Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis, Molecular Docking Studies, and In vitro Anticancer Evaluation of Novel Tolfenamic Acid Derivatives

Author(s): Abbas A. Mehihi, Ammar A. Kubba and Lubna H. Tahtamouni*

Volume 20, Issue 9, 2023

Published on: 19 October, 2022

Page: [1393 - 1413] Pages: 21

DOI: 10.2174/1570180819666220831110423

Price: $65

Abstract

Background: Accumulating experimental evidence has demonstrated that tolfenamic acid (TA) has anticancer activity. TA has been shown to modulate the expression of several cancer-related genes involved in apoptosis and cell cycle arrest, as well as metastasis and angiogenesis.

Objective: The current study was carried out to evaluate the anticancer activities of eight newly synthesized TA derivatives by conducting in silico molecular docking studies and in vitro biological evaluations to validate their VEGFR-2 tyrosine kinase inhibitory activities.

Methods: The novel TA derivatives (3A–F–5) were obtained by reacting TA hydrazide with substituted aldehydes, phthalic anhydride, and succinic anhydride. Spectroscopic techniques were used to characterize the target molecules. Docking studies were performed to determine the binding patterns to the potential molecular target VEGFR-2, and these were compared with the results of the in vitro VEGFR-2 tyrosine kinase (TK) inhibition assay.

Results: Our findings indicate that the newly synthesized compounds are cytotoxic, with compound 4 being the most potent. Additionally, all compounds inhibited VEGFR-2 TK activity. The EC50 value of compound 4 was nearly identical to that of the conventional VEGFR TK inhibitor sorafenib. SAR studies revealed that the presence of an aryl or a heteroaryl fragment attached to the hydrophilic linker (as found in compound 4) is crucial to the anticancer activity.

Conclusion: The outcomes suggest that the isoindoline derivative (compound 4) is a good candidate for further investigation. The docking results provide evidence for a correlation between the experimental and predicted VEGFR-2 TK inhibitory activity. Moreover, ADMET studies indicate that all ligands have good pharmacokinetic properties.

Keywords: Cytotoxicity, Structure-activity relationship, ADMET, VEGFR tyrosine kinase, Caspase, Cytochrome c, Intrinsic apoptosis pathway.

Graphical Abstract

[1]
Nara, S.; Garlapati, A. Design, synthesis and molecular docking study of hybrids of quinazolin-4(3H)-one as anticancer agents. Ars. Pharm., 2018, 59(3), 121-131.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.013]
[2]
Huang, T.; Song, X.; Xu, D.; Tiek, D.; Goenka, A.; Wu, B.; Sastry, N.; Hu, B.; Cheng, S.Y. Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics, 2020, 10(19), 8721-8743.
[http://dx.doi.org/10.7150/thno.41648] [PMID: 32754274]
[3]
Alizadeh, S.R.; Hashemi, S.M. Development and therapeutic potential of 2-aminothiazole derivatives in anticancer drug discovery. Med. Chem. Res., 2021, 30(4), 771-806.
[http://dx.doi.org/10.1007/s00044-020-02686-2] [PMID: 33469255]
[4]
Alam, M.M. 1,3,4-oxadiazole as a potential anti-cancer scaffold: A review. Biointerface Res. Appl. Chem., 2022, 12(4), 5727-5744.
[5]
Hassan, A.S.; Moustafa, G.O.; Awad, H.M.; Nossier, E.S.; Mady, M.F. Design, synthesis, anticancer evaluation, enzymatic assays, and a molecular modeling study of novel pyrazole-indole hybrids. ACS Omega, 2021, 6(18), 12361-12374.
[http://dx.doi.org/10.1021/acsomega.1c01604] [PMID: 34056388]
[6]
Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9, 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[7]
Ahmadvand, D.; Rahbarizadeh, F.; Jafari Iri-Sofla, F.; Namazi, G.; Khaleghi, S.; Geramizadeh, B.; Pasalar, P.; Karimi, H.; Aghaee Bakhtiari, S.H. Inhibition of angiogenesis by recombinant VEGF receptor fragments. Lab. Med., 2010, 41(7), 417-422.
[http://dx.doi.org/10.1309/LMMH2WYRLP7B3HJN]
[8]
Bai, W.; Ji, J.; Huang, Q.; Wei, W. Synthesis and evaluation of new thiourea derivatives as antitumor and antiangiogenic agents. Tetrahedron Lett., 2020, 61(40), 152366.
[http://dx.doi.org/10.1016/j.tetlet.2020.152366]
[9]
El-Naggar, A.M.; Hassan, A.M.A.; Elkaeed, E.B.; Alesawy, M.S.; Al-Karmalawy, A.A. Design, synthesis, and SAR studies of novel 4-methoxyphenyl pyrazole and pyrimidine derivatives as potential dual tyrosine kinase inhibitors targeting both EGFR and VEGFR-2. Bioorg. Chem., 2022, 123, 105770.
[http://dx.doi.org/10.1016/j.bioorg.2022.105770] [PMID: 35395446]
[10]
Rajabi, M.; Mousa, S. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(4), 34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[11]
Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci., 2020, 77(9), 1745-1770.
[http://dx.doi.org/10.1007/s00018-019-03351-7] [PMID: 31690961]
[12]
Modi, S.J.; Kulkarni, V.M. Vascular endothelial growth factor Receptor (VEGFR-2)/KDR inhibitors: Medicinal chemistry perspective. Med. Drug Discov., 2019, 2, 100009.
[http://dx.doi.org/10.1016/j.medidd.2019.100009]
[13]
Abdelrahim, M.; Nash, M.J.; Gottipolu, S.; Abudayyeh, A.; Basha, R. Anticancer Activity of a Small Molecule, Tolfenamic Acid: An Emphasis on Pancreatic Cancer. In: Theranostic Approach for Pancreatic Cancer; Academic Press, 2019; pp. 195-210.
[14]
Feldman, D.; Leahy, E.; Lee, S.H. Chemopreventive properties of tolfenamic acid: A mechanistic review. Curr. Med. Chem., 2018, 25(14), 1598-1608.
[http://dx.doi.org/10.2174/0929867324666170414155107] [PMID: 28413959]
[15]
Abbas, A.H.; Razzak Mahmood, A.A.; Tahtamouni, L.H.; Al-Mazaydeh, Z.A.; Rammaha, M.S.; Alsoubani, F.; Al-bayati, R.I. A novel derivative of picolinic acid induces endoplasmic reticulum stress-mediated apoptosis in human non-small cell lung cancer cells: Synthesis, docking study, and anticancer activity. Pharmacia, 2021, 68(3), 679-692.
[http://dx.doi.org/10.3897/pharmacia.68.e70654]
[16]
Alsaad, H.; Kubba, A.; Tahtamouni, L.H.; Hamzah, A.H. Synthesis, docking study, and structure activity relationship of novel anti-tumor 2- (2, 3- dimethyl aminobenzoic acid) moiety. Pharmacia., 2022, 69(2), 415-428.
[http://dx.doi.org/10.3897/pharmacia.69.e83158]
[17]
Koopaei, N.M.; Assarzadeh, M.J.; Almasirad, A.; Ghasemi-Niri, S.F.; Amini, M.; Kebriaeezadeh, A.; Nassiri Koopaei, N.; Ghadimi, M.; Tabei, A. Synthesis and analgesic activity of novel hydrazide and hydrazine derivatives. Iran. J. Pharm. Res., 2013, 12(4), 721-727.
[PMID: 24523751]
[18]
Ahmed, W.S.; Razzak, M.K.; Al-Bayati, R.I. Synthesis and evaluation of antimicrobial activity of new imides and schiff bases derived from Ethyl-4-Amino Benzoate. Orient. J. Chem., 2018, 34(5), 2477-2486.
[http://dx.doi.org/10.13005/ojc/340533]
[19]
Salih, M.M.; Saleh, A.M.; Hamad, A.S.; Al-Janabi, A.S. Synthesis, spectroscopic, anti-bacterial activity, molecular docking, ADMET, toxicity and DNA binding studies of divalent metal complexes of pyrazole-3-one azo ligand. J. Mol. Struct., 2022, 1264, 133252.
[http://dx.doi.org/10.1016/j.molstruc.2022.133252]
[20]
El-Adl, K.; Sakr, H.M.; Yousef, R.G.; Mehany, A.B.M.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Abulkhair, H.S.; Eissa, I.H. Discovery of new quinoxaline-2(1H)-one-based anticancer agents targeting VEGFR-2 as inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg. Chem., 2021, 114, 105105.
[http://dx.doi.org/10.1016/j.bioorg.2021.105105] [PMID: 34175720]
[21]
Sana, S.; Reddy, V.G.; Bhandari, S.; Reddy, T.S.; Tokala, R.; Sakla, A.P.; Bhargava, S.K.; Shankaraiah, N. Exploration of carbamide derived pyrimidine-thioindole conjugates as potential VEGFR-2 inhibitors with anti-angiogenesis effect. Eur. J. Med. Chem., 2020, 200, 112457.
[http://dx.doi.org/10.1016/j.ejmech.2020.112457] [PMID: 32422489]
[22]
Eissa, I.H.; Alesawy, M.S.; Saleh, A.M.; Elkaeed, E.B.; Alsfouk, B.A.; El-Attar, A.A.M.M.; Metwaly, A.M. Ligand and structure-based in silico determination of the most promising SARS-CoV-2 nsp16-nsp10 2′-o-methyltransferase complex inhibitors among 3009 FDA approved drugs. Molecules, 2022, 27(7), 2287.
[http://dx.doi.org/10.3390/molecules27072287] [PMID: 35408684]
[23]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[24]
Jayat, C.; Ratinaud, M.H. Cell cycle analysis by flow cytometry: Principles and applications. Biol. Cell, 1993, 78(1-2), 15-25.
[http://dx.doi.org/10.1016/0248-4900(93)90110-Z] [PMID: 8220224]
[25]
Lakshmanan, I.; Batra, S. Protocol for apoptosis assay by flow cytometry using annexin v staining method. Bio Protoc., 2013, 3(6), e374.
[http://dx.doi.org/10.21769/BioProtoc.374] [PMID: 27430005]
[26]
Yousef, R.G.; Sakr, H.M.; Eissa, I.H.; Mehany, A.B.M.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Abulkhair, H.S.; El-Adl, K. New quinoxaline-2(1 H)-ones as potential VEGFR-2 inhibitors: Design, synthesis, molecular docking, ADMET profile and anti-proliferative evaluations. New J. Chem., 2021, 45(36), 16949-16964.
[http://dx.doi.org/10.1039/D1NJ02509K]
[27]
Alanazi, M.M.; Elwan, A.; Alsaif, N.A.; Obaidullah, A.J.; Alkahtani, H.M.; Al-Mehizia, A.A.; Alsubaie, S.M.; Taghour, M.S.; Eissa, I.H. Discovery of new 3-methylquinoxalines as potential anti-cancer agents and apoptosis inducers targeting VEGFR-2: Design, synthesis, and in silico studies. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1732-1750.
[http://dx.doi.org/10.1080/14756366.2021.1945591] [PMID: 34325596]
[28]
Al-Bayati, A.I.; Razzak Mahmood, A.A.; Al-Mazaydeh, Z.A.; Rammaha, M.S.; Al-bayati, R.I.; Alsoubani, F.; Tahtamouni, L.H. Synthesis, docking study, and in vitro anticancer evaluation of new flufenamic acid derivatives. Pharmacia, 2021, 68(2), 449-461.
[http://dx.doi.org/10.3897/pharmacia.68.e66788]
[29]
Parmar, D.R.; Soni, J.Y.; Guduru, R.; Rayani, R.H.; Kusurkar, R.V.; Vala, A.G.; Talukdar, S.N.; Eissa, I.H.; Metwaly, A.M.; Khalil, A.; Zunjar, V.; Battula, S. Discovery of new anticancer thiourea-azetidine hybrids: Design, synthesis, in vitro antiproliferative, SAR, in silico molecular docking against VEGFR-2, ADMET, toxicity, and DFT studies. Bioorg. Chem., 2021, 115, 105206.
[http://dx.doi.org/10.1016/j.bioorg.2021.105206] [PMID: 34339975]
[30]
Alanazi, M.M.; Mahdy, H.A.; Alsaif, N.A.; Obaidullah, A.J.; Alkahtani, H.M.; Al-Mehizia, A.A.; Alsubaie, S.M.; Dahab, M.A.; Eissa, I.H. New bis([1,2,4]triazolo)[4,3-a:3′,4′-c]quinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, in silico studies, and anticancer evaluation. Bioorg. Chem., 2021, 112, 104949.
[http://dx.doi.org/10.1016/j.bioorg.2021.104949] [PMID: 34023640]
[31]
Aziz, M.A.; Serya, R.A.T.; Lasheen, D.S.; Abdel-Aziz, A.K.; Esmat, A.; Mansour, A.M.; Singab, A.N.B.; Abouzid, K.A.M. Discovery of potent VEGFR-2 inhibitors based on furopyrimidine and thienopyrimidne scaffolds as cancer targeting agents. Sci. Rep., 2016, 6(1), 24460.
[http://dx.doi.org/10.1038/srep24460] [PMID: 28442746]
[32]
Indrayanto, G.; Putra, G.S.; Suhud, F. Validation of in vitro bioassay methods: Application in herbal drug research. Profiles Drug Subst. Excip. Relat. Methodol., 2021, 46, 273-307.
[http://dx.doi.org/10.1016/bs.podrm.2020.07.005] [PMID: 33461699]
[33]
Weerapreeyakul, N.; Nonpunya, A.; Barusrux, S.; Thitimetharoch, T.; Sripanidkulchai, B. Evaluation of the anticancer potential of six herbs against a hepatoma cell line. Chin. Med., 2012, 7(1), 15.
[http://dx.doi.org/10.1186/1749-8546-7-15] [PMID: 22682026]
[34]
van Engeland, M.; Nieland, L.J.W.; Ramaekers, F.C.S.; Schutte, B.; Reutelingsperger, C.P.M. Annexin V-Affinity assay: A review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry, 1998, 31(1), 1-9.
[http://dx.doi.org/10.1002/(SICI)1097-0320(19980101)31:1<1:AID-CYTO1>3.0.CO;2-R] [PMID: 9450519]
[35]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[36]
Li, Y.; Gao, Z.H.; Qu, X.J. The adverse effects of sorafenib in patients with advanced cancers. Basic Clin. Pharmacol. Toxicol., 2015, 116(3), 216-221.
[http://dx.doi.org/10.1111/bcpt.12365] [PMID: 25495944]
[37]
Pan, Z.; Zhang, X.; Yu, P.; Chen, X.; Lu, P.; Li, M.; Liu, X.; Li, Z.; Wei, F.; Wang, K.; Zheng, Q.; Li, D. Cinobufagin induces cell cycle arrest at the G2/M phase and promotes apoptosis in malignant melanoma cells. Front. Oncol., 2019, 9, 853.
[http://dx.doi.org/10.3389/fonc.2019.00853] [PMID: 31552178]
[38]
Lotfi, R.; Kaltenmeier, C.; Lotze, M.T.; Bergmann, C. Until death do us part:Necrosis and oxidation promote the tumor microenvironment. Transfus. Med. Hemother., 2016, 43(2), 120-132.
[http://dx.doi.org/10.1159/000444941] [PMID: 27226794]
[39]
Liu, Z.; Jiao, D. Necroptosis, tumor necrosis and tumorigenesis. Cell Stress, 2020, 4(1), 1-8.
[http://dx.doi.org/10.15698/cst2020.01.208] [PMID: 31922095]
[40]
Zong, W.X.; Ditsworth, D.; Bauer, D.E.; Wang, Z.Q.; Thompson, C.B. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev., 2004, 18(11), 1272-1282.
[http://dx.doi.org/10.1101/gad.1199904] [PMID: 15145826]

© 2024 Bentham Science Publishers | Privacy Policy