Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Systematic Review Article

Neuroprotective Properties of Ferulic Acid in Preclinical Models of Alzheimer’s Disease: A Systematic Literature Review

Author(s): Siyu Zhou and Xiaoyu Dong*

Volume 30, Issue 24, 2023

Published on: 27 October, 2022

Page: [2796 - 2811] Pages: 16

DOI: 10.2174/0929867329666220906110506

Price: $65

Abstract

Background: Alzheimer's disease (AD) is one of the most common diseases in the elderly, with a high incidence of dementia. The pathogenesis of AD is complex, and there is no unified conclusion and effective treatment in the clinic. In recent years, with the development of traditional Chinese medicine (TCM), researchers put forward the idea of prevention and treatment of AD based on TCM according to the characteristics of multi- target of TCM. Ferulic acid (FA), also known as 3-methoxy-4-hydroxycinnamic acid, is an active ingredient in TCM that inhibits β-amyloid (Aβ) aggregation and has antioxidant and anti-inflammatory effects. FA derivatives have been reported to have low toxicity, high biological activity, and high blood-brain barrier permeability. However, the multitarget of FA in the treatment of AD has not been systematically elucidated.

Objectives: In this systematic review, we aimed to comprehensively assess the neuroprotective effects of FA and its derivatives on in vitro and in vivo AD models.

Methods: We searched PubMed, Chinese National Knowledge Infrastructure (CNKI), Baidu Academic, and Wanfang databases for relevant pre-clinical studies until November 2021.

Results: We identified studies that evaluated the efficacy of FA and its derivatives using relevant keywords. 864 studies were included, of which 129 were found in PubMed, 111 in CNKI, 454 in Baidu Academic, and 170 in Wanfang. Due to duplication between databases, and after applying the exclusion and inclusion criteria, 43 articles were selected. Thereafter, the abstracts of the 43 articles were reviewed. Finally, 21 articles were included in this review, including 11 in vivo, 5 in vitro, and 5 in vivo and in vitro studies.

Conclusion: Previous studies have shown that FA or its derivatives have multiple therapeutic effects on AD models and can improve the symptoms of AD and resistance of AD cell models. FA and its derivatives have anti-Aβ aggregation, antioxidant, antiinflammatory, and other effects and are potential drugs for the multi-targeted treatment of AD. The result of our study showed that FA and its derivatives have significant therapeutic effects on animal and cell models of AD, suggesting that they may be potential therapeutic drugs for patients with AD.

Keywords: Ferulic acid, Ferulic acid derivatives, Alzheimer’s disease, Neuroprotection, Systematic review

« Previous
[1]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[2]
Wolinsky, D.; Drake, K.; Bostwick, J. Diagnosis and management of neuropsychiatric symptoms in Alzheimer’s Disease. Curr. Psychiatry Rep., 2018, 20(12), 117.
[http://dx.doi.org/10.1007/s11920-018-0978-8] [PMID: 30367272]
[3]
Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol., 1991, 82(4), 239-259.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[4]
Rahman, M.S.; Uddin, M.S.; Rahman, M.A.; Samsuzzaman, M.; Behl, T.; Hafeez, A.; Perveen, A.; Barreto, G.E.; Ashraf, G.M. Exploring the role of monoamine oxidase activity in aging and Alzheimer’s disease. Curr. Pharm. Des., 2021, 27(38), 4017-4029.
[http://dx.doi.org/10.2174/1381612827666210612051713] [PMID: 34126892]
[5]
Gallardo, G.; Holtzman, D.M. Amyloid-β and Tau at the crossroads of Alzheimer’s disease. Adv. Exp. Med. Biol., 2019, 1184, 187-203.
[http://dx.doi.org/10.1007/978-981-32-9358-8_16] [PMID: 32096039]
[6]
Hung, S.Y.; Fu, W.M. Drug candidates in clinical trials for Alzheimer’s disease. J. Biomed. Sci., 2017, 24(1), 47.
[http://dx.doi.org/10.1186/s12929-017-0355-7] [PMID: 28720101]
[7]
Liu, G.J.; Tao, T.; Wang, H.; Zhou, Y.; Gao, X.; Gao, Y.Y.; Hang, C.H.; Li, W. Functions of resolvin D1-ALX/FPR2 receptor interaction in the hemoglobin-induced microglial inflammatory response and neuronal injury. J. Neuroinflammation, 2020, 17(1), 239.
[http://dx.doi.org/10.1186/s12974-020-01918-x] [PMID: 32795323]
[8]
Kim, Y.; Kim, J.; He, M.; Lee, A.; Cho, E. Apigenin ameliorates scopolamine-induced cognitive dysfunction and neuronal damage in mice. Molecules, 2021, 26(17), 5192.
[http://dx.doi.org/10.3390/molecules26175192] [PMID: 34500626]
[9]
Tan, C.C.; Yu, J.T.; Wang, H.F.; Tan, M.S.; Meng, X.F.; Wang, C.; Jiang, T.; Zhu, X.C.; Tan, L. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis., 2014, 41(2), 615-631.
[http://dx.doi.org/10.3233/JAD-132690] [PMID: 24662102]
[10]
Arndt, J.W.; Qian, F.; Smith, B.A.; Quan, C.; Kilambi, K.P.; Bush, M.W.; Walz, T.; Pepinsky, R.B.; Bussière, T.; Hamann, S.; Cameron, T.O.; Weinreb, P.H. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci. Rep., 2018, 8(1), 6412.
[http://dx.doi.org/10.1038/s41598-018-24501-0] [PMID: 29686315]
[11]
Schneider, L. A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol., 2020, 19(2), 111-112.
[http://dx.doi.org/10.1016/S1474-4422(19)30480-6] [PMID: 31978357]
[12]
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet, 2006, 368(9533), 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[13]
Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.C. Natural compounds for Alzheimer’s disease therapy: A systematic review of preclinical and clinical studies. Int. J. Mol. Sci., 2019, 20(9), 2313.
[http://dx.doi.org/10.3390/ijms20092313] [PMID: 31083327]
[14]
Srinivasan, M.; Rukkumani, R.; Ram Sudheer, A.; Menon, V.P. Ferulic acid, a natural protector against carbon tetrachloride-induced toxicity. Fundam. Clin. Pharmacol., 2005, 19(4), 491-496.
[http://dx.doi.org/10.1111/j.1472-8206.2005.00332.x] [PMID: 16011737]
[15]
Mancuso, C.; Santangelo, R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem. Toxicol., 2014, 65, 185-195.
[http://dx.doi.org/10.1016/j.fct.2013.12.024] [PMID: 24373826]
[16]
Li, D.; Rui, Y.; Guo, S.; Luan, F.; Liu, R.; Zeng, N. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci., 2021, 284, 119921.
[http://dx.doi.org/10.1016/j.lfs.2021.119921] [PMID: 34481866]
[17]
Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol., 2014, 14(1), 43.
[http://dx.doi.org/10.1186/1471-2288-14-43] [PMID: 24667063]
[18]
Kwak, C.; Han, W. Towards size of scene in auditory scene analysis: A systematic review. J. Audiol. Otol., 2020, 24(1), 1-9.
[http://dx.doi.org/10.7874/jao.2019.00248] [PMID: 31747743]
[19]
Wang, N.Y.; Li, J.N.; Liu, W.L.; Huang, Q.; Li, W.X.; Tan, Y.H.; Liu, F.; Song, Z.H.; Wang, M.Y.; Xie, N.; Mao, R.R.; Gan, P.; Ding, Y.Q.; Zhang, Z.; Shan, B.C.; Chen, L.D.; Zhou, Q.X.; Xu, L. Ferulic acid ameliorates Alzheimer’s Disease-like pathology and repairs cognitive decline by preventing capillary hypofunction in APP/PS1 Mice. Neurotherapeutics, 2021, 18(2), 1064-1080.
[http://dx.doi.org/10.1007/s13311-021-01024-7] [PMID: 33786807]
[20]
Tsai, F.S.; Wu, L.Y.; Yang, S.E.; Cheng, H.Y.; Tsai, C.C.; Wu, C.R.; Lin, L.W. Ferulic acid reverses the cognitive dysfunction caused by amyloid β peptide 1-40 through anti-oxidant activity and cholinergic activation in rats. Am. J. Chin. Med., 2015, 43(2), 319-335.
[http://dx.doi.org/10.1142/S0192415X15500214] [PMID: 25807957]
[21]
Mamiya, T.; Kise, M.; Morikawa, K. Ferulic acid attenuated cognitive deficits and increase in carbonyl proteins induced by buthionine-sulfoximine in mice. Neurosci. Lett., 2008, 430(2), 115-118.
[http://dx.doi.org/10.1016/j.neulet.2007.10.029] [PMID: 18061347]
[22]
Cho, J.Y.; Kim, H.S.; Kim, D.H.; Yan, J.J.; Suh, H.W.; Song, D.K. Inhibitory effects of long-term administration of ferulic acid on astrocyte activation induced by intracerebroventricular injection of β-amyloid peptide (1–42) in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, 29(6), 901-907.
[http://dx.doi.org/10.1016/j.pnpbp.2005.04.022] [PMID: 15970368]
[23]
Wang, N.; Zhou, Y.; Zhao, L.; Wang, C.; Ma, W.; Ge, G.; Wang, Y.; Ullah, I.; Muhammad, F.; Alwayli, D.; Zhi, D.; Li, H. Ferulic acid delayed amyloid β-induced pathological symptoms by autophagy pathway via a fasting-like effect in Caenorhabditis elegans. Food Chem. Toxicol., 2020, 146, 111808.
[http://dx.doi.org/10.1016/j.fct.2020.111808] [PMID: 33045309]
[24]
Yan, J.J.; Jung, J.S.; Kim, T.K.; Hasan, M.A.; Hong, C.W.; Nam, J.S.; Song, D.K. Protective effects of ferulic acid in amyloid precursor protein plus presenilin-1 transgenic mouse model of Alzheimer disease. Biol. Pharm. Bull., 2013, 36(1), 140-143.
[http://dx.doi.org/10.1248/bpb.b12-00798] [PMID: 23075678]
[25]
Yan, J.J.; Cho, J.Y.; Kim, H.S.; Kim, K.L.; Jung, J.S.; Huh, S.O.; Suh, H.W.; Kim, Y.H.; Song, D.K. Protection against β-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br. J. Pharmacol., 2001, 133(1), 89-96.
[http://dx.doi.org/10.1038/sj.bjp.0704047] [PMID: 11325798]
[26]
Wenk, G.L.; McGann-Gramling, K.; Hauss-Wegrzyniak, B.; Ronchetti, D.; Maucci, R.; Rosi, S.; Gasparini, L.; Ongini, E. Attenuation of chronic neuroinflammation by a nitric oxide-releasing derivative of the antioxidant ferulic acid. J. Neurochem., 2004, 89(2), 484-493.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02359.x] [PMID: 15056291]
[27]
Jung, J.S.; Yan, J.J.; Li, H.M.; Sultan, M.T.; Yu, J.; Lee, H.S.; Shin, K.J.; Song, D.K. Protective effects of a dimeric derivative of ferulic acid in animal models of Alzheimer’s disease. Eur. J. Pharmacol., 2016, 782, 30-34.
[http://dx.doi.org/10.1016/j.ejphar.2016.04.047] [PMID: 27118174]
[28]
Singh, Y.P.; Tej, G.N.V.C.; Pandey, A.; Priya, K.; Pandey, P.; Shankar, G.; Nayak, P.K.; Rai, G.; Chittiboyina, A.G.; Doerksen, R.J.; Vishwakarma, S.; Modi, G. Design, synthesis and biological evaluation of novel naturally-inspired multifunctional molecules for the management of Alzheimer’s disease. Eur. J. Med. Chem., 2020, 198, 112257.
[http://dx.doi.org/10.1016/j.ejmech.2020.112257] [PMID: 32375073]
[29]
Wu, Y.; Shi, Y.; Zheng, X.; Dang, Y.; Zhu, C.; Zhang, R.; Fu, Y.; Zhou, T.; Li, J. Lipophilic ferulic acid derivatives protect PC12 cells against oxidative damage via modulating β-amyloid aggregation and activating Nrf2 enzymes. Food Funct., 2020, 11(5), 4707-4718.
[http://dx.doi.org/10.1039/D0FO00800A] [PMID: 32409814]
[30]
Cui, L.; Zhang, Y.; Cao, H.; Wang, Y.; Teng, T.; Ma, G.; Li, Y.; Li, K.; Zhang, Y. Ferulic acid inhibits the transition of amyloid-β42 monomers to oligomers but accelerates the transition from oligomers to fibrils. J. Alzheimers Dis., 2013, 37(1), 19-28.
[http://dx.doi.org/10.3233/JAD-130164] [PMID: 23727899]
[31]
Meng, G.; Meng, X.; Ma, X.; Zhang, G.; Hu, X.; Jin, A.; Zhao, Y.; Liu, X. Application of ferulic acid for Alzheimer’s disease: Combination of text mining and experimental validation. Front. Neuroinform., 2018, 12, 31.
[http://dx.doi.org/10.3389/fninf.2018.00031] [PMID: 29896095]
[32]
Kikugawa, M.; Ida, T.; Ihara, H.; Sakamoto, T. Ferulic acid and its water-soluble derivatives inhibit nitric oxide production and inducible nitric oxide synthase expression in rat primary astrocytes. Biosci. Biotechnol. Biochem., 2017, 81(8), 1607-1611.
[http://dx.doi.org/10.1080/09168451.2017.1336925] [PMID: 28608752]
[33]
Lan, J.S.; Zeng, R.F.; Jiang, X.Y.; Hou, J.; Liu, Y.; Hu, Z.H.; Li, H.X.; Li, Y.; Xie, S.S.; Ding, Y.; Zhang, T. Design, synthesis and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Bioorg. Chem., 2020, 94, 103413.
[http://dx.doi.org/10.1016/j.bioorg.2019.103413] [PMID: 31791679]
[34]
Kikugawa, M.; Tsutsuki, H.; Ida, T.; Nakajima, H.; Ihara, H.; Sakamoto, T. Water-soluble ferulic acid derivatives improve amyloid-β-induced neuronal cell death and dysmnesia through inhibition of amyloid-β aggregation. Biosci. Biotechnol. Biochem., 2016, 80(3), 547-553.
[http://dx.doi.org/10.1080/09168451.2015.1107463] [PMID: 26540606]
[35]
Sang, Z.; Pan, W.; Wang, K.; Ma, Q.; Yu, L.; Yang, Y.; Bai, P.; Leng, C.; Xu, Q.; Li, X.; Tan, Z.; Liu, W. Design, synthesis and evaluation of novel ferulic acid-O-alkylamine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 130, 379-392.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.039] [PMID: 28279845]
[36]
Tripathi, A.; Choubey, P.K.; Sharma, P.; Seth, A.; Saraf, P.; Shrivastava, S.K. Design, synthesis, and biological evaluation of ferulic acid based 1,3,4-oxadiazole hybrids as multifunctional therapeutics for the treatment of Alzheimer’s disease. Bioorg. Chem., 2020, 95, 103506.
[http://dx.doi.org/10.1016/j.bioorg.2019.103506] [PMID: 31887472]
[37]
Sang, Z.; Wang, K.; Han, X.; Cao, M.; Tan, Z.; Liu, W. Design, synthesis, and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(2), 1008-1024.
[http://dx.doi.org/10.1021/acschemneuro.8b00530] [PMID: 30537804]
[38]
Mori, T.; Koyama, N.; Guillot-Sestier, M.V.; Tan, J.; Town, T. Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and Alzheimer-like pathology in transgenic mice. PLoS One, 2013, 8(2), e55774.
[http://dx.doi.org/10.1371/journal.pone.0055774] [PMID: 23409038]
[39]
Malikowska-Racia, N.; Podkowa, A.; Sałat, K. Phencyclidine and scopolamine for modeling amnesia in rodents: Direct comparison with the use of barnes maze test and contextual fear conditioning test in mice. Neurotox. Res., 2018, 34(3), 431-441.
[http://dx.doi.org/10.1007/s12640-018-9901-7] [PMID: 29680979]
[40]
Lana, D.; Cerbai, F.; Di Russo, J.; Boscaro, F.; Giannetti, A.; Petkova-Kirova, P.; Pugliese, A.M.; Giovannini, M.G. Hippocampal long term memory: Effect of the cholinergic system on local protein synthesis. Neurobiol. Learn. Mem., 2013, 106, 246-257.
[http://dx.doi.org/10.1016/j.nlm.2013.09.013] [PMID: 24076274]
[41]
Cha, Y.; Lee, S.H.; Jang, S.K.; Guo, H.; Ban, Y.H.; Park, D.; Jang, G.Y.; Yeon, S.; Lee, J.Y.; Choi, E.K.; Joo, S.S.; Jeong, H.S.; Kim, Y.B. A silk peptide fraction restores cognitive function in AF64A-induced Alzheimer disease model rats by increasing expression of choline acetyltransferase gene. Toxicol. Appl. Pharmacol., 2017, 314, 48-54.
[http://dx.doi.org/10.1016/j.taap.2016.11.008] [PMID: 27871887]
[42]
Ahmadi, N.; Safari, S.; Mirazi, N.; Karimi, S.A.; Komaki, A. Effects of vanillic acid on Aβ1-40-induced oxidative stress and learning and memory deficit in male rats. Brain Res. Bull., 2021, 170, 264-273.
[http://dx.doi.org/10.1016/j.brainresbull.2021.02.024] [PMID: 33652070]
[43]
Wan, T.; Wang, Z.; Luo, Y.; Zhang, Y.; He, W.; Mei, Y.; Xue, J.; Li, M.; Pan, H.; Li, W.; Wang, Q.; Huang, Y. FA-97, a new synthetic caffeic acid phenethyl ester derivative, protects against oxidative stress-mediated neuronal cell apoptosis and scopolamine-induced cognitive impairment by activating Nrf2/HO-1 signaling. Oxid. Med. Cell. Longev., 2019, 2019, 8239642.
[http://dx.doi.org/10.1155/2019/8239642] [PMID: 31885818]
[44]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[45]
Yang, Y.; Zhou, J.; Li, J. Regulation of exosome for Alzheimer’s disease derived from mesenchymal stem cells. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2020, 45(2), 169-175.
[PMID: 32386043]
[46]
VanItallie, T.B. Alzheimer’s disease: Innate immunity gone awry? Metabolism, 2017, 69, S41-S49.
[http://dx.doi.org/10.1016/j.metabol.2017.01.014] [PMID: 28129888]
[47]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[48]
Kong, D.; Yan, Y.; He, X.Y.; Yang, H.; Liang, B.; Wang, J.; He, Y.; Ding, Y.; Yu, H. Effects of resveratrol on the mechanisms of anti-oxidants and estrogen in Alzheimer’s disease. BioMed Res. Int., 2019, 2019, 8983752.
[http://dx.doi.org/10.1155/2019/8983752] [PMID: 31016201]
[49]
Harris, J.R.; Milton, N.G.N. Cholesterol in Alzheimer’s disease and other amyloidogenic disorders. Subcell. Biochem., 2010, 51, 47-75.
[http://dx.doi.org/10.1007/978-90-481-8622-8_2] [PMID: 20213540]
[50]
Malcangio, M. Role of the immune system in neuropathic pain. Scand. J. Pain, 2019, 20(1), 33-37.
[http://dx.doi.org/10.1515/sjpain-2019-0138] [PMID: 31730538]
[51]
Anwar, S.; Rivest, S. Alzheimer’s disease: Microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation. Expert Opin. Ther. Targets, 2020, 24(4), 331-344.
[http://dx.doi.org/10.1080/14728222.2020.1738391] [PMID: 32129117]
[52]
Wurtman, R. A nutrient combination that can affect synapse formation. Nutrients, 2014, 6(4), 1701-1710.
[http://dx.doi.org/10.3390/nu6041701] [PMID: 24763080]
[53]
Minter, M.R.; Taylor, J.M.; Crack, P.J. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J. Neurochem., 2016, 136(3), 457-474.
[http://dx.doi.org/10.1111/jnc.13411] [PMID: 26509334]
[54]
Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42.
[http://dx.doi.org/10.1186/s40035-020-00221-2] [PMID: 33239064]
[55]
Kim, H.S.; Cho, J.; Kim, D.H.; Yan, J.J.; Lee, H.K.; Suh, H.W.; Song, D.K. Inhibitory effects of long-term administration of ferulic acid on microglial activation induced by intracerebroventricular injection of beta-amyloid peptide (1-42) in mice. Biol. Pharm. Bull., 2004, 27(1), 120-121.
[http://dx.doi.org/10.1248/bpb.27.120] [PMID: 14709913]
[56]
Pepeu, G.; Grazia Giovannini, M. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res., 2017, 1670, 173-184.
[http://dx.doi.org/10.1016/j.brainres.2017.06.023] [PMID: 28652219]
[57]
Blusztajn, J.; Slack, B.; Mellott, T. Neuroprotective actions of dietary choline. Nutrients, 2017, 9(8), 815.
[http://dx.doi.org/10.3390/nu9080815] [PMID: 28788094]
[58]
Okouchi, M.; Ekshyyan, O.; Maracine, M.; Aw, T.Y. Neuronal apoptosis in neurodegeneration. Antioxid. Redox Signal., 2007, 9(8), 1059-1096.
[http://dx.doi.org/10.1089/ars.2007.1511] [PMID: 17571960]
[59]
Wang, X.; Welsh, N. Bcl-2 maintains the mitochondrial membrane potential, but fails to affect production of reactive oxygen species and endoplasmic reticulum stress, in sodium palmitate-induced β-cell death. Ups. J. Med. Sci., 2014, 119(4), 306-315.
[http://dx.doi.org/10.3109/03009734.2014.962714] [PMID: 25266628]
[60]
Hawkins, B.J.; Levin, M.D.; Doonan, P.J.; Petrenko, N.B.; Davis, C.W.; Patel, V.V.; Madesh, M. Mitochondrial complex II prevents hypoxic but not calcium- and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss. J. Biol. Chem., 2010, 285(34), 26494-26505.
[http://dx.doi.org/10.1074/jbc.M110.143164] [PMID: 20566649]
[61]
Erdal, M.E.; Görücü Yilmaz, S.; Ay, M.E.; Güler Kara, H.; Avci Özge, A.; Tasdelen, B. A study investigating the role of 2 candidate SNPs in Bax and Bcl-2 genes in Alzheimer’s disease. P. R. Health Sci. J., 2020, 39(3), 264-269.
[PMID: 33031695]
[62]
Tianji, L.; Dingbang, H.; Xiao, C.; Xiaojing, M.; Fei, Z.; Bin, W. Methylmercury induces lysosomal membrane permeabilization through JNK-activated Bax lysosomal translocation in neuronal cells. Toxicol. Lett., 2022, 357, 73-83.
[http://dx.doi.org/10.1016/j.toxlet.2021.12.021] [PMID: 34999165]
[63]
Yue, W.; Xu, W.; Song, Y.; Chun, W. Effects of ferulic acid on oxidative stress and apoptosis related proteins in Alzheimer’s disease transgenic mice. Nat. Prod. Res. Dev., 2017, 29, 762-766.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy