Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Protein Uncoupling as an Innovative Practice in Diabetes Mellitus Treatment: A Metabolic Disorder

Author(s): Rishabh Chaudhary*, Sumeet Gupta and Samrat Chauhan

Volume 23, Issue 4, 2023

Published on: 27 October, 2022

Page: [494 - 502] Pages: 9

DOI: 10.2174/1871530322666220902143401

Price: $65

Abstract

Background: Uncoupling proteins (UCPs) are unpaired electron carriers that uncouple oxygen intake by the electron transport chain from ATP production in the inner membrane of the mitochondria. The physiological activities of UCPs have been hotly contested, and the involvement of UCPs in the pathogenesis and progression of diabetes mellitus is among the greatest concerns. UCPs are hypothesised to be triggered by superoxide and then reduce mitochondrial free radical production, potentially protecting diabetes mellitus patients who are experiencing oxidative stress.

Objectives: The objectives of the study are to find out the newest ways to treat diabetes mellitus through protein uncoupling.

Methods: Research and review papers are collected from different databases like google scholar, PubMed, Mendeley, Scopus, Science Open, Directory of open access journals, and Education Resources Information Center, using different keywords such as “uncoupling proteins in diabetes mellitus treatment”, “UCP 1”, “UCP 2”, and ‘UCP 3”.

Results: UCP1, UCP2, and UCP 3 are potential targets as uncoupling proteins for the treatment of diabetes mellitus for new drugs. New drugs treat the disease by reducing oxidative stress through thermogenesis and energy expenditure.

Conclusion: UCP1, UCP2, and UCP3 have a role in fatty acid metabolism, negative control of insulin production, and insulin sensitivity by beta-cells. Polymorphisms in the UCP 1, 2, and 3 genes significantly reduce the risk of developing diabetes mellitus. Protein uncoupling indirectly targets the GPCR and islet of Langerhans. This review summarises the advances in understanding the role of UCP1, UCP2, and UCP3 in diabetes mellitus.

Keywords: Uncoupling proteins, UCP 1, UCP 2, UCP 3, Diabetes mellitus, Gene polymorphism, G-protein coupled receptor, New treatment approach

Graphical Abstract

[1]
Diano, S.; Horvath, T.L. Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends Mol. Med., 2012, 18(1), 52-58.
[2]
Berardi, M.J.; Shih, W.M.; Harrison, S.C.; Chou, J.J. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature, 2011, 476(7358), 109-113.
[http://dx.doi.org/10.1038/nature10257] [PMID: 21785437]
[3]
Krauss, S.; Zhang, C.Y.; Lowell, B.B. The mitochondrial uncoupling-protein homologues. Nat. Rev. Mol. Cell Biol., 2005, 6(3), 248-261.
[http://dx.doi.org/10.1038/nrm1592] [PMID: 15738989]
[4]
Ledesma, A.; de Lacoba, M.; Rial, E. The mitochondrial uncoupling proteins. Genome Biol., 2002, 3(12), reviews3015.1.
[http://dx.doi.org/10.1186/gb-2002-3-12-reviews3015] [PMID: 12537581]
[5]
Derdak, Z.; Mark, N.M.; Beldi, G.; Robson, S.C.; Wands, J.R.; Baffy, G. The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res., 2008, 68(8), 2813-2819.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0053] [PMID: 18413749]
[6]
Rousset, S.; Alves-Guerra, M.C.; Mozo, J.; Miroux, B.; Cassard-Doulcier, A.M.; Bouillaud, F.; Ricquier, D. The biology of mitochondrial uncoupling proteins. Diabetes, 2004, 53(Suppl. 1), S130-S135.
[http://dx.doi.org/10.2337/diabetes.53.2007.S130] [PMID: 14749278]
[7]
Jabůrek, M.; Vařecha, M.; Gimeno, R.E.; Dembski, M.; Ježek, P.; Zhang, M.; Burn, P.; Tartaglia, L.A.; Garlid, K.D. Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J. Biol. Chem., 1999, 274(37), 26003-26007.
[http://dx.doi.org/10.1074/jbc.274.37.26003] [PMID: 10473545]
[8]
Gonzalez-Barroso, M.D.M.; Ricquier, D.; Cassard-Doulcier, A.M. The human uncoupling protein-1 gene (UCP1): Present status and perspectives in obesity research. Obes. Rev., 2000, 1(2), 61-72.
[http://dx.doi.org/10.1046/j.1467-789x.2000.00009.x] [PMID: 12119988]
[9]
Souza, B.M.; Assmann, T.S.; Kliemann, L.M.; Gross, J.L.; Canani, L.H.; Crispim, D. The role of uncoupling protein 2 (UCP2) on the development of type 2 diabetes mellitus and its chronic complications. Arq. Bras. Endocrinol. Metabol, 2011, 55(4), 239-248.
[http://dx.doi.org/10.1590/S0004-27302011000400001] [PMID: 21779625]
[10]
Pohl, E.E.; Rupprecht, A.; Macher, G.; Hilse, K.E. Important trends in UCP3 investigation. Front. Physiol., 2019, 10, 470.
[http://dx.doi.org/10.3389/fphys.2019.00470] [PMID: 31133866]
[11]
Mao, W.; Yu, X.X.; Zhong, A.; Li, W.; Brush, J.; Sherwood, S.W.; Adams, S.H.; Pan, G. UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett., 1999, 443(3), 326-330.
[http://dx.doi.org/10.1016/S0014-5793(98)01713-X] [PMID: 10025957]
[12]
Ramsden, D.B.; Ho, P.W.L.; Ho, J.W.M.; Liu, H.F.; So, D.H.F.; Tse, H.M.; Chan, K.H.; Ho, S.L. Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): Structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain Behav., 2012, 2(4), 468-478.
[http://dx.doi.org/10.1002/brb3.55] [PMID: 22950050]
[13]
Liu, J.; Li, J.; Li, W-J.; Wang, C-M. The role of uncoupling proteins in diabetes mellitus. J. Diabetes Res., 2013, 2013, 585897.
[http://dx.doi.org/10.1155/2013/585897]
[14]
Jia, J.; Tian, Y.; Cao, Z.; Tao, L.; Zhang, X.; Gao, S.; Ge, C.; Lin, Q.Y.; Jois, M. The polymorphisms of UCP1 genes associated with fat metabolism, obesity and diabetes. Mol. Biol. Rep., 2010, 37(3), 1513-1522.
[http://dx.doi.org/10.1007/s11033-009-9550-2] [PMID: 19444646]
[15]
Brondani, L.A.; Assmann, T.S.; Duarte, G.C.K.; Gross, J.L.; Canani, L.H.; Crispim, D. The role of the Uncoupling Protein 1 (UCP1) on the development of obesity and type 2 diabetes mellitus. Arq. Bras. Endocrinol. Metabol, 2012, 56(4), 215-225.
[http://dx.doi.org/10.1590/S0004-27302012000400001] [PMID: 22790465]
[16]
Liu, X.; Jiang, Z.; Zhang, G.; Ng, T.K.; Wu, Z. Association of UCP1 and UCP2 variants with diabetic retinopathy susceptibility in type-2 diabetes mellitus patients: A meta-analysis. BMC Ophthalmol., 2021, 21(1), 81.
[http://dx.doi.org/10.1186/s12886-021-01838-1] [PMID: 33579234]
[17]
Dalgaard, L.T.; Pedersen, O. Uncoupling proteins: Functional characteristics and role in the pathogenesis of obesity and Type II diabetes. Diabetologia, 2001, 44(8), 946-965.
[http://dx.doi.org/10.1007/s001250100596] [PMID: 11484071]
[18]
Nicoletti, C.F.; de Oliveira, A.P.R.P.; Brochado, M.J.F.; de Oliveira, B.P.; Pinhel, M.A.S.; Marchini, J.S.; dos Santos, J.E.; Salgado, W., Junior; Silva, W.A., Junior; Nonino, C.B. UCP1 -3826 A>G polymorphism affects weight, fat mass, and risk of type 2 diabetes mellitus in grade III obese patients. Nutrition, 2016, 32(1), 83-87.
[http://dx.doi.org/10.1016/j.nut.2015.07.016] [PMID: 26458326]
[19]
Ikeda, K.; Yamada, T. UCP1 dependent and independent thermogenesis in brown and beige adipocytes. Front. Endocrinol. (Lausanne), 2020, 11, 498.
[http://dx.doi.org/10.3389/fendo.2020.00498] [PMID: 32849287]
[20]
Sramkova, D.; Krejbichova, S.; Vcelak, J.; Vankova, M.; Samalikova, P.; Hill, M.; Kvasnickova, H.; Dvorakova, K.; Vondra, K.; Hainer, V.; Bendlova, B. The UCP1 gene polymorphism A-3826G in relation to DM2 and body composition in Czech population. Exp. Clin. Endocrinol. Diabetes, 2007, 115(5), 303-307.
[http://dx.doi.org/10.1055/s-2007-977732] [PMID: 17516293]
[21]
Maiese, K.; Chong, Z.Z.; Shang, Y.C. Mechanistic insights into diabetes mellitus and oxidative stress. Curr. Med. Chem., 2007, 14(16), 1729-1738.
[http://dx.doi.org/10.2174/092986707781058968] [PMID: 17627510]
[22]
Kontani, Y.; Wang, Y.; Kimura, K.; Inokuma, K.I.; Saito, M.; Suzuki-Miura, T.; Wang, Z.; Sato, Y.; Mori, N.; Yamashita, H. UCP1 deficiency increases susceptibility to diet-induced obesity with age. Aging Cell, 2005, 4(3), 147-155.
[http://dx.doi.org/10.1111/j.1474-9726.2005.00157.x] [PMID: 15924571]
[23]
Dong, C.; Lv, Y.; Xie, L.; Yang, R.; Chen, L.; Zhang, L.; Long, T.; Yang, H.; Mao, X.; Fan, Q.; Chen, X.; Zhang, H. Association of UCP1 polymorphisms with type 2 diabetes mellitus and their interaction with physical activity and sedentary behavior. Gene, 2020, 739, 144497.
[http://dx.doi.org/10.1016/j.gene.2020.144497] [PMID: 32088243]
[24]
Zhang, Y.; Meng, N.; Lv, Z.; Li, H.; Qu, Y. The gene polymorphisms of UCP 1 but not PPAR γ and TCF 7L2 are associated with diabetic retinopathy in Chinese type 2 diabetes mellitus cases. Acta Ophthalmol., 2015, 93(3), e223-e229.
[http://dx.doi.org/10.1111/aos.12542] [PMID: 25274455]
[25]
Fleury, C.; Neverova, M.; Collins, S.; Raimbault, S.; Champigny, O.; Levi-Meyrueis, C.; Bouillaud, F.; Seldin, M.F.; Surwit, R.S.; Ricquier, D.; Warden, C.H. Uncoupling protein-2: A novel gene linked to obesity and hyperinsulinemia. Nat. Genet., 1997, 15(3), 269-272.
[http://dx.doi.org/10.1038/ng0397-269] [PMID: 9054939]
[26]
Jia, J.J.; Zhang, X.; Ge, C.R.; Jois, M. The polymorphisms of UCP2 and UCP3 genes associated with fat metabolism, obesity and diabetes. Obes. Rev., 2009, 10(5), 519-526.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00569.x] [PMID: 19413708]
[27]
Schrauwen, P.; Hesselink, M. UCP2 and UCP3 in muscle controlling body metabolism. J. Exp. Biol., 2002, 205(15), 2275-2285.
[http://dx.doi.org/10.1242/jeb.205.15.2275] [PMID: 12110661]
[28]
Bordone, L.; Motta, M.C.; Picard, F.; Robinson, A.; Jhala, U.S.; Apfeld, J.; McDonagh, T.; Lemieux, M.; McBurney, M.; Szilvasi, A.; Easlon, E.J.; Lin, S.J.; Guarente, L. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol., 2005, 4(2), e31.
[http://dx.doi.org/10.1371/journal.pbio.0040031] [PMID: 16366736]
[29]
González-Barroso, M.M.; Giurgea, I.; Bouillaud, F.; Anedda, A.; Bellanné-Chantelot, C.; Hubert, L.; de Keyzer, Y.; de Lonlay, P.; Ricquier, D. Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion. PLoS One, 2008, 3(12), e3850.
[http://dx.doi.org/10.1371/journal.pone.0003850] [PMID: 19065272]
[30]
Toda, C.; Diano, S. Mitochondrial UCP2 in the central regulation of metabolism. Best Pract. Res. Clin. Endocrinol. Metab., 2014, 28(5), 757-764.
[http://dx.doi.org/10.1016/j.beem.2014.02.006] [PMID: 25256770]
[31]
Zhang, C.Y.; Baffy, G.; Perret, P.; Krauss, S.; Peroni, O.; Grujic, D.; Hagen, T.; Vidal-Puig, A.J.; Boss, O.; Kim, Y.B.; Zheng, X.X.; Wheeler, M.B.; Shulman, G.I.; Chan, C.B.; Lowell, B.B. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, β cell dysfunction, and type 2 diabetes. Cell, 2001, 105(6), 745-755.
[http://dx.doi.org/10.1016/S0092-8674(01)00378-6] [PMID: 11440717]
[32]
Chan, C.B.; De Leo, D.; Joseph, J.W.; McQuaid, T.S.; Ha, X.F.; Xu, F.; Tsushima, R.G.; Pennefather, P.S.; Salapatek, A.M.F.; Wheeler, M.B. Increased uncoupling protein-2 levels in β-cells are associated with impaired glucose-stimulated insulin secretion: Mechanism of action. Diabetes, 2001, 50(6), 1302-1310.
[http://dx.doi.org/10.2337/diabetes.50.6.1302] [PMID: 11375330]
[33]
Zhang, C.Y.; Parton, L.E.; Ye, C.P.; Krauss, S.; Shen, R.; Lin, C.T.; Porco, J.A., Jr; Lowell, B.B. Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced β cell dysfunction in isolated pancreatic islets. Cell Metab., 2006, 3(6), 417-427.
[http://dx.doi.org/10.1016/j.cmet.2006.04.010] [PMID: 16753577]
[34]
Li, J.; Jiang, R.; Cong, X.; Zhao, Y. UCP 2 gene polymorphisms in obesity and diabetes, an d the role of UCP 2 in cancer. FEBS Lett., 2019, 593(18), 2525-2534.
[http://dx.doi.org/10.1002/1873-3468.13546] [PMID: 31330574]
[35]
Crispim, D.; Fagundes, N.J.R.; dos Santos, K.G.; Rheinheimer, J.; Bouças, A.P.; de Souza, B.M.; Macedo, G.S.; Leiria, L.B.; Gross, J.L.; Canani, L.H. Polymorphisms of the UCP2 gene are associated with proliferative diabetic retinopathy in patients with diabetes mellitus. Clin. Endocrinol. (Oxf.), 2010, 72(5), 612-619.
[http://dx.doi.org/10.1111/j.1365-2265.2009.03684.x] [PMID: 19681913]
[36]
Frankenberg, A.D.; Reis, A.F.; Gerchman, F. Relationships between adiponectin levels, the metabolic syndrome, and type 2 diabetes: A literature review. Arch. Endocrinol. Metab., 2017, 61(6), 614-622.
[http://dx.doi.org/10.1590/2359-3997000000316] [PMID: 29412387]
[37]
Munukutla, S.; Pan, G.; Palaniyandi, S.S. Aldehyde dehydrogenase (ALDH) 2 in diabetic heart diseases. In: Aldehyde Dehydrogenases; Ren, J.; Zhang, Y.; Ge, J., Eds.; Springer: Singapore, 2019; pp. 155-174.
[http://dx.doi.org/10.1007/978-981-13-6260-6_9]
[38]
Numakura, K.; Satoh, S.; Tsuchiya, N.; Horikawa, Y.; Inoue, T.; Kakinuma, H.; Matsuura, S.; Saito, M.; Tada, H.; Suzuki, T.; Habuchi, T. Clinical and genetic risk factors for posttransplant diabetes mellitus in adult renal transplant recipients treated with tacrolimus. Transplantation, 2005, 80(10), 1419-1424.
[http://dx.doi.org/10.1097/01.tp.0000181142.82649.e3] [PMID: 16340785]
[39]
Pierelli, G.; Stanzione, R.; Forte, M.; Migliarino, S.; Perelli, M.; Volpe, M.; Rubattu, S. Uncoupling protein 2: A key player and a potential therapeutic target in vascular diseases. Oxid. Med. Cell. Longev., 2017, 2017, 7348372.
[40]
Ayyasamy, V.; Owens, K.M.; Desouki, M.M.; Liang, P.; Bakin, A.; Thangaraj, K.; Buchsbaum, D.J.; LoBuglio, A.F.; Singh, K.K. Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin. PLoS One, 2011, 6(9), e24792.
[http://dx.doi.org/10.1371/journal.pone.0024792] [PMID: 21935467]
[41]
Cassell, P.G.; Saker, P.J.; Huxtable, S.J.; Kousta, E.; Jackson, A.E.; Hattersley, A.T.; Frayling, T.M.; Walker, M.; Kopelman, P.G.; Ramachandran, A.; Snehelatha, C.; Hitman, G.A.; McCarthy, M.I. Evidence that single nucleotide polymorphism in the uncoupling protein 3 (UCP3) gene influences fat distribution in women of European and Asian origin. Diabetologia, 2000, 43(12), 1558-1564.
[http://dx.doi.org/10.1007/s001250051569] [PMID: 11151767]
[42]
Pinelli, M.; Giacchetti, M.; Acquaviva, F.; Cocozza, S.; Donnarumma, G.; Lapice, E.; Riccardi, G.; Romano, G.; Vaccaro, O.; Monticelli, A. β2-adrenergic receptor and UCP3 variants modulate the relationship between age and type 2 diabetes mellitus. BMC Med. Genet., 2006, 7(1), 85.
[http://dx.doi.org/10.1186/1471-2350-7-85] [PMID: 17150099]
[43]
Himms-Hagen, J.; Harper, M.E. Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: An hypothesis. Exp. Biol. Med. (Maywood), 2001, 226(2), 78-84.
[http://dx.doi.org/10.1177/153537020122600204] [PMID: 11446442]
[44]
Lindholm, E.; Klannemark, M.; Agardh, E.; Groop, L.; Agardh, C.D. Putative role of polymorphisms in UCP1-3 genes for diabetic nephropathy. J. Diabetes Complications, 2004, 18(2), 103-107.
[http://dx.doi.org/10.1016/S1056-8727(03)00019-9] [PMID: 15120704]
[45]
Schrauwen, P.; Xia, J.; Walder, K.; Snitker, S.; Ravussin, E. A novel polymorphism in the proximal UCP3 promoter region: Effect on skeletal muscle UCP3 mRNA expression and obesity in male non-diabetic Pima Indians. Int. J. Obes., 1999, 23(12), 1242-1245.
[http://dx.doi.org/10.1038/sj.ijo.0801057] [PMID: 10643679]
[46]
Ahrén, B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat. Rev. Drug Discov., 2009, 8(5), 369-385.
[http://dx.doi.org/10.1038/nrd2782] [PMID: 19365392]
[47]
Lombardi, M.S.; Kavelaars, A.; Schedlowski, M.; Bijlsma, J.W.J.; Okihara, K.L.; Pol, M.; Ochsmann, S.; Pawlak, C.; Schmidt, R.E.; Heijnen, C.J. Decreased expression and activity of G‐protein‐coupled receptor kinases in peripheral blood mononuclear cells of patients with rheumatoid arthritis. FASEB J., 1999, 13(6), 715-725.
[http://dx.doi.org/10.1096/fasebj.13.6.715] [PMID: 10094932]
[48]
Ježek, J.; Dlasková, A.; Zelenka, J.; Jabůrek, M.; Ježek, P. H2O2-activated mitochondrial phospholipase iPLA2γ prevents lipotoxic oxidative stress in synergy with UCP2, amplifies signaling via G-protein-coupled receptor GPR40, and regulates insulin secretion in pancreatic β-cells. Antioxid. Redox Signal., 2015, 23(12), 958-972.
[http://dx.doi.org/10.1089/ars.2014.6195] [PMID: 25925080]
[49]
Atanes, P.; Ashik, T.; Persaud, S.J. Obesity-induced changes in human islet G protein-coupled receptor expression: Implications for metabolic regulation. Pharmacol. Ther., 2021, 228, 107928.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107928] [PMID: 34174278]
[50]
Barella, L.F.; Jain, S.; Kimura, T.; Pydi, S.P. Metabolic roles of G protein‐coupled receptor signaling in obesity and type 2 diabetes. FEBS J., 2021, 288(8), 2622-2644.
[http://dx.doi.org/10.1111/febs.15800] [PMID: 33682344]
[51]
Yonezawa, T.; Kurata, R.; Yoshida, K.; Murayama, M.; Cui, X.; Hasegawa, A. Free fatty acids-sensing G protein-coupled receptors in drug targeting and therapeutics. Curr. Med. Chem., 2013, 20(31), 3855-3871.
[http://dx.doi.org/10.2174/09298673113209990168] [PMID: 23862620]
[52]
Tseng, C.C.; Zhang, X.Y. Role of G protein-coupled receptor kinases in glucose-dependent insulinotropic polypeptide receptor signaling. Endocrinology, 2000, 141(3), 947-952.
[http://dx.doi.org/10.1210/endo.141.3.7365] [PMID: 10698169]
[53]
Ulrich, C.D., II; Holtmann, M.; Miller, L.J. Secretin and vasoactive intestinal peptide receptors: Members of a unique family of G protein-coupled receptors. Gastroenterology, 1998, 114(2), 382-397.
[http://dx.doi.org/10.1016/S0016-5085(98)70491-3] [PMID: 9453500]
[54]
Heng, B.C.; Aubel, D.; Fussenegger, M. An overview of the diverse roles of G-Protein Coupled Receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol. Adv., 2013, 31(8), 1676-1694.
[http://dx.doi.org/10.1016/j.biotechadv.2013.08.017] [PMID: 23999358]
[55]
Butcher, A.J.; Kong, K.C.; Prihandoko, R.; Tobin, A.B. Physiological role of G-protein coupled receptor phosphorylation. In: Muscarinic Receptors; Fryer, A.; Christopoulos, A.; Nathanson, N., Eds.; Springer: Berlin, Heidelberg, 2012; pp. 79-94.
[http://dx.doi.org/10.1007/978-3-642-23274-9_5]
[56]
Argyropoulos, G.; Brown, A.M.; Willi, S.M.; Zhu, J.; He, Y.; Reitman, M.; Gevao, S.M.; Spruill, I.; Garvey, W.T. Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient and fat oxidation in severe obesity and type 2 diabetes. J. Clin. Invest., 1998, 102(7), 1345-1351.
[http://dx.doi.org/10.1172/JCI4115] [PMID: 9769326]
[57]
Rolo, A.P.; Palmeira, C.M. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol., 2006, 212(2), 167-178.
[http://dx.doi.org/10.1016/j.taap.2006.01.003] [PMID: 16490224]
[58]
Nedergaard, J.; Cannon, B. The ‘novel’ ‘uncoupling’ proteins UCP2 and UCP3: What do they really do? Pros and cons for suggested functions. Exp. Physiol., 2003, 88(1), 65-84.
[http://dx.doi.org/10.1113/eph8802502] [PMID: 12525856]
[59]
Meirhaeghe, A.; Amouyel, P.; Helbecque, N.; Cottel, D.; Otabe, S.; Froguel, P.; Vasseur, F. An uncoupling protein 3 gene polymorphism associated with a lower risk of developing Type II diabetes and with atherogenic lipid profile in a French cohort. Diabetologia, 2000, 43(11), 1424-1428.
[http://dx.doi.org/10.1007/s001250051549] [PMID: 11126413]
[60]
Fukui, Y.; Masui, S.; Osada, S.; Umesono, K.; Motojima, K. A new thiazolidinedione, NC-2100, which is a weak PPAR-gamma activator, exhibits potent antidiabetic effects and induces uncoupling protein 1 in white adipose tissue of KKAy obese mice. Diabetes, 2000, 49(5), 759-767.
[http://dx.doi.org/10.2337/diabetes.49.5.759] [PMID: 10905484]
[61]
Tao, H.; Zhang, Y.; Zeng, X.; Shulman, G.I.; Jin, S. Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice. Nat. Med., 2014, 20(11), 1263-1269.
[http://dx.doi.org/10.1038/nm.3699] [PMID: 25282357]
[62]
Havel, P.J.; Hahn, T.M.; Sindelar, D.K.; Baskin, D.G.; Dallman, M.F.; Weigle, D.S.; Schwartz, M.W. Effects of streptozotocin-induced diabetes and insulin treatment on the hypothalamic melanocortin system and muscle uncoupling protein 3 expression in rats. Diabetes, 2000, 49(2), 244-252.
[http://dx.doi.org/10.2337/diabetes.49.2.244] [PMID: 10868941]
[63]
Chen, Y.; Dai, S.; Shang, D.; Ge, X.; Xie, Q.; Hao, C.M.; Zhu, T. Effect of -55C/T polymorphism of uncoupling protein 3 gene on risk for new-onset diabetes in Chinese peritoneal dialysis patients: A Prospective Cohort Study. Blood Purif., 2021, 50(6), 857-864.
[http://dx.doi.org/10.1159/000513151] [PMID: 33535204]
[64]
Urbano, F.; Filippello, A.; Di Pino, A.; Barbagallo, D.; Di Mauro, S.; Pappalardo, A.; Rabuazzo, A.M.; Purrello, M.; Purrello, F.; Piro, S. Altered expression of uncoupling protein 2 in GLP-1-producing cells after chronic high glucose exposure: Implications for the pathogenesis of diabetes mellitus. Am. J. Physiol. Cell Physiol., 2016, 310(7), C558-C567.
[http://dx.doi.org/10.1152/ajpcell.00148.2015] [PMID: 26739488]
[65]
Xia, N.; Daiber, A.; Habermeier, A.; Closs, E.I.; Thum, T.; Spanier, G.; Lu, Q.; Oelze, M.; Torzewski, M.; Lackner, K.J.; Münzel, T.; Förstermann, U.; Li, H. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J. Pharmacol. Exp. Ther., 2010, 335(1), 149-154.
[http://dx.doi.org/10.1124/jpet.110.168724] [PMID: 20610621]
[66]
Satoh, M.; Fujimoto, S.; Arakawa, S.; Yada, T.; Namikoshi, T.; Haruna, Y.; Horike, H.; Sasaki, T.; Kashihara, N. Angiotensin II type 1 receptor blocker ameliorates uncoupled endothelial nitric oxide synthase in rats with experimental diabetic nephropathy. Nephrol. Dial. Transplant., 2008, 23(12), 3806-3813.
[http://dx.doi.org/10.1093/ndt/gfn357] [PMID: 18596126]
[67]
Sasahara, M.; Nishi, M.; Kawashima, H.; Ueda, K.; Sakagashira, S.; Furuta, H.; Matsumoto, E.; Hanabusa, T.; Sasaki, H.; Nanjo, K. Uncoupling protein 2 promoter polymorphism -866G/A affects its expression in β-cells and modulates clinical profiles of Japanese type 2 diabetic patients. Diabetes, 2004, 53(2), 482-485.
[http://dx.doi.org/10.2337/diabetes.53.2.482] [PMID: 14747301]
[68]
Pankaj, Modi Diabetes beyond insulin: Review of new drugs for treatment of diabetes mellitus. Curr. Drug Discov. Technol., 2007, 4(1), 39-47.
[http://dx.doi.org/10.2174/157016307781115476] [PMID: 17630927]
[69]
Nathan, D.M. Finding new treatments for diabetes-how many, how fast... how good? N. Engl. J. Med., 2007, 356(5), 437-440.
[http://dx.doi.org/10.1056/NEJMp068294] [PMID: 17267901]
[70]
Sakurai, H. A new concept: The use of vanadium complexes in the treatment of diabetes mellitus. Chem. Rec., 2002, 2(4), 237-248.
[http://dx.doi.org/10.1002/tcr.10029] [PMID: 12203906]
[71]
Sena, C.M.; Bento, C.F.; Pereira, P.; Seiça, R. Diabetes mellitus: New challenges and innovative therapies. EPMA J., 2010, 1(1), 138-163.
[http://dx.doi.org/10.1007/s13167-010-0010-9] [PMID: 23199048]
[72]
McGuire, D.K.; Inzucchi, S.E. New drugs for the treatment of diabetes mellitus: Part I: Thiazolidinediones and their evolving cardiovascular implications. Circulation, 2008, 117(3), 440-449.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.704080] [PMID: 18212301]
[73]
Litonjua, A.A.; Gong, L.; Duan, Q.L.; Shin, J.; Moore, M.J.; Weiss, S.T.; Johnson, J.A.; Klein, T.E.; Altman, R.B. Very important pharmacogene summary ADRB2. Pharmacogenet. Genomics, 2010, 20(1), 64-69.
[http://dx.doi.org/10.1097/FPC.0b013e328333dae6] [PMID: 19927042]
[74]
Bleecker, E.R.; Postma, D.S.; Lawrance, R.M.; Meyers, D.A.; Ambrose, H.J.; Goldman, M. Effect of ADRB2 polymorphisms on response to longacting β2-agonist therapy: A pharmacogenetic analysis of two randomised studies. Lancet, 2007, 370(9605), 2118-2125.
[http://dx.doi.org/10.1016/S0140-6736(07)61906-0] [PMID: 18156033]
[75]
Roman, T.; Schmitz, M.; Polanczyk, G.V.; Eizirik, M.; Rohde, L.A.; Hutz, M.H. Is the? -2A adrenergic receptor gene (ADRA2A) associated with attention-deficit/hyperactivity disorder? Am. J. Med. Genet., 2003, 120B(1), 116-120.
[http://dx.doi.org/10.1002/ajmg.b.20018] [PMID: 12815749]
[76]
Messer, L.A.; Wang, L.; Tuggle, C.K.; Yerle, M.; Chardon, P.; Pomp, D.; Womack, J.E.; Barendse, W.; Crawford, A.M.; Notter, D.R.; Rothschild, M.F. Mapping of the melatonin receptor la (MTNR1A) gene in pigs, sheep, and cattle. Mamm. Genome, 1997, 8(5), 368-370.
[http://dx.doi.org/10.1007/s003359900444] [PMID: 9107687]
[77]
Prokopenko, I.; Langenberg, C.; Florez, J.C.; Saxena, R.; Soranzo, N.; Thorleifsson, G.; Loos, R.J.F.; Manning, A.K.; Jackson, A.U.; Aulchenko, Y.; Potter, S.C.; Erdos, M.R.; Sanna, S.; Hottenga, J.J.; Wheeler, E.; Kaakinen, M.; Lyssenko, V.; Chen, W.M.; Ahmadi, K.; Beckmann, J.S.; Bergman, R.N.; Bochud, M.; Bonnycastle, L.L.; Buchanan, T.A.; Cao, A.; Cervino, A.; Coin, L.; Collins, F.S.; Crisponi, L.; de Geus, E.J.C.; Dehghan, A.; Deloukas, P.; Doney, A.S.F.; Elliott, P.; Freimer, N.; Gateva, V.; Herder, C.; Hofman, A.; Hughes, T.E.; Hunt, S.; Illig, T.; Inouye, M.; Isomaa, B.; Johnson, T.; Kong, A.; Krestyaninova, M.; Kuusisto, J.; Laakso, M.; Lim, N.; Lindblad, U.; Lindgren, C.M.; McCann, O.T.; Mohlke, K.L.; Morris, A.D.; Naitza, S.; Orrù, M.; Palmer, C.N.A.; Pouta, A.; Randall, J.; Rathmann, W.; Saramies, J.; Scheet, P.; Scott, L.J.; Scuteri, A.; Sharp, S.; Sijbrands, E.; Smit, J.H.; Song, K.; Steinthorsdottir, V.; Stringham, H.M.; Tuomi, T.; Tuomilehto, J.; Uitterlinden, A.G.; Voight, B.F.; Waterworth, D.; Wichmann, H.E.; Willemsen, G.; Witteman, J.C.M.; Yuan, X.; Zhao, J.H.; Zeggini, E.; Schlessinger, D.; Sandhu, M.; Boomsma, D.I.; Uda, M.; Spector, T.D.; Penninx, B.W.J.H.; Altshuler, D.; Vollenweider, P.; Jarvelin, M.R.; Lakatta, E.; Waeber, G.; Fox, C.S.; Peltonen, L.; Groop, L.C.; Mooser, V.; Cupples, L.A.; Thorsteinsdottir, U.; Boehnke, M.; Barroso, I.; Van Duijn, C.; Dupuis, J.; Watanabe, R.M.; Stefansson, K.; McCarthy, M.I.; Wareham, N.J.; Meigs, J.B.; Abecasis, G.R. Variants in MTNR1B influence fasting glucose levels. Nat. Genet., 2009, 41(1), 77-81.
[http://dx.doi.org/10.1038/ng.290] [PMID: 19060907]
[78]
de las Casas-Engel, M.; Domínguez-Soto, A.; Sierra-Filardi, E.; Bragado, R.; Nieto, C.; Puig-Kroger, A.; Samaniego, R.; Loza, M.; Corcuera, M.T.; Gómez-Aguado, F.; Bustos, M.; Sánchez-Mateos, P.; Corbí, A.L. Serotonin skews human macrophage polarization through HTR2B and HTR7. J. Immunol., 2013, 190(5), 2301-2310.
[http://dx.doi.org/10.4049/jimmunol.1201133] [PMID: 23355731]
[79]
Bennet, H.; Balhuizen, A.; Medina, A.; Dekker Nitert, M.; Ottosson Laakso, E.; Essén, S.; Spégel, P.; Storm, P.; Krus, U.; Wierup, N.; Fex, M. Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes. Peptides, 2015, 71, 113-120.
[http://dx.doi.org/10.1016/j.peptides.2015.07.008] [PMID: 26206285]
[80]
Martin, A.P.; Alexander-Brett, J.M.; Canasto-Chibuque, C.; Garin, A.; Bromberg, J.S.; Fremont, D.H.; Lira, S.A. The chemokine binding protein M3 prevents diabetes induced by multiple low doses of streptozotocin. J. Immunol., 2007, 178(7), 4623-4631.
[http://dx.doi.org/10.4049/jimmunol.178.7.4623] [PMID: 17372021]
[81]
Kumar, U.; Sasi, R.; Suresh, S.; Patel, A.; Thangaraju, M.; Metrakos, P.; Patel, S.C.; Patel, Y.C. Subtype-selective expression of the five somatostatin receptors (hSSTR1-5) in human pancreatic islet cells: A quantitative double-label immunohistochemical analysis. Diabetes, 1999, 48(1), 77-85.
[http://dx.doi.org/10.2337/diabetes.48.1.77] [PMID: 9892225]
[82]
Samson, S.L.; Garber, A. GLP-1R agonist therapy for diabetes. Curr. Opin. Endocrinol. Diabetes Obes., 2013, 20(2), 87-97.
[http://dx.doi.org/10.1097/MED.0b013e32835edb32] [PMID: 23403741]
[83]
Poitout, V.; Lin, D.C.H. Modulating GPR40: Therapeutic promise and potential in diabetes. Drug Discov. Today, 2013, 18(23-24), 1301-1308.
[http://dx.doi.org/10.1016/j.drudis.2013.09.003] [PMID: 24051395]
[84]
Jones, R.M.; Leonard, J.N.; Buzard, D.J.; Lehmann, J. GPR119 agonists for the treatment of type 2 diabetes. Expert Opin. Ther. Pat., 2009, 19(10), 1339-1359.
[http://dx.doi.org/10.1517/13543770903153878] [PMID: 19780700]
[85]
Lee, Y.H.; Wang, M.Y.; Yu, X.X.; Unger, R.H. Glucagon is the key factor in the development of diabetes. Diabetologia, 2016, 59(7), 1372-1375.
[http://dx.doi.org/10.1007/s00125-016-3965-9] [PMID: 27115412]
[86]
De Ligt, R.A.F.; Kourounakis, A.P.; IJzerman, A.P. Inverse agonism at G protein-coupled receptors: (patho)physiological relevance and implications for drug discovery. Br. J. Pharmacol., 2000, 130(1), 1-12.
[http://dx.doi.org/10.1038/sj.bjp.0703311] [PMID: 10780991]
[87]
Ferguson, S.S.G.; Barak, L.S.; Zhang, J.; Caron, M.G. G-protein-coupled receptor regulation: Role of G-protein-coupled receptor kinases and arrestins. Can. J. Physiol. Pharmacol., 1996, 74(10), 1095-1110.
[http://dx.doi.org/10.1139/y96-124] [PMID: 9022829]
[88]
Priyadarshini, M.; Villa, S.R.; Fuller, M.; Wicksteed, B.; Mackay, C.R.; Alquier, T.; Poitout, V.; Mancebo, H.; Mirmira, R.G.; Gilchrist, A.; Layden, B.T. An acetate-specific GPCR, FFAR2, regulates insulin secretion. Mol. Endocrinol., 2015, 29(7), 1055-1066.
[http://dx.doi.org/10.1210/me.2015-1007] [PMID: 26075576]
[89]
Vassart, G.; Costagliola, S. G protein-coupled receptors: Mutations and endocrine diseases. Nat. Rev. Endocrinol., 2011, 7(6), 362-372.
[http://dx.doi.org/10.1038/nrendo.2011.20] [PMID: 21301490]
[90]
West, C.; Hanyaloglu, A.C. Minireview: spatial programming of G protein-coupled receptor activity: Decoding signaling in health and disease. Mol. Endocrinol., 2015, 29(8), 1095-1106.
[http://dx.doi.org/10.1210/ME.2015-1065] [PMID: 26121235]
[91]
Graciano, M.F.; Valle, M.; Kowluru, A.; Curi, R.; Carpinelli, A. Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets. Islets, 2011, 3(5), 213-223.
[http://dx.doi.org/10.4161/isl.3.5.15935] [PMID: 21750413]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy