31), e2107644118.
[http://dx.doi.org/10.1073/pnas.2107644118] [PMID: 34326266]
[46]
Fernández, L.; Álvarez-Ortega, C.; Wiegand, I.; Olivares, J.; Kocíncová, D.; Lam, J.S.; Martínez, J.L.; Hancock, R.E.W. Characterization of the polymyxin B resistome of Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2013, 57(1), 110-119.
[http://dx.doi.org/10.1128/AAC.01583-12] [PMID: 23070157]
[47]
Brindhadevi, K. LewisOscar, F.; Mylonakis, E.; Shanmugam, S.; Verma, T.N.; Pugazhendhi, A. Biofilm and quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochem., 2020, 96, 49-57.
[http://dx.doi.org/10.1016/j.procbio.2020.06.001]
[48]
Hentzer, M.; Teitzel, G.M.; Balzer, G.J.; Heydorn, A.; Molin, S.; Givskov, M.; Parsek, M.R. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J. Bacteriol., 2001, 183(18), 5395-5401.
[http://dx.doi.org/10.1128/JB.183.18.5395-5401.2001] [PMID: 11514525]
[49]
Ciofu, O.; Tolker-Nielsen, T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents—how P. aeruginosa can escape antibiotics. Front. Microbiol., 2019, 10, 913.
[http://dx.doi.org/10.3389/fmicb.2019.00913] [PMID: 31130925]
[50]
Mah, T.F.; Pitts, B.; Pellock, B.; Walker, G.C.; Stewart, P.S.; O’Toole, G.A. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature, 2003, 426(6964), 306-310.
[http://dx.doi.org/10.1038/nature02122] [PMID: 14628055]
[51]
de Beer, D.; Stoodley, P.; Roe, F.; Lewandowski, Z. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng., 1994, 43(11), 1131-1138.
[http://dx.doi.org/10.1002/bit.260431118] [PMID: 18615526]
[52]
Tack, K.J.; Sabath, L.D. Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy, 1985, 31(3), 204-210.
[http://dx.doi.org/10.1159/000238337] [PMID: 3888545]
[53]
Azam, M.W.; Khan, A.U. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov. Today, 2019, 24(1), 350-359.
[http://dx.doi.org/10.1016/j.drudis.2018.07.003] [PMID: 30036575]
[54]
Sun, J.; Deng, Z.; Yan, A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun., 2014, 453(2), 254-267.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.090] [PMID: 24878531]
[55]
Soto, S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 2013, 4(3), 223-229.
[http://dx.doi.org/10.4161/viru.23724] [PMID: 23380871]
[56]
Pearson, J.P.; Van Delden, C.; Iglewski, B.H. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol., 1999, 181(4), 1203-1210.
[http://dx.doi.org/10.1128/JB.181.4.1203-1210.1999] [PMID: 9973347]
[57]
Poole, K. Pseudomonas aeruginosa: Resistance to the max. Front. Microbiol., 2011, 2, 65.
[http://dx.doi.org/10.3389/fmicb.2011.00065] [PMID: 21747788]
[58]
Poole, K. Resistance to? -lactam antibiotics. Cell. Mol. Life Sci., 2004, 61(17), 2200-2223.
[http://dx.doi.org/10.1007/s00018-004-4060-9] [PMID: 15338052]
[59]
Pai, H.; Kim, J.W.; Kim, J.; Lee, J.H.; Choe, K.W.; Gotoh, N. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother., 2001, 45(2), 480-484.
[http://dx.doi.org/10.1128/AAC.45.2.480-484.2001] [PMID: 11158744]
[60]
Peña, C.; Suarez, C.; Tubau, F.; Juan, C.; Moya, B.; Dominguez, M.A.; Oliver, A.; Pujol, M.; Ariza, J. Nosocomial outbreak of a non-cefepime-susceptible ceftazidime-susceptible Pseudomonas aeruginosa strain overexpressing MexXY-OprM and producing an integron-borne PSE-1 betta-lactamase. J. Clin. Microbiol., 2009, 47(8), 2381-2387.
[http://dx.doi.org/10.1128/JCM.00094-09] [PMID: 19494059]
[61]
Baum, E.Z.; Crespo-Carbone, S.M.; Morrow, B.J.; Davies, T.A.; Foleno, B.D.; He, W.; Queenan, A.M.; Bush, K. Effect of MexXY overexpression on ceftobiprole susceptibility in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2009, 53(7), 2785-2790.
[http://dx.doi.org/10.1128/AAC.00018-09] [PMID: 19433554]
[62]
Cavallo, J.D.; Hocquet, D.; Plesiat, P.; Fabre, R.; Roussel-Delvallez, M. Susceptibility of Pseudomonas aeruginosa to antimicrobials: A 2004 French multicentre hospital study. J. Antimicrob. Chemother., 2007, 59(5), 1021-1024.
[http://dx.doi.org/10.1093/jac/dkm076] [PMID: 17412726]
[63]
Quale, J.; Bratu, S.; Gupta, J.; Landman, D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother., 2006, 50(5), 1633-1641.
[http://dx.doi.org/10.1128/AAC.50.5.1633-1641.2006] [PMID: 16641429]
[64]
Poole, K. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob. Agents Chemother., 2000, 44(9), 2233-2241.
[http://dx.doi.org/10.1128/AAC.44.9.2233-2241.2000] [PMID: 10952561]
[65]
Wolter, D.J.; Smith-Moland, E.; Goering, R.V.; Hanson, N.D.; Lister, P.D. Multidrug resistance associated with mexXY expression in clinical isolates of Pseudomonas aeruginosa from a Texas hospital. Diagn. Microbiol. Infect. Dis., 2004, 50(1), 43-50.
[http://dx.doi.org/10.1016/j.diagmicrobio.2004.05.004] [PMID: 15380277]
[66]
Zhanel, G.G.; Hoban, D.J.; Schurek, K.; Karlowsky, J.A. Role of efflux mechanisms on fluoroquinolone resistance in Streptococcus pneumoniae and Pseudomonas aeruginosa. Int. J. Antimicrob. Agents, 2004, 24(6), 529-535.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.08.003] [PMID: 15555873]
[67]
Hocquet, D.; Vogne, C.; El Garch, F.; Vejux, A.; Gotoh, N.; Lee, A.; Lomovskaya, O.; Plésiat, P. MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob. Agents Chemother., 2003, 47(4), 1371-1375.
[http://dx.doi.org/10.1128/AAC.47.4.1371-1375.2003] [PMID: 12654672]
[68]
Fraud, S.; Campigotto, A.J.; Chen, Z.; Poole, K. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: Involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob. Agents Chemother., 2008, 52(12), 4478-4482.
[http://dx.doi.org/10.1128/AAC.01072-08] [PMID: 18838593]
[69]
Puja, H.; Bolard, A.; Noguès, A.; Plésiat, P.; Jeannot, K. The efflux pump MexXY/OprM contributes to the tolerance and acquired resistance of Pseudomonas aeruginosa to colistin. Antimicrob. Agents Chemother., 2020, 64(4), e02033-e19.
[http://dx.doi.org/10.1128/AAC.02033-19] [PMID: 31964794]
[70]
Strempel, N.; Neidig, A.; Nusser, M.; Geffers, R.; Vieillard, J.; Lesouhaitier, O.; Brenner-Weiss, G.; Overhage, J. Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa. PLoS One, 2013, 8(12), e82240.
[http://dx.doi.org/10.1371/journal.pone.0082240] [PMID: 24349231]
[71]
Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[72]
Zhao, W.H.; Hu, Z.Q. β-Lactamases identified in clinical isolates of Pseudomonas aeruginosa. Crit. Rev. Microbiol., 2010, 36(3), 245-258.
[http://dx.doi.org/10.3109/1040841X.2010.481763] [PMID: 20482453]
[73]
Hishinuma, T.; Tada, T.; Kuwahara-Arai, K.; Yamamoto, N.; Shimojima, M.; Kirikae, T. Spread of GES-5 carbapenemase-producing Pseudomonas aeruginosa clinical isolates in Japan due to clonal expansion of ST235. PLoS One, 2018, 13(11), e0207134.
[http://dx.doi.org/10.1371/journal.pone.0207134] [PMID: 30452435]
[74]
Polotto, M.; Casella, T.; de Lucca Oliveira, M.G.; Rúbio, F.G.; Nogueira, M.L.; de Almeida, M.T.G.; Nogueira, M.C.L. Detection of P. aeruginosa harboring bla CTX-M-2, bla GES-1 and bla GES-5, bla IMP-1 and bla SPM-1causing infections in Brazilian tertiary-care hospital. BMC Infect. Dis., 2012, 12(1), 176.
[http://dx.doi.org/10.1186/1471-2334-12-176] [PMID: 22863113]
[75]
Pitout, J.D.D.; Gregson, D.B.; Poirel, L.; McClure, J.A.; Le, P.; Church, D.L. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J. Clin. Microbiol., 2005, 43(7), 3129-3135.
[http://dx.doi.org/10.1128/JCM.43.7.3129-3135.2005] [PMID: 16000424]
[76]
Poirel, L.; Naas, T.; Nicolas, D.; Collet, L.; Bellais, S.; Cavallo, J.D.; Nordmann, P. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother., 2000, 44(4), 891-897.
[http://dx.doi.org/10.1128/AAC.44.4.891-897.2000] [PMID: 10722487]
[77]
Berrazeg, M.; Jeannot, K.; Ntsogo Enguéné, V.Y.; Broutin, I.; Loeffert, S.; Fournier, D.; Plésiat, P. Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrob. Agents Chemother., 2015, 59(10), 6248-6255.
[http://dx.doi.org/10.1128/AAC.00825-15] [PMID: 26248364]
[78]
Poole, K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2005, 49(2), 479-487.
[http://dx.doi.org/10.1128/AAC.49.2.479-487.2005] [PMID: 15673721]
[79]
Azucena, E.; Mobashery, S. Aminoglycoside-modifying enzymes: Mechanisms of catalytic processes and inhibition. Drug Resist. Updat., 2001, 4(2), 106-117.
[http://dx.doi.org/10.1054/drup.2001.0197] [PMID: 11512519]
[80]
Miller, G.H.; Sabatelli, F.J.; Naples, L.; Hare, R.S.; Shaw, K.J. Resistance to a minoglycosides in Pseudomonas. Trends Microbiol., 1994, 2(10), 347-353.
[http://dx.doi.org/10.1016/0966-842X(94)90609-2] [PMID: 7850199]
[81]
Shaw, K.J.; Hare, R.S.; Sabatelli, F.J.; Rizzo, M.; Cramer, C.A.; Naples, L.; Kocsi, S.; Munayyer, H.; Mann, P.; Miller, G.H. Correlation between aminoglycoside resistance profiles and DNA hybridization of clinical isolates. Antimicrob. Agents Chemother., 1991, 35(11), 2253-2261.
[http://dx.doi.org/10.1128/AAC.35.11.2253] [PMID: 1803998]
[82]
Hächler, H.; Santanam, P.; Kayser, F.H. Sequence and characterization of a novel chromosomal aminoglycoside phosphotransferase gene, aph (3′)-IIb, in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 1996, 40(5), 1254-1256.
[http://dx.doi.org/10.1128/AAC.40.5.1254] [PMID: 8723476]
[83]
Torres, C.; Perlin, M.H.; Baquero, F.; Lerner, D.L.; Lerner, S.A. High-level amikacin resistance in Pseudomonas aeruginosa associated with a 3′-phosphotransferase with high affinity for amikacin. Int. J. Antimicrob. Agents, 2000, 15(4), 257-263.
[http://dx.doi.org/10.1016/S0924-8579(00)00174-6] [PMID: 10929874]
[84]
Kettner, M.; Kallová, J.; Hletková, M.; Milošovič, P. Incidence and mechanisms of aminoglycoside resistance inPseudomonas aeruginosa serotype O11 isolates. Infection, 1995, 23(6), 380-383.
[http://dx.doi.org/10.1007/BF01713571] [PMID: 8655211]
[85]
Wang, J.; Liu, J.H. Mutations in the chloramphenicol acetyltransferase (S61G, Y105C) increase accumulated amounts and resistance in Pseudomonas aeruginosa. FEMS Microbiol. Lett., 2004, 236(2), 197-204.
[http://dx.doi.org/10.1111/j.1574-6968.2004.tb09647.x] [PMID: 15251197]
[86]
Nitzan, Y.; Rushansky, N.M. Chloramphenicol acetyltransferase fromPseudomonas aeruginosa—a new variant of the enzyme. Curr. Microbiol., 1981, 5(5), 261-265.
[http://dx.doi.org/10.1007/BF01567915]
[87]
Gasparrini, A.J.; Markley, J.L.; Kumar, H.; Wang, B.; Fang, L.; Irum, S.; Symister, C.T.; Wallace, M.; Burnham, C.A.D.; Andleeb, S.; Tolia, N.H.; Wencewicz, T.A.; Dantas, G. Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance. Commun. Biol., 2020, 3(1), 241.
[http://dx.doi.org/10.1038/s42003-020-0966-5] [PMID: 32415166]
[88]
Galdino, A.C.M.B. M.H.; Santos, A.L.S.; Viganor, L. Pseudomonas aeruginosa and its arsenal of proteases: Weapons to battle the host, in pathophysiological aspects of proteases, S.D; Springer: Singapore, 2017.
[89]
Axelrad, I.; Safrin, M.; Cahan, R.; Suh, S.J.; Ohman, D.E.; Kessler, E. Extracellular proteolytic activation of Pseudomonas aeruginosa aminopeptidase (PaAP) and insight into the role of its non-catalytic N-terminal domain. PLoS One, 2021, 16(6), e0252970.
[http://dx.doi.org/10.1371/journal.pone.0252970] [PMID: 34133429]
[90]
Cahan, R.; Axelrad, I.; Safrin, M.; Ohman, D.E.; Kessler, E. A secreted aminopeptidase of Pseudomonas aeruginosa. Identification, primary structure, and relationship to other aminopeptidases. J. Biol. Chem., 2001, 276(47), 43645-43652.
[http://dx.doi.org/10.1074/jbc.M106950200] [PMID: 11533066]
[91]
Gonzales, T.; Robert-Baudouy, J. Bacterial aminopeptidases: Properties and functions. FEMS Microbiol. Rev., 1996, 18(4), 319-344.
[http://dx.doi.org/10.1111/j.1574-6976.1996.tb00247.x] [PMID: 8703509]
[92]
Cowell, B.A.; Twining, S.S.; Hobden, J.A.; Kwong, M.S.F.; Fleiszig, S.M.J. Mutation of lasA and lasB reduces Pseudomonas aeruginosa invasion of epithelial cells. Microbiology (Reading), 2003, 149(8), 2291-2299.
[http://dx.doi.org/10.1099/mic.0.26280-0] [PMID: 12904569]
[93]
Tang, A.; Caballero, A.R.; Marquart, M.E.; Bierdeman, M.A.; O’Callaghan, R.J. Mechanism of Pseudomonas aeruginosa Small Protease (PASP), a corneal virulence factor. Invest. Ophthalmol. Vis. Sci., 2018, 59(15), 5993-6002.
[http://dx.doi.org/10.1167/iovs.18-25834] [PMID: 30572344]
[94]
Engel, L.S.; Hill, J.M.; Caballero, A.R.; Green, L.C.; O’Callaghan, R.J. Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa. J. Biol. Chem., 1998, 273(27), 16792-16797.
[http://dx.doi.org/10.1074/jbc.273.27.16792] [PMID: 9642237]
[95]
Zupetic, J.; Peñaloza, H.F.; Bain, W.; Hulver, M.; Mettus, R.; Jorth, P.; Doi, Y.; Bomberger, J.; Pilewski, J.; Nouraie, M.; Lee, J.S. Elastase activity from Pseudomonas aeruginosa respiratory isolates and ICU mortality. Chest, 2021, 160(5), 1624-1633.
[http://dx.doi.org/10.1016/j.chest.2021.04.015] [PMID: 33878342]
[96]
Kessler, E.; Safrin, M.; Gustin, J.K.; Ohman, D.E. Elastase and the LasA protease of Pseudomonas aeruginosa are secreted with their propeptides. J. Biol. Chem., 1998, 273(46), 30225-30231.
[http://dx.doi.org/10.1074/jbc.273.46.30225] [PMID: 9804780]
[97]
Bayoudh, A.; Gharsallah, N.; Chamkha, M.; Dhouib, A.; Ammar, S.; Nasri, M. Purification and characterization of an alkaline protease from Pseudomonas aeruginosa MN1. J. Ind. Microbiol. Biotechnol., 2000, 24(4), 291-295.
[http://dx.doi.org/10.1038/sj.jim.2900822]
[98]
Malloy, J.L.; Veldhuizen, R.A.W.; Thibodeaux, B.A.; O’Callaghan, R.J.; Wright, J.R. Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. Am. J. Physiol. Lung Cell. Mol. Physiol., 2005, 288(2), L409-L418.
[http://dx.doi.org/10.1152/ajplung.00322.2004] [PMID: 15516485]
[99]
Smith, L.; Rose, B.; Tingpej, P.; Zhu, H.; Conibear, T.; Manos, J.; Bye, P.; Elkins, M.; Willcox, M.; Bell, S.; Wainwright, C.; Harbour, C. Protease IV production in Pseudomonas aeruginosa from the lungs of adults with cystic fibrosis. J. Med. Microbiol., 2006, 55(12), 1641-1644.
[http://dx.doi.org/10.1099/jmm.0.46845-0] [PMID: 17108265]
[100]
Nouwens, A.S.; Beatson, S.A.; Whitchurch, C.B.; Walsh, B.J.; Schweizer, H.P.; Mattick, J.S.; Cordwell, S.J. Proteome analysis of extracellular proteins regulated by the las and rhl quorum sensing systems in Pseudomonas aeruginosa PAO1. Microbiology (Reading), 2003, 149(5), 1311-1322.
[http://dx.doi.org/10.1099/mic.0.25967-0] [PMID: 12724392]
[101]
Bandara, M.B.K.; Zhu, H.; Sankaridurg, P.R.; Willcox, M.D.P. Salicylic acid reduces the production of several potential virulence factors of Pseudomonas aeruginosa associated with microbial keratitis. Invest. Ophthalmol. Vis. Sci., 2006, 47(10), 4453-4460.
[http://dx.doi.org/10.1167/iovs.06-0288] [PMID: 17003439]
[102]
Mohamed, M.F.; Brezden, A.; Mohammad, H.; Chmielewski, J.; Seleem, M.N. A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Sci. Rep., 2017, 7(1), 6953.
[http://dx.doi.org/10.1038/s41598-017-07440-0] [PMID: 28761101]
[103]
Strömstedt, A.A.; Pasupuleti, M.; Schmidtchen, A.; Malmsten, M. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob. Agents Chemother., 2009, 53(2), 593-602.
[http://dx.doi.org/10.1128/AAC.00477-08] [PMID: 19029324]
[104]
Schmidtchen, A.; Frick, I.M.; Andersson, E.; Tapper, H.; Björck, L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol., 2002, 46(1), 157-168.
[http://dx.doi.org/10.1046/j.1365-2958.2002.03146.x] [PMID: 12366839]
[105]
Carmona, G.; Rodriguez, A.; Juarez, D.; Corzo, G.; Villegas, E. Improved protease stability of the antimicrobial peptide Pin2 substituted with D-amino acids. Protein J., 2013, 32(6), 456-466.
[http://dx.doi.org/10.1007/s10930-013-9505-2] [PMID: 23925670]
[106]
Laios, E.; Waddington, M.; Saraiya, A.A.; Baker, K.A.; O’Connor, E.; Pamarathy, D.; Cunningham, P.R. Combinatorial genetic technology for the development of new anti-infectives. Arch. Pathol. Lab. Med., 2004, 128(12), 1351-1359.
[http://dx.doi.org/10.5858/2004-128-1351-CGTFTD] [PMID: 15578878]
[107]
Cabot, G.; López-Causapé, C.; Ocampo-Sosa, A.A.; Sommer, L.M.; Domínguez, M.Á.; Zamorano, L.; Juan, C.; Tubau, F.; Rodríguez, C.; Moyà, B.; Peña, C.; Martínez-Martínez, L.; Plesiat, P.; Oliver, A. Deciphering the resistome of the widespread Pseudomonas aeruginosa sequence type 175 international high-risk clone through whole-genome sequencing. Antimicrob. Agents Chemother., 2016, 60(12), 7415-7423.
[http://dx.doi.org/10.1128/AAC.01720-16] [PMID: 27736752]
[108]
del Barrio-Tofiño, E.; López-Causapé, C.; Cabot, G.; Rivera, A.; Benito, N.; Segura, C.; Montero, M.M.; Sorlí, L.; Tubau, F.; Gómez-Zorrilla, S.; Tormo, N.; Durá-Navarro, R.; Viedma, E.; Resino-Foz, E.; Fernández-Martínez, M.; González-Rico, C.; Alejo-Cancho, I.; Martínez, J.A.; Labayru-Echverria, C.; Dueñas, C.; Ayestarán, I.; Zamorano, L.; Martinez-Martinez, L.; Horcajada, J.P.; Oliver, A. Genomics and susceptibility profiles of extensively drug-resistant Pseudomonas aeruginosa isolates from Spain. Antimicrob. Agents Chemother., 2017, 61(11), e01589-e17.
[http://dx.doi.org/10.1128/AAC.01589-17] [PMID: 28874376]
[109]
Akasaka, T.; Tanaka, M.; Yamaguchi, A.; Sato, K. Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999: Role of target enzyme in mechanism of fluoroquinolone resistance. Antimicrob. Agents Chemother., 2001, 45(8), 2263-2268.
[http://dx.doi.org/10.1128/AAC.45.8.2263-2268.2001] [PMID: 11451683]
[110]
Moyá, B.; Beceiro, A.; Cabot, G.; Juan, C.; Zamorano, L.; Alberti, S.; Oliver, A. Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: Molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob. Agents Chemother., 2012, 56(9), 4771-4778.
[http://dx.doi.org/10.1128/AAC.00680-12] [PMID: 22733064]
[111]
Hall, A.R.; Iles, J.C.; MacLean, R.C. The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase. Genetics, 2011, 187(3), 817-822.
[http://dx.doi.org/10.1534/genetics.110.124628] [PMID: 21220359]
[112]
Carr, J.F.; Gregory, S.T.; Dahlberg, A.E. Severity of the streptomycin resistance and streptomycin dependence phenotypes of ribosomal protein S12 of Thermus thermophilus depends on the identity of highly conserved amino acid residues. J. Bacteriol., 2005, 187(10), 3548-3550.
[http://dx.doi.org/10.1128/JB.187.10.3548-3550.2005] [PMID: 15866943]
[113]
Hosokawa, K.; Park, N.H.; Inaoka, T.; Itoh, Y.; Ochi, K. Streptomycin-resistant (rpsL) or rifampicin-resistant (rpoB) mutation in Pseudomonas putida KH146-2 confers enhanced tolerance to organic chemicals. Environ. Microbiol., 2002, 4(11), 703-712.
[http://dx.doi.org/10.1046/j.1462-2920.2002.00348.x] [PMID: 12460278]
[114]
El’Garch, F.; Jeannot, K.; Hocquet, D.; Llanes-Barakat, C.; Plésiat, P. Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob. Agents Chemother., 2007, 51(3), 1016-1021.
[http://dx.doi.org/10.1128/AAC.00704-06] [PMID: 17194835]
[115]
del Barrio-Tofiño, E.; López-Causapé, C.; Oliver, A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int. J. Antimicrob. Agents, 2020, 56(6), 106196.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106196] [PMID: 33045347]
[116]
López-Causapé, C.; Cabot, G.; del Barrio-Tofiño, E.; Oliver, A. The versatile mutational resistome of Pseudomonas aeruginosa. Front. Microbiol., 2018, 9, 685.
[http://dx.doi.org/10.3389/fmicb.2018.00685] [PMID: 29681898]
[117]
López-Causapé, C.; Sommer, L.M.; Cabot, G.; Rubio, R.; Ocampo-Sosa, A.A.; Johansen, H.K.; Figuerola, J.; Cantón, R.; Kidd, T.J.; Molin, S.; Oliver, A. Evolution of the Pseudomonas aeruginosa mutational resistome in an international cystic fibrosis clone. Sci. Rep., 2017, 7(1), 5555.
[http://dx.doi.org/10.1038/s41598-017-05621-5] [PMID: 28717172]
[118]
Baker, N.R.; Minor, V.; Deal, C.; Shahrabadi, M.S.; Simpson, D.A.; Woods, D.E. Pseudomonas aeruginosa exoenzyme S is an adhesion. Infect. Immun., 1991, 59(9), 2859-2863.
[http://dx.doi.org/10.1128/iai.59.9.2859-2863.1991] [PMID: 1679039]
[119]
Ganesan, A.K.; Frank, D.W.; Misra, R.P.; Schmidt, G.; Barbieri, J.T. Pseudomonas aeruginosa exoenzyme S ADP-ribosylates Ras at multiple sites. J. Biol. Chem., 1998, 273(13), 7332-7337.
[http://dx.doi.org/10.1074/jbc.273.13.7332] [PMID: 9516428]
[120]
Soberón-Chávez, G.; Lépine, F.; Déziel, E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 2005, 68(6), 718-725.
[http://dx.doi.org/10.1007/s00253-005-0150-3] [PMID: 16160828]
[121]
Sorensen, R.U.; Klinger, J.D.; Cash, H.A.; Chase, P.A.; Dearborn, D.G. in vitro inhibition of lymphocyte proliferation by Pseudomonas aeruginosa phenazine pigments. Infect. Immun., 1983, 41(1), 321-330.
[http://dx.doi.org/10.1128/iai.41.1.321-330.1983] [PMID: 6408002]
[122]
Doi, Y.; Arakawa, Y. 16S ribosomal RNA methylation: Emerging resistance mechanism against aminoglycosides. Clin. Infect. Dis., 2007, 45(1), 88-94.
[http://dx.doi.org/10.1086/518605] [PMID: 17554708]
[123]
Jin, J.S.; Kwon, K.T.; Moon, D.C.; Lee, J.C. Emergence of 16S rRNA methylase rmtA in colistin-only-sensitive Pseudomonas aeruginosa in South Korea. Int. J. Antimicrob. Agents, 2009, 33(5), 490-491.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.024] [PMID: 19147332]
[124]
Zhou, Y.; Yu, H.; Guo, Q.; Xu, X.; Ye, X.; Wu, S.; Guo, Y.; Wang, M. Distribution of 16S rRNA methylases among different species of Gram-negative bacilli with high-level resistance to aminoglycosides. Eur. J. Clin. Microbiol. Infect. Dis., 2010, 29(11), 1349-1353.
[http://dx.doi.org/10.1007/s10096-010-1004-1] [PMID: 20614151]
[125]
Lazzaro, B.P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science, 2020, 368(6490), eaau5480.
[http://dx.doi.org/10.1126/science.aau5480] [PMID: 32355003]
[126]
Bahar, A.; Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel), 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[127]
Wang, Y.; Ouyang, J.; Luo, X.; Zhang, M.; Jiang, Y.; Zhang, F.; Zhou, J.; Wang, Y. Identification and characterization of novel bi-functional cathelicidins from the black-spotted frog (Pelophylax nigromaculata) with both anti-infective and antioxidant activities. Dev. Comp. Immunol., 2021, 116, 103928.
[http://dx.doi.org/10.1016/j.dci.2020.103928] [PMID: 33242568]
[128]
Creane, S.E.; Carlile, S.R.; Downey, D.; Weldon, S.; Dalton, J.P.; Taggart, C.C. The impact of lung proteases on snake-derived antimicrobial peptides. Biomolecules, 2021, 11(8), 1106.
[http://dx.doi.org/10.3390/biom11081106] [PMID: 34439773]
[129]
Aghamiri, S.; Zandsalimi, F.; Raee, P.; Abdollahifar, M.A.; Tan, S.C.; Low, T.Y.; Najafi, S.; Ashrafizadeh, M.; Zarrabi, A.; Ghanbarian, H.; Bandehpour, M. Antimicrobial peptides as potential therapeutics for breast cancer. Pharmacol. Res., 2021, 171, 105777.
[http://dx.doi.org/10.1016/j.phrs.2021.105777] [PMID: 34298112]
[130]
Hossain, M.A.; Guilhaudis, L.; Sonnevend, A.; Attoub, S.; van Lierop, B.J.; Robinson, A.J.; Wade, J.D.; Conlon, J.M. Synthesis, conformational analysis and biological properties of a dicarba derivative of the antimicrobial peptide, brevinin-1BYa. Eur. Biophys. J., 2011, 40(4), 555-564.
[http://dx.doi.org/10.1007/s00249-011-0679-2] [PMID: 21312033]
[131]
Dong, N.; Ma, Q.; Shan, A.; Lv, Y.; Hu, W.; Gu, Y.; Li, Y. Strand length-dependent antimicrobial activity and membrane-active mechanism of arginine- and valine-rich β-hairpin-like antimicrobial peptides. Antimicrob. Agents Chemother., 2012, 56(6), 2994-3003.
[http://dx.doi.org/10.1128/AAC.06327-11] [PMID: 22391533]
[132]
Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; Cherkasov, A.; Seleem, M.N.; Pinilla, C.; de la Fuente-Nunez, C.; Lazaridis, T.; Dai, T.; Houghten, R.A.; Hancock, R.E.W.; Tegos, G.P. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis., 2020, 20(9), e216-e230.
[http://dx.doi.org/10.1016/S1473-3099(20)30327-3] [PMID: 32653070]
[133]
Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev., 2006, 19(3), 491-511.
[http://dx.doi.org/10.1128/CMR.00056-05] [PMID: 16847082]
[134]
Chen, C.H.; Lu, T.K. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics (Basel), 2020, 9(1), 24.
[http://dx.doi.org/10.3390/antibiotics9010024] [PMID: 31941022]
[135]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[136]
Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res., 2019, 11(7), 3919-3931.
[PMID: 31396309]
[137]
Bechinger, B.; Gorr, S.U. Antimicrobial peptides: Mechanisms of action and resistance. J. Dent. Res., 2017, 96(3), 254-260.
[http://dx.doi.org/10.1177/0022034516679973] [PMID: 27872334]
[138]
Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moosazadeh Moghaddam, M.; Mirnejad, R. Antimicrobial peptides: Features, action, and their resistance mechanisms in bacteria. Microb. Drug Resist., 2018, 24(6), 747-767.
[http://dx.doi.org/10.1089/mdr.2017.0392] [PMID: 29957118]
[139]
Zairi, A.; Tangy, F.; Bouassida, K.; Hani, K. Dermaseptins and magainins: Antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides-a mini review. J. Biomed. Biotechnol., 2009, 2009, 1-8.
[http://dx.doi.org/10.1155/2009/452567] [PMID: 19893636]
[140]
Yi, H.Y.; Chowdhury, M.; Huang, Y.D.; Yu, X.Q. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol., 2014, 98(13), 5807-5822.
[http://dx.doi.org/10.1007/s00253-014-5792-6] [PMID: 24811407]
[141]
Hultmark, D.; Engström, A.; Bennich, H.; Kapur, R.; Boman, H.G. Insect immunity: Isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur. J. Biochem., 1982, 127(1), 207-217.
[http://dx.doi.org/10.1111/j.1432-1033.1982.tb06857.x] [PMID: 7140755]
[142]
Zeng, X.C.; Corzo, G.; Hahin, R. Scorpion venom peptides without disulfide bridges. IUBMB Life, 2005, 57(1), 13-21.
[http://dx.doi.org/10.1080/15216540500058899] [PMID: 16036557]
[143]
Ferreira, L.A.F.; Alves, E.W.; Henriques, O.B. Peptide T, a novel bradykinin potentiator isolated from Tityus serrulatus scorpion venom. Toxicon, 1993, 31(8), 941-947.
[http://dx.doi.org/10.1016/0041-0101(93)90253-F] [PMID: 8212046]
[144]
Corzo, G.; Escoubas, P.; Villegas, E.; Barnham, K.J.; He, W.; Norton, R.S.; Nakajima, T. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion pandinus imperator. Biochem. J., 2001, 359(1), 35-45.
[http://dx.doi.org/10.1042/bj3590035] [PMID: 11563967]
[145]
Wang, J.; Zhong, W.; Lin, D.; Xia, F.; Wu, W.; Zhang, H.; Lv, L.; Liu, S.; He, J. Antimicrobial peptides derived from fusion peptides of influenza a viruses, a promising approach to designing potent antimicrobial agents. Chem. Biol. Drug Des., 2015, 86(4), 487-495.
[http://dx.doi.org/10.1111/cbdd.12511] [PMID: 25581878]
[146]
Yang, R.; Zhang, G.; Zhang, F.; Li, Z.; Huang, C. Membrane permeabilization design of antimicrobial peptides based on chikungunya virus fusion domain scaffold and its antibacterial activity against gram-positive Streptococcus pneumoniae in respiratory infection. Biochimie, 2018, 146, 139-147.
[http://dx.doi.org/10.1016/j.biochi.2017.12.007] [PMID: 29277569]
[147]
Pirtskhalava, M.; Amstrong, A.A.; Grigolava, M.; Chubinidze, M.; Alimbarashvili, E.; Vishnepolsky, B.; Gabrielian, A.; Rosenthal, A.; Hurt, D.E.; Tartakovsky, M. DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res., 2021, 49(D1), D288-D297.
[http://dx.doi.org/10.1093/nar/gkaa991] [PMID: 33151284]
[148]
Shi, G.; Kang, X.; Dong, F.; Liu, Y.; Zhu, N.; Hu, Y.; Xu, H.; Lao, X.; Zheng, H. DRAMP 3.0: An enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res., 2022, 50(D1), D488-D496.
[http://dx.doi.org/10.1093/nar/gkab651] [PMID: 34390348]
[149]
Wang, Z.; Wang, G. APD: The antimicrobial peptide database. Nucleic Acids Res., 2004, 32(90001), 590D-592.
[http://dx.doi.org/10.1093/nar/gkh025] [PMID: 14681488]
[150]
Wang, G.; Li, X.; Wang, Z. APD2: The updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res., 2009, 37(Suppl. 1), D933-D937.
[http://dx.doi.org/10.1093/nar/gkn823] [PMID: 18957441]
[151]
Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[152]
Wang, C.; Shao, C.; Fang, Y.; Wang, J.; Dong, N.; Shan, A. Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides. Acta Biomater., 2021, 124, 254-269.
[http://dx.doi.org/10.1016/j.actbio.2021.01.036] [PMID: 33508505]
[153]
Rezende, S.B.; Oshiro, K.G.N.; Júnior, N.G.O.; Franco, O.L.; Cardoso, M.H. Advances on chemically modified antimicrobial peptides for generating peptide antibiotics. Chem. Commun. (Camb.), 2021, 57(88), 11578-11590.
[http://dx.doi.org/10.1039/D1CC03793E] [PMID: 34652348]
[154]
Yang, Y.; Wang, C.; Gao, N.; Lyu, Y.; Zhang, L.; Zhang, S.; Wang, J.; Shan, A. A novel dual-targeted α-helical peptide with potent antifungal activity against fluconazole-resistant Candida albicans clinical isolates. Front. Microbiol., 2020, 11, 548620.
[http://dx.doi.org/10.3389/fmicb.2020.548620] [PMID: 33101226]
[155]
Zheng, Y.; Niyonsaba, F.; Ushio, H.; Nagaoka, I.; Ikeda, S.; Okumura, K.; Ogawa, H. Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human α-defensins from neutrophils. Br. J. Dermatol., 2007, 157(6), 1124-1131.
[http://dx.doi.org/10.1111/j.1365-2133.2007.08196.x] [PMID: 17916212]
[156]
Alalwani, S.M.; Sierigk, J.; Herr, C.; Pinkenburg, O.; Gallo, R.; Vogelmeier, C.; Bals, R. The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils. Eur. J. Immunol., 2010, 40(4), 1118-1126.
[http://dx.doi.org/10.1002/eji.200939275] [PMID: 20140902]
[157]
Kościuczuk, E.M.; Lisowski, P.; Jarczak, J.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Cathelicidins: Family of antimicrobial peptides. A review. Mol. Biol. Rep., 2012, 39(12), 10957-10970.
[http://dx.doi.org/10.1007/s11033-012-1997-x] [PMID: 23065264]
[158]
Yang, L.; Liu, Y.; Wang, N.; Wang, H.; Wang, K.; Luo, X.; Dai, R.; Tao, R.; Wang, H.; Yang, J.; Tao, G.; Qu, J.; Ge, B.; Li, Y.; Xu, J. Albumin-based LL37 peptide nanoparticles as a sustained release system against Pseudomonas aeruginosa lung infection. ACS Biomater. Sci. Eng., 2021, 7(5), 1817-1826.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01084] [PMID: 33966375]
[159]
Sancho-Vaello, E.; Gil-Carton, D.; François, P.; Bonetti, E.J.; Kreir, M.; Pothula, K.R.; Kleinekathöfer, U.; Zeth, K. The structure of the antimicrobial human cathelicidin LL-37 shows oligomerization and channel formation in the presence of membrane mimics. Sci. Rep., 2020, 10(1), 17356.
[http://dx.doi.org/10.1038/s41598-020-74401-5] [PMID: 33060695]
[160]
Choi, H.; Yang, Z.; Weisshaar, J.C. Oxidative stress induced in E. coli by the human antimicrobial peptide LL-37. PLoS Pathog., 2017, 13(6), e1006481.
[http://dx.doi.org/10.1371/journal.ppat.1006481] [PMID: 28665988]
[161]
Wnorowska, U.; Niemirowicz, K.; Myint, M.; Diamond, S.L.; Wróblewska, M.; Savage, P.B.; Janmey, P.A.; Bucki, R. Bactericidal activities of cathelicidin LL-37 and select cationic lipids against the hypervirulent Pseudomonas aeruginosa strain LESB58. Antimicrob. Agents Chemother., 2015, 59(7), 3808-3815.
[http://dx.doi.org/10.1128/AAC.00421-15] [PMID: 25870055]
[162]
Yu, G.; Baeder, D.Y.; Regoes, R.R.; Rolff, J. Combination effects of antimicrobial peptides. Antimicrob. Agents Chemother., 2016, 60(3), 1717-1724.
[http://dx.doi.org/10.1128/AAC.02434-15] [PMID: 26729502]
[163]
Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; Falabella, P. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front. Cell. Infect. Microbiol., 2021, 11, 668632.
[http://dx.doi.org/10.3389/fcimb.2021.668632] [PMID: 34195099]
[164]
Aoki, W.; Ueda, M. Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals (Basel), 2013, 6(8), 1055-1081.
[http://dx.doi.org/10.3390/ph6081055] [PMID: 24276381]
[165]
Gordon, Y.J.; Romanowski, E.G.; McDermott, A.M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res., 2005, 30(7), 505-515.
[http://dx.doi.org/10.1080/02713680590968637] [PMID: 16020284]
[166]
Park, P.W.; Pier, G.B.; Hinkes, M.T.; Bernfield, M. Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature, 2001, 411(6833), 98-102.
[http://dx.doi.org/10.1038/35075100] [PMID: 11333985]
[167]
Moskowitz, S.M.; Ernst, R.K.; Miller, S.I. PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J. Bacteriol., 2004, 186(2), 575-579.
[http://dx.doi.org/10.1128/JB.186.2.575-579.2004] [PMID: 14702327]
[168]
Taggart, C.C.; Greene, C.M.; Smith, S.G.; Levine, R.L.; McCray, P.B., Jr; O’Neill, S.; McElvaney, N.G. Inactivation of human beta-defensins 2 and 3 by elastolytic cathepsins. J. Immunol., 2003, 171(2), 931-937.
[http://dx.doi.org/10.4049/jimmunol.171.2.931] [PMID: 12847264]
[169]
Macfarlane, E.L.A.; Kwasnicka, A.; Hancock, R.E.W. Role of Pseudomonas aeruginosa PhoP-PhoQ in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology (Reading), 2000, 146(10), 2543-2554.
[http://dx.doi.org/10.1099/00221287-146-10-2543] [PMID: 11021929]
[170]
McPhee, J.B.; Lewenza, S.; Hancock, R.E.W. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol., 2003, 50(1), 205-217.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03673.x] [PMID: 14507375]
[171]
Nizet, V. Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr. Issues Mol. Biol., 2006, 8(1), 11-26.
[PMID: 16450883]
[172]
Chen, Y.; Vasil, A.I.; Rehaume, L.; Mant, C.T.; Burns, J.L.; Vasil, M.L.; Hancock, R.E.W.; Hodges, R.S. Comparison of biophysical and biologic properties of alpha-helical enantiomeric antimicrobial peptides. Chem. Biol. Drug Des., 2006, 67(2), 162-173.
[http://dx.doi.org/10.1111/j.1747-0285.2006.00349.x] [PMID: 16492164]
[173]
Conlon, J.M.; Al-Ghaferi, N.; Abraham, B.; Leprince, J. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods, 2007, 42(4), 349-357.
[http://dx.doi.org/10.1016/j.ymeth.2007.01.004] [PMID: 17560323]
[174]
Nan, Y.H.; Bang, J.K.; Shin, S.Y. Design of novel indolicidin-derived antimicrobial peptides with enhanced cell specificity and potent anti-inflammatory activity. Peptides, 2009, 30(5), 832-838.
[http://dx.doi.org/10.1016/j.peptides.2009.01.015] [PMID: 19428758]
[175]
Wang, G. Post-translational modifications of natural antimicrobial peptides and strategies for peptide engineering. Curr. Biotechnol., 2012, 1(1), 72-79.
[http://dx.doi.org/10.2174/2211550111201010072] [PMID: 24511461]
[176]
Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol., 2020, 11, 582779.
[http://dx.doi.org/10.3389/fmicb.2020.582779] [PMID: 33178164]
[177]
Li, W.; Separovic, F.; O’Brien-Simpson, N.M.; Wade, J.D. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem. Soc. Rev., 2021, 50(8), 4932-4973.
[http://dx.doi.org/10.1039/D0CS01026J] [PMID: 33710195]
[178]
Bi, X.; Wang, C.; Ma, L.; Sun, Y.; Shang, D. Investigation of the role of tryptophan residues in cationic antimicrobial peptides to determine the mechanism of antimicrobial action. J. Appl. Microbiol., 2013, 115(3), 663-672.
[http://dx.doi.org/10.1111/jam.12262] [PMID: 23710779]
[179]
Di Grazia, A.; Cappiello, F.; Cohen, H.; Casciaro, B.; Luca, V.; Pini, A.; Di, Y.P.; Shai, Y.; Mangoni, M.L. d-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions. Amino Acids, 2015, 47(12), 2505-2519.
[http://dx.doi.org/10.1007/s00726-015-2041-y] [PMID: 26162435]
[180]
de la Fuente-Núñez, C.; Reffuveille, F.; Mansour, S.C.; Reckseidler-Zenteno, S.L.; Hernández, D.; Brackman, G.; Coenye, T.; Hancock, R.E.W. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem. Biol., 2015, 22(2), 196-205.
[http://dx.doi.org/10.1016/j.chembiol.2015.01.002] [PMID: 25699603]
[181]
Das, H.; Swamy, N.; Sahoo, G.; Ahmed, S.U.; More, T. Beta-defensin antibiotic peptides in the innate immunity of the buffalo: In vivo and in vitro studies. Altern. Lab. Anim., 2008, 36(4), 429-440.
[http://dx.doi.org/10.1177/026119290803600404] [PMID: 18826332]
[182]
Witherell, K.S.; Price, J.; Bandaranayake, A.D.; Olson, J.; Call, D.R. in vitro activity of antimicrobial peptide CDP-B11 alone and in combination with colistin against colistin-resistant and multidrug-resistant Escherichia coli. Sci. Rep., 2021, 11(1), 2151.
[http://dx.doi.org/10.1038/s41598-021-81140-8] [PMID: 33495505]
[183]
Mwangi, J.; Yin, Y.; Wang, G.; Yang, M.; Li, Y.; Zhang, Z.; Lai, R. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc. Natl. Acad. Sci. USA, 2019, 116(52), 26516-26522.
[http://dx.doi.org/10.1073/pnas.1909585117] [PMID: 31843919]
[184]
Jiang, Z.; Vasil, A.I.; Gera, L.; Vasil, M.L.; Hodges, R.S. Rational design of α-helical antimicrobial peptides to target Gram-negative pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: Utilization of charge, ‘specificity determinants,’ total hydrophobicity, hydrophobe type and location as design parameters to improve the therapeutic ratio. Chem. Biol. Drug Des., 2011, 77(4), 225-240.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01086.x] [PMID: 21219588]
[185]
Kim, H.; Jang, J.H.; Kim, S.C.; Cho, J.H. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. J. Antimicrob. Chemother., 2014, 69(1), 121-132.
[http://dx.doi.org/10.1093/jac/dkt322] [PMID: 23946320]
[186]
Kim, H.; Jang, J.H.; Kim, S.C.; Cho, J.H. Development of a novel hybrid antimicrobial peptide for targeted killing of Pseudomonas aeruginosa. Eur. J. Med. Chem., 2020, 185, 111814.
[http://dx.doi.org/10.1016/j.ejmech.2019.111814] [PMID: 31678742]
[187]
Klubthawee, N.; Adisakwattana, P.; Hanpithakpong, W.; Somsri, S.; Aunpad, R. A novel, rationally designed, hybrid antimicrobial peptide, inspired by cathelicidin and aurein, exhibits membrane-active mechanisms against Pseudomonas aeruginosa. Sci. Rep., 2020, 10(1), 9117.
[http://dx.doi.org/10.1038/s41598-020-65688-5] [PMID: 32499514]
[188]
Wu, X.; Wang, Z.; Li, X.; Fan, Y.; He, G.; Wan, Y.; Yu, C.; Tang, J.; Li, M.; Zhang, X.; Zhang, H.; Xiang, R.; Pan, Y.; Liu, Y.; Lu, L.; Yang, L. in vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method. Antimicrob. Agents Chemother., 2014, 58(9), 5342-5349.
[http://dx.doi.org/10.1128/AAC.02823-14] [PMID: 24982064]
[189]
Yin, Q.; Wu, S.; Wu, L.; Wang, Z.; Mu, Y.; Zhang, R.; Dong, C.; Zhou, B.; Zhao, B.; Zheng, J.; Sun, Y.; Cheng, X.; Yang, L. A novel in silico antimicrobial peptide DP7 combats MDR Pseudomonas aeruginosa and related biofilm infections. J. Antimicrob. Chemother., 2020, 75(11), 3248-3259.
[http://dx.doi.org/10.1093/jac/dkaa308] [PMID: 32737484]
[190]
Sansonetti, P.J. War and peace at mucosal surfaces. Nat. Rev. Immunol., 2004, 4(12), 953-964.
[http://dx.doi.org/10.1038/nri1499] [PMID: 15573130]
[191]
Chen, Y.; Mant, C.T.; Farmer, S.W.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J. Biol. Chem., 2005, 280(13), 12316-12329.
[http://dx.doi.org/10.1074/jbc.M413406200] [PMID: 15677462]
[192]
Agrawal, P.; Raghava, G.P.S. Prediction of antimicrobial potential of a chemically modified peptide from its tertiary structure. Front. Microbiol., 2018, 9, 2551.
[http://dx.doi.org/10.3389/fmicb.2018.02551] [PMID: 30416494]
[193]
Wang, J.; Song, J.; Yang, Z.; He, S.; Yang, Y.; Feng, X.; Dou, X.; Shan, A. Antimicrobial peptides with high proteolytic resistance for combating gram-negative bacteria. J. Med. Chem., 2019, 62(5), 2286-2304.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01348] [PMID: 30742437]
[194]
Lu, J.; Xu, H.; Xia, J.; Ma, J.; Xu, J.; Li, Y.; Feng, J. D- and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics. Front. Microbiol., 2020, 11, 563030.
[http://dx.doi.org/10.3389/fmicb.2020.563030] [PMID: 33281761]
[195]
Lomize, A.L.; Hage, J.M.; Pogozheva, I.D. Membranome 2.0: Database for proteome-wide profiling of bitopic proteins and their dimers. Bioinformatics, 2018, 34(6), 1061-1062.
[http://dx.doi.org/10.1093/bioinformatics/btx720] [PMID: 29126305]
[196]
Lomize, A.L.; Lomize, M.A.; Krolicki, S.R.; Pogozheva, I.D. Membranome: A database for proteome-wide analysis of single-pass membrane proteins. Nucleic Acids Res., 2017, 45(D1), D250-D255.
[http://dx.doi.org/10.1093/nar/gkw712] [PMID: 27510400]
[197]
Chaudhary, K.; Kumar, R.; Singh, S.; Tuknait, A.; Gautam, A.; Mathur, D.; Anand, P.; Varshney, G.C.; Raghava, G.P.S. A web server and mobile app for computing hemolytic potency of peptides. Sci. Rep., 2016, 6(1), 22843.
[http://dx.doi.org/10.1038/srep22843] [PMID: 26953092]
[198]
Veltri, D.; Kamath, U.; Shehu, A. Deep learning improves antimicrobial peptide recognition. Bioinformatics, 2018, 34(16), 2740-2747.
[http://dx.doi.org/10.1093/bioinformatics/bty179] [PMID: 29590297]
[199]
Nomura, K.; Corzo, G.; Nakajima, T.; Iwashita, T. Orientation and pore-forming mechanism of a scorpion pore-forming peptide bound to magnetically oriented lipid bilayers. Biophys. J., 2004, 87(4), 2497-2507.
[http://dx.doi.org/10.1529/biophysj.104.043513] [PMID: 15298871]
[200]
Bertrand, B.; Munusamy, S.; Espinosa-Romero, J.F.; Corzo, G.; Arenas Sosa, I.; Galván-Hernández, A.; Ortega-Blake, I.; Hernández-Adame, P.L.; Ruiz-García, J.; Velasco-Bolom, J.L.; Garduño-Juárez, R.; Munoz-Garay, C. Biophysical characterization of the insertion of two potent antimicrobial peptides-Pin2 and its variant Pin2[GVG] in biological model membranes. Biochim. Biophys. Acta Biomembr., 2020, 1862(2), 183105.
[http://dx.doi.org/10.1016/j.bbamem.2019.183105] [PMID: 31682816]
[201]
Horne, J.E.; Brockwell, D.J.; Radford, S.E. Role of the lipid bilayer in outer membrane protein folding in gram-negative bacteria. J. Biol. Chem., 2020, 295(30), 10340-10367.
[http://dx.doi.org/10.1074/jbc.REV120.011473] [PMID: 32499369]
[202]
Sun, Y.T.; Huang, P.Y.; Lin, C.H.; Lee, K.R.; Lee, M.T. Studying antibiotic–membrane interactions via X‐ray diffraction and fluorescence microscopy. FEBS Open Bio, 2015, 5(1), 515-521.
[http://dx.doi.org/10.1016/j.fob.2015.06.006] [PMID: 26155459]
[203]
Luchini, A.; Vitiello, G. Mimicking the mammalian plasma membrane: An overview of lipid membrane models for biophysical studies. Biomimetics (Basel), 2020, 6(1), 3.
[http://dx.doi.org/10.3390/biomimetics6010003] [PMID: 33396534]
[204]
Dempsey, C.E. The actions of melittin on membranes. Biochim. Biophys. Acta Rev. Biomembr., 1990, 1031(2), 143-161.
[http://dx.doi.org/10.1016/0304-4157(90)90006-X] [PMID: 2187536]
[205]
Strandberg, E.; Zerweck, J.; Horn, D.; Pritz, G.; Berditsch, M.; Bürck, J.; Wadhwani, P.; Ulrich, A.S. Influence of hydrophobic residues on the activity of the antimicrobial peptide magainin 2 and its synergy with PGLa. J. Pept. Sci., 2015, 21(5), 436-445.
[http://dx.doi.org/10.1002/psc.2780] [PMID: 25898805]
[206]
Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res., 2016, 44(W1), W449-W454.
[http://dx.doi.org/10.1093/nar/gkw329] [PMID: 27131374]
[207]
Shen, Y.; Maupetit, J.; Derreumaux, P.; Tufféry, P. Improved PEP-fold approach for peptide and miniprotein structure prediction. J. Chem. Theory Comput., 2014, 10(10), 4745-4758.
[http://dx.doi.org/10.1021/ct500592m] [PMID: 26588162]
[208]
Thevenet, P. PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res., 2012, 40, W288-W293.
[http://dx.doi.org/10.1093/nar/gks419]
[209]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[210]
Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; MacKerell, A.D., Jr CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods, 2017, 14(1), 71-73.
[http://dx.doi.org/10.1038/nmeth.4067] [PMID: 27819658]
[211]
Gazit, E.; Miller, I.R.; Biggin, P.C.; Sansom, M.S.P.; Shai, Y. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J. Mol. Biol., 1996, 258(5), 860-870.
[http://dx.doi.org/10.1006/jmbi.1996.0293] [PMID: 8637016]
[212]
Oren, Z.; Shai, Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers, 1998, 47(6), 451-463.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1998)47:6<451:AID-BIP4>3.0.CO;2-F] [PMID: 10333737]
[213]
Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta Biomembr., 1999, 1462(1-2), 55-70.
[http://dx.doi.org/10.1016/S0005-2736(99)00200-X] [PMID: 10590302]
[214]
Hollmann, A.; Martinez, M.; Maturana, P.; Semorile, L.C.; Maffia, P.C. Antimicrobial peptides: Interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem., 2018, 6, 204.
[http://dx.doi.org/10.3389/fchem.2018.00204] [PMID: 29922648]
[215]
Timmons, P.B.; Hewage, C.M. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks. Sci. Rep., 2020, 10(1), 10869.
[http://dx.doi.org/10.1038/s41598-020-67701-3] [PMID: 32616760]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy