Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Chitinase from the Latex of Ficus benjamina L. Displays Antifungal Activity by Inducing ROS Generation and Structural Damage to the Fungal Cell Wall and Plasma Membrane

Author(s): Handerson R.O. Mota, Jose T.A. Oliveira*, Thiago F. Martins, Ilka M. Vasconcelos, Helen P.S. Costa, Dhel P. Neres, Fredy D.A. Silva and Pedro F.N. Souza*

Volume 29, Issue 10, 2022

Published on: 04 October, 2022

Page: [869 - 881] Pages: 13

DOI: 10.2174/0929866529666220903091107

Price: $65

conference banner
Abstract

Background: Chitinases are plant defense-related proteins with a high biotechnological potential to be applied in agriculture.

Objectives: This study aimed to purify a chitinase from the latex of Ficus benjamina.

Methods: An antifungal class I chitinase, named FbLx-Chi-1, was purified from the latex of Ficus benjamina after precipitation with 30-60% ammonium sulfate and affinity chromatography on a chitin column and antifungal potential assay against phytopathogenic fungi important to agriculture.

Results: FbLx-Chi-1 has 30 kDa molecular mass, as estimated by SDS-PAGE and the optimal pH and temperature for full chitinolytic activity were 5.5 and 60ºC, respectively. FbLx-Chi-1 is a high pH-, ion-tolerant and thermostable protein. Importantly, FbLx-Chi-1 hindered the growth of the phytopathogenic fungi Colletotrichum gloeosporioides, Fusarium pallidoroseum, and Fusarium oxysporum. The action mode of FbLx-Chi-1 to hamper F. pallidoroseum growth seems to be correlated with alterations in the morphology of the hyphal cell wall, increased plasma membrane permeability, and overproduction of reactive oxygen species.

Conclusion: These findings highlight the biotechnological potential of FbLx-Chi-1 to control important phytopathogenic fungi in agriculture. In addition, FbLx-Chi-1 could be further explored to be used in industrial processes such as the large-scale environmentally friendly enzymatic hydrolysis of chitin to produce its monomer N-acetyl-β-D-glucosamine, which is employed for bioethanol production, in cosmetics, in medicine, and for other multiple applications.

Keywords: Biotechnological application, chitinases in the industry, enzymatic hydrolysis, protein purification, antifungal, ROS.

Graphical Abstract

[1]
Joseph, S.M.; Krishnamoorthy, S.; Paranthaman, R.; Moses, J.A.; Anandharamakrishnan, C. A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr. Polym., 2021, 2, 100036.
[http://dx.doi.org/10.1016/j.carpta.2021.100036]
[2]
Nagpure, A.; Choudhary, B.; Gupta, R.K. Chitinases: In agriculture and human healthcare. Crit. Rev. Biotechnol., 2014, 34(3), 215-232.
[http://dx.doi.org/10.3109/07388551.2013.790874] [PMID: 23859124]
[3]
Adrangi, S.; Faramarzi, M.A. From bacteria to human: A journey into the world of chitinases. Biotechnol. Adv., 2013, 31(8), 1786-1795.
[http://dx.doi.org/10.1016/j.biotechadv.2013.09.012] [PMID: 24095741]
[4]
Neuhaus, J.M. Plant chitinases (PR-3, PR-4, PR-8, PR-11).In: Pathogenesis-Related Proteins in Plants; CRC Press: Boca Raton, 1999.
[5]
Ali, S.; Ganai, B.A.; Kamili, A.N.; Bhat, A.A.; Mir, Z.A.; Bhat, J.A.; Tyagi, A.; Islam, S.T.; Mushtaq, M.; Yadav, P.; Rawat, S.; Grover, A. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol. Res., 2018, 212-213, 29-37.
[http://dx.doi.org/10.1016/j.micres.2018.04.008] [PMID: 29853166]
[6]
Aam, B.B.; Heggset, E.B.; Norberg, A.L.; Sørlie, M.; Vårum, K.M.; Eijsink, V.G.H. Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs, 2010, 8(5), 1482-1517.
[http://dx.doi.org/10.3390/md8051482] [PMID: 20559485]
[7]
Karasuda, S.; Tanaka, S.; Kajihara, H.; Yamamoto, Y.; Koga, D. Plant chitinase as a possible biocontrol agent for use instead of chemical fungicides. Biosci. Biotechnol. Biochem., 2003, 67(1), 221-224.
[http://dx.doi.org/10.1271/bbb.67.221] [PMID: 12619703]
[8]
Rathore, A.S.; Gupta, R.D. Chitinases from bacteria to human: Properties, applications, and future perspectives. Enzyme Res., 2015, 2015, 791907.
[http://dx.doi.org/10.1155/2015/791907]
[9]
Dukariya, G.; Kumar, A. Distribution and biotechnological applications of chitinase: A Review. Indian J. Biochem. Biophys., 2020, 8(2), 17-29.
[http://dx.doi.org/10.13189/ijbb.2020.080201]
[10]
Pereira, L.S.; Gomes, V.M.; Fernandes, K.S.; Sales, M.P.; Xavier-Filho, J. Insecticidal and antifungic proteins of the latex from Manihot glaziovii Muell. Arg. Rev. Bras. Bot., 1999, 22(1), 27-30.
[http://dx.doi.org/10.1590/S0100-84041999000100005]
[11]
Bokma, E.; Barends, T.; Terwisscha van Scheltinga, A.C.; Dijkstra, B.W.; Beintema, J.J. Enzyme kinetics of hevamine, a chitinase from the rubber tree Hevea brasiliensis. FEBS Lett., 2000, 478(1-2), 119-122.
[http://dx.doi.org/10.1016/S0014-5793(00)01833-0] [PMID: 10922481]
[12]
Taira, T.; Ohdomari, A.; Nakama, N.; Shimoji, M.; Ishihara, M. Characterization and antifungal activity of gazyumaru (Ficus microcarpa) latex chitinases: Both the chitin-binding and the antifungal activities of class I chitinase are reinforced with increasing ionic strength. Biosci. Biotechnol. Biochem., 2005, 69(4), 811-818.
[http://dx.doi.org/10.1271/bbb.69.811] [PMID: 15849422]
[13]
Nitsawang, S.; Kanasawud, P. A rapid process for purification of chitinase from the latex of Carica papaya. Chiang Mai J. Sci. 2, 2006, 33(2), 237-242.
[14]
Patel, A.K.; Singh, V.K.; Yadav, R.P.; Moir, A.J.G.; Jagannadham, M.V. Purification and characterization of a new chitinase from latex of Ipomoea carnea. Process Biochem., 2010, 45(5), 675-681.
[http://dx.doi.org/10.1016/j.procbio.2009.12.016]
[15]
Veneklaas, E.J.; Santos Silva, M.P.R.M.; den Ouden, F. Determinants of growth rate in Ficus benjamina L. compared to related faster-growing woody and herbaceous species. Sci. Hortic., 2002, 93(1), 75-84.
[http://dx.doi.org/10.1016/S0304-4238(01)00315-6]
[16]
Moro, M.F.; Westerkamp, C.; de Araújo, F.S. How much importance is given to native plants in cities’ treescape? A case study in Fortaleza, Brazil. Urban For. Urban Green., 2014, 13(2), 365-374.
[http://dx.doi.org/10.1016/j.ufug.2014.01.005]
[17]
Hasti, S.; Mora, E.; Utami, R.; Yulis, L.U. Sub-chronic toxicity of Ficus Benjamina L. leaves ethanol extract on the liver function of white mice. Proc. Chem., 2014, 13, 204-208.
[http://dx.doi.org/10.1016/j.proche.2014.12.028]
[18]
Williams, D.C.; Sgarbieri, V.C.; Whitaker, J.R. Proteolytic activity in the Genus Ficus. Plant Physiol., 1968, 43, 1083-1088.
[http://dx.doi.org/10.1104/pp.43.7.1083]
[19]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[20]
Lee, Y.G.; Chung, K.C.; Wi, S.G.; Lee, J.C.; Bae, H.J. Purification and properties of a chitinase from Penicillium sp. LYG 0704. Protein Expr. Purif., 2009, 65(2), 244-250.
[http://dx.doi.org/10.1016/j.pep.2008.12.004] [PMID: 19116167]
[21]
Boller, T. Biochemical analysis of chitinase and β-1,3-glucanases. In: Gurr, S.J.; McPherson, M.J.; Bowles, D.J. Eds. Molecular Plant Pathology: A Practical Approach; Oxford University Press: New York City, USA, 1992, pp. 2.
[22]
Reissig, J.L.; Strominger, J.L.; Leloir, L.F. A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem., 1955, 217(2), 959-966.
[http://dx.doi.org/10.1016/S0021-9258(18)65959-9] [PMID: 13271455]
[23]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[24]
Candiano, G.; Bruschi, M.; Musante, L.; Santucci, L.; Ghiggeri, G.M.; Carnemolla, B.; Orecchia, P.; Zardi, L.; Righetti, P.G. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 2004, 25(9), 1327-1333.
[http://dx.doi.org/10.1002/elps.200305844] [PMID: 15174055]
[25]
Freire, M.G.M.; Gomes, V.M.; Corsini, R.E.; Machado, O.L.T.; De Simone, S.G.; Novello, J.C.; Marangoni, S.; Macedo, M.L.R. Isolation and partial characterization of a novel lectin from Talisia esculenta seeds that interferes with fungal growth. Plant Physiol. Biochem., 2002, 40(1), 61-68.
[http://dx.doi.org/10.1016/S0981-9428(01)01342-0]
[26]
Kellner, R.; Vollmeister, E.; Feldbrügge, M.; Begerow, D. Interspecific sex in grass smuts and the genetic diversity of their pheromone-receptor system. PLoS Genet., 2011, 7(12), e1002436-e1002436.
[http://dx.doi.org/10.1371/journal.pgen.1002436] [PMID: 22242007]
[27]
Gangwar, M.; Cole, R.; Ramani, R.; Sheehan, D.J.; Chaturvedi, V. Application of fluorescent probes to study structural changes in Aspergillus fumigatus exposed to amphotericin B, itraconazole, and voriconazole. Mycopathologia, 2006, 162(2), 103-109.
[http://dx.doi.org/10.1007/s11046-006-0040-y] [PMID: 16897588]
[28]
Chowdhuri, R.A.; Tripathy, S.; Chandra, S.; Roy, S.; Sahu, S.K. A ZnO decorated chitosan–graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with ROS generation. RSC Advances, 2015, 5(61), 49420-49428.
[http://dx.doi.org/10.1039/C5RA05393E]
[29]
Van Parijs, J.; Broekaert, W.F.; Goldstein, I.J.; Peumans, W.J. Hevein: An antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta, 1991, 183(2), 258-264.
[http://dx.doi.org/10.1007/BF00197797] [PMID: 24193629]
[30]
Slavokhotova, A.A.; Shelenkov, A.A.; Andreev, Y.A.; Odintsova, T.I. Hevein-like antimicrobial peptides of plants. Biochemistry, 2017, 82(13), 1659-1674.
[http://dx.doi.org/10.1134/S0006297917130065] [PMID: 29523064]
[31]
Roy, S.; Kumar, V. A practical approach on SDS PAGE for separation of protein. Int. J. Sci. Res., 2014, 3, 955-960.
[32]
Rath, A.; Glibowicka, M.; Nadeau, V.G.; Chen, G.; Deber, C.M. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc. Natl. Acad. Sci. USA, 2009, 106(6), 1760-1765.
[http://dx.doi.org/10.1073/pnas.0813167106] [PMID: 19181854]
[33]
Wang, S.; Shao, B.; Fu, H.; Rao, P. Isolation of a thermostable legume chitinase and study on the antifungal activity. Appl. Microbiol. Biotechnol., 2009, 85(2), 313-321.
[http://dx.doi.org/10.1007/s00253-009-2074-9] [PMID: 19547968]
[34]
Kopparapu, N.K.; Liu, Z.; Yan, Q.; Jiang, Z.; Zhang, S. A novel thermostable chitinase (PJC) from pomegranate (Punica granatum) juice. Food Chem., 2011, 127(4), 1569-1575.
[http://dx.doi.org/10.1016/j.foodchem.2011.02.020]
[35]
Moore, K.G.; Price, M.S.; Boston, R.S.; Weissinger, A.K.; Payne, G.A. A chitinase from Tex6 maize kernels inhibits growth of Aspergillus flavus. Phytopathology, 2004, 94(1), 82-87.
[http://dx.doi.org/10.1094/PHYTO.2004.94.1.82] [PMID: 18943823]
[36]
Ye, X.; Ng, T.B.; Rao, P.; Ng, T.B.; Ye, X. A chitinase with antifungal activity from the mung bean. Protein Expr. Purif., 2005, 40(2), 230-236.
[http://dx.doi.org/10.1016/j.pep.2004.06.032] [PMID: 15766863]
[37]
Santos, I.S.; Da Cunha, M.; Machado, O.L.T.; Gomes, V.M. A chitinase from Adenanthera pavonina L. seeds: Purification, characterisation and immunolocalisation. Plant Sci., 2004, 167(6), 1203-1210.
[http://dx.doi.org/10.1016/j.plantsci.2004.04.021]
[38]
Collinge, D.B.; Kragh, K.M.; Mikkelsen, J.D.; Nielsen, K.K.; Rasmussen, U.; Vad, K. Plant chitinases. Plant J., 1993, 3(1), 31-40.
[http://dx.doi.org/10.1046/j.1365-313X.1993.t01-1-00999.x] [PMID: 8401605]
[39]
Wang, S.; Ye, X.; Chen, J.; Rao, P. A novel chitinase isolated from Vicia faba and its antifungal activity. Food Res. Int., 2012, 45(1), 116-122.
[http://dx.doi.org/10.1016/j.foodres.2011.10.010]
[40]
Spanò, D.; Pospiskova, K.; Safarik, I.; Pisano, M.B.; Pintus, F.; Floris, G.; Medda, R. Chitinase III in Euphorbia characias latex: Purification and characterization. Protein Expr. Purif., 2015, 116, 152-158.
[http://dx.doi.org/10.1016/j.pep.2015.08.026] [PMID: 26318237]
[41]
Sørensen, H.P.; Madsen, L.S.; Petersen, J.; Andersen, J.T.; Hansen, A.M.; Beck, H.C. Oat (Avena sativa) seed extract as an antifungal food preservative through the catalytic activity of a highly abundant class I chitinase. Appl. Biochem. Biotechnol., 2010, 160(6), 1573-1584.
[http://dx.doi.org/10.1007/s12010-009-8557-4] [PMID: 19224400]
[42]
Chen, Y.T.; Hsu, L.H.; Huang, I.P.; Tsai, T.C.; Lee, G.C.; Shaw, J.F. Gene cloning and characterization of a novel recombinant antifungal chitinase from papaya (Carica papaya). J. Agric. Food Chem., 2007, 55(3), 714-722.
[http://dx.doi.org/10.1021/jf062453e] [PMID: 17263465]
[43]
Taira, T.; Toma, N.; Ishihara, M. Purification, characterization, and antifungal activity of chitinases from pineapple (Ananas comosus) leaf. Biosci. Biotechnol. Biochem., 2005, 69(1), 189-196.
[http://dx.doi.org/10.1271/bbb.69.189] [PMID: 15665484]
[44]
Liu, Z.H.; Yang, C.P.; Qi, X.T.; Xiu, L.L.; Wang, Y.C. Cloning, heterologous expression, and functional characterization of a chitinase gene, Lbchi32, from Limonium bicolor. Biochem. Genet., 2010, 48(7-8), 669-679.
[http://dx.doi.org/10.1007/s10528-010-9348-x] [PMID: 20512617]
[45]
Ano, A.; Takayanagi, T.; Uchibori, T.; Okuda, T.; Yokotsuka, K. Characterization of a class III chitinase from Vitis vinifera cv. Koshu. J. Biosci. Bioeng., 2003, 95(6), 645-647.
[http://dx.doi.org/10.1016/S1389-1723(03)80179-2] [PMID: 16233474]
[46]
Zhang, J.; Kopparapu, N.K.; Yan, Q.; Yang, S.; Jiang, Z. Purification and characterisation of a novel chitinase from persimmon (Diospyros kaki) with antifungal activity. Food Chem., 2013, 138(2-3), 1225-1232.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.067] [PMID: 23411236]
[47]
Han, P.; Yang, C.; Liang, X.; Li, L. Identification and characterization of a novel chitinase with antifungal activity from ʻBaozhu’ pear (Pyrus ussuriensis Maxim.). Food Chem., 2016, 196, 808-814.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.006] [PMID: 26593558]
[48]
Mizuno, R.; Itoh, Y.; Nishizawa, Y.; Kezuka, Y.; Suzuki, K.; Nonaka, T.; Watanabe, T. Purification and characterization of a rice class I chitinase, OsChia1b, produced in Esherichia coli. Biosci. Biotechnol. Biochem., 2008, 72(3), 893-895.
[http://dx.doi.org/10.1271/bbb.70693] [PMID: 18323646]
[49]
Taira, T.; Mahoe, Y.; Kawamoto, N.; Onaga, S.; Iwasaki, H.; Ohnuma, T.; Fukamizo, T. Cloning and characterization of a small family 19 chitinase from moss (Bryum Coronatum). Glycobiol., 2011, 21(5), 644-654.
[http://dx.doi.org/10.1093/glycob/cwq212] [PMID: 21367878]
[50]
Kaomek, M.; Mizuno, K.; Fujimura, T.; Sriyotha, P.; Cairns, J.R.K. Cloning, expression, and characterization of an antifungal chitinase from Leucaena leucocephala de Wit. Biosci. Biotechnol. Biochem., 2003, 67(4), 667-676.
[http://dx.doi.org/10.1271/bbb.67.667] [PMID: 12784603]
[51]
Iseli, B.; Boller, T.; Neuhaus, J.M. The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol., 1993, 103(1), 221-226.
[http://dx.doi.org/10.1104/pp.103.1.221] [PMID: 8208848]
[52]
Oliveira, R.R.; Aguiar, B.M.; Tessmann, D.J.; Pujade-Renaud, V.; Vida, J.B. Chlamydospore formation by Corynespora cassiicola. Trop. Plant Pathol., 2012, 37(6), 415-418.
[http://dx.doi.org/10.1590/S1982-56762012000600006]
[53]
Vierheilig, H.; Alt-Hug, M.; Wiemken, A.; Boller, T. Hyphal in vitro growth of the arbuscular mycorrhizal fungus Glomus mosseae is affected by chitinase but not by β-1,3-glucanase. Mycorrhiza, 2001, 11(6), 279-282.
[http://dx.doi.org/10.1007/s005720100132] [PMID: 24549347]
[54]
Mauch, F.; Mauch-Mani, B.; Boller, T. Antifungal hydrolases in pea tissue. II. inhibition of fungal growth by combinations of chitinase and β-1,3 glucanase. Plant Physiol., 1988, 88(3), 936-942.
[http://dx.doi.org/10.1104/pp.88.3.936] [PMID: 16666407]
[55]
Neto, J.X.S.; Pereira, M.L.; Oliveira, J.T.A.; Rocha-Bezerra, L.C.B.; Lopes, T.D.P.; Costa, H.P.S.; Sousa, D.O.B.; Rocha, B.A.M.; Grangeiro, T.B.; Freire, J.E.C.; Monteiro-Moreira, A.C.O.; Lobo, M.D.P.; Brilhante, R.S.N.; Vasconcelos, I.M. A Chitin-binding protein purified from Moringa oleifera seeds presents anticandidal activity by increasing cell membrane permeability and reactive oxygen species production. Front. Microbiol., 2017, 8, 980.
[http://dx.doi.org/10.3389/fmicb.2017.00980] [PMID: 28634471]
[56]
Oliveira, J.T.A.; Souza, P.F.N.; Vasconcelos, I.M.; Dias, L.P.; Martins, T.F.; Van Tilburg, M.F.; Guedes, M.I.F.; Sousa, D.O.B. Mo-CBP3-PepI, Mo-CBP3-PepII, and Mo-CBP3-PepIII are synthetic antimicrobial peptides active against human pathogens by stimulating ROS generation and increasing plasma membrane permeability. Biochimie, 2019, 157, 10-21.
[http://dx.doi.org/10.1016/j.biochi.2018.10.016] [PMID: 30389515]
[57]
Takashima, T.; Henna, H.; Kozome, D.; Kitajima, S.; Uechi, K.; Taira, T. cDNA cloning, expression, and antifungal activity of chitinase from Ficus microcarpa latex: Difference in antifungal action of chitinase with and without chitin-binding domain. Planta, 2021, 253(6), 120-133.
[http://dx.doi.org/10.1007/s00425-021-03639-8] [PMID: 33987712]
[58]
Yan, N.; Chen, X. Sustainability: Don’t waste seafood waste. Nature, 2015, 524(7564), 155-157.
[http://dx.doi.org/10.1038/524155a] [PMID: 26268177]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy