Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Targeting Glutaminolysis to Treat Multiple Myeloma: An In Vitro Evaluation of Glutaminase Inhibitors Telaglenastat and Epigallocatechin-3-gallate

Author(s): Chen Li, Yuhu Feng*, Weiguo Wang, Lingyun Xu, Miao Zhang, Yue Yao, Xiaoqian Wu, Qin Zhang, Wenyue Huang, Xiuxiu Wang, Xue Li, Peipei Ying and Liu Shang

Volume 23, Issue 7, 2023

Published on: 12 October, 2022

Page: [779 - 785] Pages: 7

DOI: 10.2174/1871520622666220905142338

Price: $65

Abstract

Background: Cancer is associated with metabolic changes from increased cell proliferation and growth. Compared to normal differentiated cells, MM cells use the glycolytic pathway even when adequate oxygen is present triggering “Glutamine addiction”.

Objective: To investigate the single and combined effects of epigallocatechin-3-gallate (EGCG) and telaglenastat, a glutaminase inhibitor, on the proliferation and apoptosis of the multiple myeloma cell line KM3/BTZ.

Methods: KM3/BTZ cells were treated with different concentrations of telaglenastat and EGCG alone or in combination to investigate their effect on proliferation and apoptosis using the CCK8 assay, flow cytometry, and western blotting. The Chou-Talalay combination index analysis was used to explore the effect of telaglenastat combined with EGCG, while the Combination Index (CI) was calculated to analyze whether the combination of the two drugs had a synergistic effect.

Results: Telaglenastat and EGCG alone as well as in combination (5 μmol/L telaglenastat + 120 μmol/L EGCG) significantly inhibited the proliferation of KM3/BTZ cells compared to the inhibition effect of the control. Additionally, the combined treatment increased the proportion of KM3/BTZ cells in the G2 phase and decreased the proportion of cells in the G1 phase. The apoptosis rate of EGCG alone and the combined treatment was significantly higher than that of the control group. Bax protein expression was highest in the combined treatment group, whereas Bcl-2 expression was lowest, with the combined treatment group having the highest ratio of Bax/Bcl-2.

Conclusion: Telaglenastat and EGCG act synergistically to inhibit cell proliferation and promote apoptosis in KM3/BTZ cells, possibly by targeting glutamine metabolism and glycolysis.

Keywords: KM3/BTZ cell, EGCG, Telaglenastat, cell proliferation, cell apoptosis

Graphical Abstract

[1]
Manasanch, E.E.; Orlowski, R.Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol., 2017, 14(7), 417-433.
[http://dx.doi.org/10.1038/nrclinonc.2016.206] [PMID: 28117417]
[2]
Wallington-Beddoe, C.T.; Sobieraj-Teague, M.; Kuss, B.J.; Pitson, S.M. Resistance to proteasome inhibitors and other targeted therapies in myeloma. Br. J. Haematol., 2018, 182(1), 11-28.
[http://dx.doi.org/10.1111/bjh.15210] [PMID: 29676460]
[3]
Bloedjes, T.A.; de Wilde, G.; Guikema, J.E.J. Metabolic effects of recurrent genetic aberrations in multiple myeloma. Cancers (Basel), 2021, 13(3), 396.
[http://dx.doi.org/10.3390/cancers13030396] [PMID: 33494394]
[4]
Wise, D.R.; Thompson, C.B. Glutamine addiction: A new therapeutic target in cancer. Trends Biochem. Sci., 2010, 35(8), 427-433.
[http://dx.doi.org/10.1016/j.tibs.2010.05.003] [PMID: 20570523]
[5]
Bolzoni, M.; Chiu, M.; Accardi, F.; Vescovini, R.; Airoldi, I.; Storti, P.; Todoerti, K.; Agnelli, L.; Missale, G.; Andreoli, R.; Bianchi, M.G.; Allegri, M.; Barilli, A.; Nicolini, F.; Cavalli, A.; Costa, F.; Marchica, V.; Toscani, D.; Mancini, C.; Martella, E.; Dall’Asta, V.; Donofrio, G.; Aversa, F.; Bussolati, O.; Giuliani, N. Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: A new attractive target. Blood, 2016, 128(5), 667-679.
[http://dx.doi.org/10.1182/blood-2016-01-690743] [PMID: 27268090]
[6]
Otsuki, T.; Yamada, O.; Sakaguchi, H.; Ichiki, T.; Kouguchi, K.; Wada, H.; Hata, H.; Yawata, Y.; Ueki, A. In vitro excess ammonia production in human myeloma cell lines. Leukemia, 1998, 12(7), 1149-1158.
[http://dx.doi.org/10.1038/sj.leu.2401077] [PMID: 9665203]
[7]
Roberts, R.S.; Hsu, H.W.; Lin, K.D.; Yang, T.J. Amino acid metabolism of myeloma cells in culture. J. Cell Sci., 1976, 21(3), 609-615.
[http://dx.doi.org/10.1242/jcs.21.3.609] [PMID: 965431]
[8]
Mercille, S.; Massie, B. Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells. Biotechnol. Bioeng., 1994, 44(9), 1140-1154.
[http://dx.doi.org/10.1002/bit.260440916] [PMID: 18623032]
[9]
Reinfeld, B.I.; Madden, M.Z.; Wolf, M.M.; Chytil, A.; Bader, J.E.; Patterson, A.R.; Sugiura, A.; Cohen, A.S.; Ali, A.; Do, B.T.; Muir, A.; Lewis, C.A.; Hongo, R.A.; Young, K.L.; Brown, R.E.; Todd, V.M.; Huffstater, T.; Abraham, A.; O’Neil, R.T.; Wilson, M.H.; Xin, F.; Tantawy, M.N.; Merryman, W.D.; Johnson, R.W.; Williams, C.S.; Mason, E.F.; Mason, F.M.; Beckermann, K.E.; Vander Heiden, M.G.; Manning, H.C.; Rathmell, J.C.; Rathmell, W.K. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature, 2021, 593(7858), 282-288.
[http://dx.doi.org/10.1038/s41586-021-03442-1] [PMID: 33828302]
[10]
Li, C.; Allen, A.; Kwagh, J.; Doliba, N.M.; Qin, W.; Najafi, H.; Collins, H.W.; Matschinsky, F.M.; Stanley, C.A.; Smith, T.J. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J. Biol. Chem., 2006, 281(15), 10214-10221.
[http://dx.doi.org/10.1074/jbc.M512792200] [PMID: 16476731]
[11]
Emberley, E.; Pan, A.; Chen, J.; Dang, R.; Gross, M.; Huang, T.; Li, W.; MacKinnon, A.; Singh, D.; Sotirovska, N.; Steggerda, S.M.; Wang, T.; Parlati, F. The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma. PLoS One, 2021, 16(11), e0259241.
[http://dx.doi.org/10.1371/journal.pone.0259241] [PMID: 34731180]
[12]
Lee, P.; Malik, D.; Perkons, N.; Huangyang, P.; Khare, S.; Rhoades, S.; Gong, Y.Y.; Burrows, M.; Finan, J.M.; Nissim, I.; Gade, T.P.F.; Weljie, A.M.; Simon, M.C. Targeting glutamine metabolism slows soft tissue sarcoma growth. Nat. Commun., 2020, 11(1), 498.
[http://dx.doi.org/10.1038/s41467-020-14374-1] [PMID: 31980651]
[13]
Dalva-Aydemir, S.; Bajpai, R.; Martinez, M.; Adekola, K.U.A.; Kandela, I.; Wei, C.; Singhal, S.; Koblinski, J.E.; Raje, N.S.; Rosen, S.T.; Shanmugam, M. Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin. Clin. Cancer Res., 2015, 21(5), 1161-1171.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1088] [PMID: 25542900]
[14]
Vriezen, N.; van Dijken, J.P. Fluxes and enzyme activities in central metabolism of myeloma cells grown in chemostat culture. Biotechnol. Bioeng., 1998, 59(1), 28-39.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19980705)59:1<28:AID-BIT5>3.0.CO;2-V] [PMID: 10099311]
[15]
Coloff, J.L.; Murphy, J.P.; Braun, C.R.; Harris, I.S.; Shelton, L.M.; Kami, K.; Gygi, S.P.; Selfors, L.M.; Brugge, J.S. Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells. Cell Metab., 2016, 23(5), 867-880.
[http://dx.doi.org/10.1016/j.cmet.2016.03.016] [PMID: 27133130]
[16]
Giesen, B.; Nickel, A.C.; Barthel, J.; Kahlert, U.D.; Janiak, C. Augmented therapeutic potential of glutaminase inhibitor cb839 in glioblastoma stem cells using gold nanoparticle delivery. Pharmaceutics, 2021, 13(2), 295.
[http://dx.doi.org/10.3390/pharmaceutics13020295] [PMID: 33672398]
[17]
Rex, M.R.; Williams, R.; Birsoy, K. Ta llman, M.S.; Stahl, M. Targeting mitochondrial metabolism in acute myeloid leukemia. Leuk. Lymphoma, 2022, 63(3), 530-537.
[http://dx.doi.org/10.1080/10428194.2021.1992759] [PMID: 34704521]
[18]
Draguet, A.; Tagliatti, V.; Colet, J.M. Targeting metabolic reprogramming to improve breast cancer treatment: An in vitro evaluation of selected metabolic inhibitors using a metabolomic approach. Metabolites, 2021, 11(8), 556.
[http://dx.doi.org/10.3390/metabo11080556] [PMID: 34436498]
[19]
Wicker, C.A.; Hunt, B.G.; Krishnan, S.; Aziz, K.; Parajuli, S.; Palackdharry, S.; Elaban, W.R.; Wise-Draper, T.M.; Mills, G.B.; Waltz, S.E.; Takiar, V. Glutaminase inhibition with telaglenastat (CB-839) improves treatment response in combination with ionizing radiation in head and neck squamous cell carcinoma models. Cancer Lett., 2021, 502, 180-188.
[http://dx.doi.org/10.1016/j.canlet.2020.12.038] [PMID: 33450358]
[20]
Funda, M.B.; Nizar, M.T.; James, W.M.; Angela, D.; Melinda, L.T.; Alice, C.F.; Pamela, M.; Richard, D.C.; Keith, W.O.; Mark, K.B.; Othon, I.; Owonikoko, T.K.; Patel, M.R.; McKay, R.; Infante, J.R.; Voss, M.H. Harding, J Phase 1 study of CB-839, a small molecule inhibitor of glutaminase (GLS), alone and in combination with everolimus (E) in patients (pts) with renal cell cancer (RCC). J. Clin. Oncol., 2016, 15(34), 4568-4568.
[21]
Funda, M.B.; Angela, D.M.; Melinda, L.T.; Pamela, M.; Keith, W.O.; George, D.D.; Gary, K.S.; Othon, I.; James, W.M.; Taofeek, K.O.; Mark, K.B.; Manish, R.P.; Jeffery, R.I.; James, J.H. Abstract C49: Phase 1 study of CB-839, a first-in-class, orally administered small molecule inhibitor of glutaminase in patients with refractory solid tumors. Mol. Cancer Ther., 2015, 14(12)(Suppl. 2), C49.
[22]
Ahmad, N.; Adhami, V.M.; Gupta, S.; Cheng, P.; Mukhtar, H. Role of the retinoblastoma (pRb)-E2F/DP pathway in cancer chemopreventive effects of green tea polyphenol epigallocatechin-3-gallate. Arch. Biochem. Biophys., 2002, 398(1), 125-131.
[http://dx.doi.org/10.1006/abbi.2001.2704] [PMID: 11811957]
[23]
Bimonte, S.; Cascella, M.; Leongito, M.; Palaia, R.; Caliendo, D.; Izzo, F.; Cuomo, A. An overview of pre-clinical studies on the effects of (-)-epigallocatechin-3-gallate, a catechin found in green tea, in treatment of pancreatic cancer. Recenti Prog. Med., 2017, 108(6), 282-287.
[PMID: 28631776]
[24]
Wolfram, S. Effects of green tea and EGCG on cardiovascular and metabolic health. J. Am. Coll. Nutr., 2007, 26(4), 373S-388S.
[http://dx.doi.org/10.1080/07315724.2007.10719626] [PMID: 17906191]
[25]
Wu, D. Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis. J. Investig. Med., 2016, 64(8), 1213-1219.
[http://dx.doi.org/10.1136/jim-2016-000158] [PMID: 27531904]
[26]
Boza, J.J.; Moënnoz, D.; Bournot, C.E.; Blum, S.; Zbinden, I.; Finot, P.A.; Ballèvre, O. Role of glutamine on the de novo purine nucleotide synthesis in Caco-2 cells. Eur. J. Nutr., 2000, 39(1), 38-46.
[http://dx.doi.org/10.1007/s003940050074] [PMID: 10900556]
[27]
Pournourmohammadi, S.; Grimaldi, M.; Stridh, M.H.; Lavallard, V.; Waagepetersen, H.S.; Wollheim, C.B.; Maechler, P. Epigallocatechin-3-gallate (EGCG) activates AMPK through the inhibition of glutamate dehydrogenase in muscle and pancreatic ß-cells: A potential beneficial effect in the pre-diabetic state? Int. J. Biochem. Cell Biol., 2017, 88, 220-225.
[http://dx.doi.org/10.1016/j.biocel.2017.01.012] [PMID: 28137482]
[28]
Whitelaw, B.S.; Robinson, M.B. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes. Front. Endocrinol. (Lausanne), 2013, 4, 123.
[http://dx.doi.org/10.3389/fendo.2013.00123] [PMID: 24062726]
[29]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[30]
Holecek, M.; Sispera, L.; Skalska, H. Enhanced glutamine availability exerts different effects on protein and amino acid metabolism in skeletal muscle from healthy and septic rats. JPEN J. Parenter. Enteral Nutr., 2015, 39(7), 847-854.
[http://dx.doi.org/10.1177/0148607114537832] [PMID: 24906686]
[31]
Darmaun, D.; Hayes, V.; Schaeffer, D.; Welch, S.; Mauras, N. Effects of glutamine and recombinant human growth hormone on protein metabolism in prepubertal children with cystic fibrosis. J. Clin. Endocrinol. Metab., 2004, 89(3), 1146-1152.
[http://dx.doi.org/10.1210/jc.2003-031409] [PMID: 15001600]
[32]
Evans, M.E.; Jones, D.P.; Ziegler, T.R. Glutamine inhibits cytokine-induced apoptosis in human colonic epithelial cells via the pyrimidine pathway. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 289(3), G388-G396.
[http://dx.doi.org/10.1152/ajpgi.00072.2005] [PMID: 15878985]
[33]
Kim, B.; Gwak, J.; Lee, E.K.; Jeong, S.M. Mitochondrial glutamine metabolism determines senescence induction after chemotherapy. Anticancer Res., 2020, 40(12), 6891-6897.
[http://dx.doi.org/10.21873/anticanres.14712] [PMID: 33288582]
[34]
Djonov, V.; Andres, A.C.; Ziemiecki, A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc. Res. Tech., 2001, 52(2), 182-189.
[http://dx.doi.org/10.1002/1097-0029(20010115)52:2<182:AID-JEMT1004>3.0.CO;2-M] [PMID: 11169866]
[35]
Plati, J.; Bucur, O.; Khosravi-Far, R. Apoptotic cell signaling in cancer progression and therapy. Integr. Biol., 2011, 3(4), 279-296.
[http://dx.doi.org/10.1039/c0ib00144a] [PMID: 21340093]
[36]
Goldar, S.; Khaniani, M.S.; Derakhshan, S.M.; Baradaran, B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac. J. Cancer Prev., 2015, 16(6), 2129-2144.
[http://dx.doi.org/10.7314/APJCP.2015.16.6.2129] [PMID: 25824729]
[37]
Wei, R.; Mao, L.; Xu, P.; Zheng, X.; Hackman, R.M.; Mackenzie, G.G.; Wang, Y. Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models. Food Funct., 2018, 9(11), 5682-5696.
[http://dx.doi.org/10.1039/C8FO01397G] [PMID: 30310905]
[38]
Hensley, C.T.; Wasti, A.T.; DeBerardinis, R.J. Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J. Clin. Invest., 2013, 123(9), 3678-3684.
[http://dx.doi.org/10.1172/JCI69600] [PMID: 23999442]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy