Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Small-molecule High-throughput Screening Identifies an MEK Inhibitor PD198306 that Enhances Sorafenib Efficacy via MCL-1 and BIM in Hepatocellular Carcinoma Cells

Author(s): Junjie Hong, Wei Zheng and Xiujun Cai*

Volume 26, Issue 7, 2023

Published on: 25 October, 2022

Page: [1364 - 1374] Pages: 11

DOI: 10.2174/1386207325666220830145026

Price: $65

Abstract

Background: Sorafenib is the most widely used systematic therapy drug for treating unresectable Hepatocellular Carcinoma (HCC) but showed dissatisfactory efficacy in clinical applications.

Objective: We conducted a combinational quantitative small-molecule high-throughput screening (qHTS) to identify potential candidates to enhance the treatment effectiveness of sorafenib.

Methods: First, using a Hep3B human HCC cell line, 7051 approved drugs and bioactive compounds were screened, then the primary hits were tested with/without 0.5 μM sorafenib respectively, the compound has the half maximal Inhibitory Concentration (IC50) shift value greater than 1.5 was thought to have the synergistic effect with sorafenib. Furthermore, the MEK inhibitor PD198306 was selected for the further mechanistic study.

Results: 12 effective compounds were identified, including kinase inhibitors targeting MEK, AURKB, CAMK, ROCK2, BRAF, PI3K, AKT and EGFR, and a μ-opioid receptor agonist and a Ltype calcium channel blocker. The mechanistic research of the combination of sorafenib plus PD198306 showed that the two compounds synergistically inhibited MEK-ERK and mTORC1- 4EBP1 and induced apoptosis in HCC cells, which can be attributed to the transcriptional and posttranslational regulation of MCL-1 and BIM.

Conclusion: Small-molecule qHTS identifies MEK inhibitor PD1938306 as a potent sorafenib enhancer, together with several novel combination strategies that are valuable for further studies.

Keywords: small-molecule high-throughput screening, hepatocellular carcinoma, sorafenib, MEK inhibitor

Graphical Abstract

[1]
Adnane, L.; Trail, P.A.; Taylor, I.; Wilhelm, S.M. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol., 2006, 407, 597-612.
[http://dx.doi.org/10.1016/S0076-6879(05)07047-3] [PMID: 16757355]
[2]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[3]
Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.S.; Xu, J.; Sun, Y.; Liang, H.; Liu, J.; Wang, J.; Tak, W.Y.; Pan, H.; Burock, K.; Zou, J.; Voliotis, D.; Guan, Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol., 2009, 10(1), 25-34.
[http://dx.doi.org/10.1016/S1470-2045(08)70285-7] [PMID: 19095497]
[4]
Huang, R.; Southall, N.; Wang, Y.; Yasgar, A.; Shinn, P.; Jadhav, A.; Nguyen, D.T.; Austin, C.P. The NCGC pharmaceutical collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci. Transl. Med., 2011, 3(80), 80ps16.
[http://dx.doi.org/10.1126/scitranslmed.3001862] [PMID: 21525397]
[5]
Sun, W.; Tanaka, T.Q.; Magle, C.T.; Huang, W.; Southall, N.; Huang, R.; Dehdashti, S.J.; McKew, J.C.; Williamson, K.C.; Zheng, W. Chemical signatures and new drug targets for gametocytocidal drug development. Sci. Rep., 2015, 4(1), 3743.
[http://dx.doi.org/10.1038/srep03743] [PMID: 24434750]
[6]
Sima, N.; Sun, W.; Gorshkov, K.; Shen, M.; Huang, W.; Zhu, W.; Xie, X.; Zheng, W.; Cheng, X. Small molecules identified from a quantitative drug combinational screen resensitize cisplatin’s response in drug-resistant ovarian cancer cells. Transl. Oncol., 2018, 11(4), 1053-1064.
[http://dx.doi.org/10.1016/j.tranon.2018.06.002] [PMID: 29982103]
[7]
Chen, B.; Sirota, M.; Fan-Minogue, H.; Hadley, D.; Butte, A.J. Relating hepatocellular carcinoma tumor samples and cell lines using gene expression data in translational research. BMC Med. Genomics, 2015, 8(Suppl. 2), S5.
[http://dx.doi.org/10.1186/1755-8794-8-S2-S5]
[8]
Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1947] [PMID: 20068163]
[9]
Ciruela, A.; Dixon, A.K.; Bramwell, S.; Gonzalez, M.I.; Pinnock, R.D.; Lee, K. Identification of MEK1 as a novel target for the treatment of neuropathic pain. Br. J. Pharmacol., 2003, 138(5), 751-756.
[http://dx.doi.org/10.1038/sj.bjp.0705103] [PMID: 12642375]
[10]
Pelletier, J.P.; Fernandes, J.C.; Brunet, J.; Moldovan, F.; Schrier, D.; Flory, C.; Martel-Pelletier, J. In vivo selective inhibition of mitogen-activated protein kinase kinase 1/2 in rabbit experimental osteoarthritis is associated with a reduction in the development of structural changes. Arthritis Rheum., 2003, 48(6), 1582-1593.
[http://dx.doi.org/10.1002/art.11014] [PMID: 12794826]
[11]
Advani, S.H. Targeting mTOR pathway: A new concept in cancer therapy. Indian J. Med. Paediatr. Oncol., 2010, 31(4), 132-136.
[http://dx.doi.org/10.4103/0971-5851.76197] [PMID: 21584218]
[12]
Samatar, A.A.; Poulikakos, P.I. Targeting RAS–ERK signalling in cancer: Promises and challenges. Nat. Rev. Drug Discov., 2014, 13(12), 928-942.
[http://dx.doi.org/10.1038/nrd4281] [PMID: 25435214]
[13]
Lake, D.; Corrêa, S.A.L.; Müller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci., 2016, 73(23), 4397-4413.
[http://dx.doi.org/10.1007/s00018-016-2297-8] [PMID: 27342992]
[14]
Mendoza, M.C.; Er, E.E.; Blenis, J. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem. Sci., 2011, 36(6), 320-328.
[http://dx.doi.org/10.1016/j.tibs.2011.03.006] [PMID: 21531565]
[15]
Ma, L.; Chen, Z.; Erdjument-Bromage, H.; Tempst, P.; Pandolfi, P.P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell, 2005, 121(2), 179-193.
[http://dx.doi.org/10.1016/j.cell.2005.02.031] [PMID: 15851026]
[16]
Tomiyama, A.; Tachibana, K.; Suzuki, K.; Seino, S.; Sunayama, J.; Matsuda, K.; Sato, A.; Matsumoto, Y.; Nomiya, T.; Nemoto, K.; Yamashita, H.; Kayama, T.; Ando, K.; Kitanaka, C. MEK-ERK-dependent multiple caspase activation by mitochondrial proapoptotic Bcl-2 family proteins is essential for heavy ion irradiation-induced glioma cell death. Cell Death Dis., 2010, 1(7), e60.
[http://dx.doi.org/10.1038/cddis.2010.37]
[17]
Guo, H.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Deng, J.; Wang, X.; Wu, B.; Chen, K.; Deng, J. Modulation of the PI3K/Akt Pathway and Bcl-2 family proteins involved in chicken’s tubular apoptosis induced by nickel chloride (NiCl2). Int. J. Mol. Sci., 2015, 16(9), 22989-23011.
[http://dx.doi.org/10.3390/ijms160922989] [PMID: 26404262]
[18]
Dai, Y.; Jin, S.; Li, X.; Wang, D. The involvement of Bcl-2 family proteins in AKT-regulated cell survival in cisplatin resistant epithelial ovarian cancer. Oncotarget, 2017, 8(1), 1354-1368.
[http://dx.doi.org/10.18632/oncotarget.13817] [PMID: 27935869]
[19]
Pandey, M.K.; Gowda, K.; Doi, K.; Sharma, A.K.; Wang, H.G.; Amin, S. Proteasomal degradation of Mcl-1 by maritoclax induces apoptosis and enhances the efficacy of ABT-737 in melanoma cells. PLoS One, 2013, 8(11), e78570.
[http://dx.doi.org/10.1371/journal.pone.0078570] [PMID: 24223823]
[20]
Domina, A.M.; Vrana, J.A.; Gregory, M.A.; Hann, S.R.; Craig, R.W. MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene, 2004, 23(31), 5301-5315.
[http://dx.doi.org/10.1038/sj.onc.1207692] [PMID: 15241487]
[21]
Tong, J.; Wang, P.; Tan, S.; Chen, D.; Nikolovska-Coleska, Z.; Zou, F.; Yu, J.; Zhang, L. Mcl-1 degradation is required for targeted therapeutics to eradicate colon cancer cells. Cancer Res., 2017, 77(9), 2512-2521.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3242] [PMID: 28202514]
[22]
Wang, R.; Xia, L.; Gabrilove, J.; Waxman, S.; Jing, Y. Downregulation of Mcl-1 through GSK-3β activation contributes to arsenic trioxide-induced apoptosis in acute myeloid leukemia cells. Leukemia, 2013, 27(2), 315-324.
[http://dx.doi.org/10.1038/leu.2012.180] [PMID: 22751450]
[23]
Gregory, M.A.; Qi, Y.; Hann, S.R. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J. Biol. Chem., 2003, 278(51), 51606-51612.
[http://dx.doi.org/10.1074/jbc.M310722200] [PMID: 14563837]
[24]
Kazi, A.; Xiang, S.; Yang, H.; Delitto, D.; Trevino, J.; Jiang, R.H.Y.; Ayaz, M.; Lawrence, H.R.; Kennedy, P.; Sebti, S.M. GSK3 suppression upregulates β-catenin and c-Myc to abrogate KRas-dependent tumors. Nat. Commun., 2018, 9(1), 5154.
[http://dx.doi.org/10.1038/s41467-018-07644-6] [PMID: 30514931]
[25]
Jossé, L.; Xie, J.; Proud, C.G.; Smales, C.M. mTORC1 signalling and eIF4E/4E-BP1 translation initiation factor stoichiometry influence recombinant protein productivity from GS-CHOK1 cells. Biochem. J., 2016, 473(24), 4651-4664.
[http://dx.doi.org/10.1042/BCJ20160845] [PMID: 27760840]
[26]
Ceballos, M.P.; Angel, A.; Delprato, C.B.; Livore, V.I.; Ferretti, A.C.; Lucci, A.; Comanzo, C.G.; Alvarez, M.L.; Quiroga, A.D.; Mottino, A.D.; Carrillo, M.C. Sirtuin 1 and 2 inhibitors enhance the inhibitory effect of sorafenib in hepatocellular carcinoma cells. Eur. J. Pharmacol., 2021, 892, 173736.
[http://dx.doi.org/10.1016/j.ejphar.2020.173736] [PMID: 33220273]
[27]
Wang, X.; Gupta, P.; Jramne, Y.; Danilenko, M.; Liu, D.; Studzinski, G.P. Carnosic acid increases sorafenib-induced inhibition of ERK1/2 and STAT3 signaling which contributes to reduced cell proliferation and survival of hepatocellular carcinoma cells. Oncotarget, 2020, 11(33), 3129-3143.
[http://dx.doi.org/10.18632/oncotarget.27687] [PMID: 32913557]
[28]
Wu, Q.; Wang, X.; Pham, K.; Luna, A.; Studzinski, G.P.; Liu, C. Enhancement of sorafenib-mediated death of hepatocellular carcinoma cells by carnosic acid and vitamin D2 analog combination. J. Steroid Biochem. Mol. Biol., 2020, 197, 105524.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105524] [PMID: 31704246]
[29]
Lai, H.Y.; Tsai, H.H.; Yen, C.J.; Hung, L.Y.; Yang, C.C.; Ho, C.H.; Liang, H.Y.; Chen, F.W.; Li, C.F.; Wang, J.M. Metformin resensitizes sorafenib-resistant HCC cells through ampk-dependent autophagy activation. Front. Cell Dev. Biol., 2021, 8, 596655.
[http://dx.doi.org/10.3389/fcell.2020.596655] [PMID: 33681180]
[30]
Huynh, H.; Ong, R.; Goh, K.Y.; Lee, L.Y.; Puehler, F.; Scholz, A.; Politz, O.; Mumberg, D.; Ziegelbauer, K. Sorafenib/MEK inhibitor combination inhibits tumor growth and the Wnt/β catenin pathway in xenograft models of hepatocellular carcinoma. Int. J. Oncol., 2019, 54(3), 1123-1133.
[http://dx.doi.org/10.3892/ijo.2019.4693] [PMID: 30747223]
[31]
Hou, W.; Xia, H.; Zhou, S.; Fan, Z.; Xu, H.; Gong, Q.; Nie, Y.; Tang, Q.; Bi, F. The MEK inhibitors enhance the efficacy of sorafenib against hepatocellular carcinoma cells through reducing p-ERK rebound. Transl. Cancer Res., 2019, 8(4), 1224-1232.
[http://dx.doi.org/10.21037/tcr.2019.07.11] [PMID: 35116864]
[32]
Wang, E.; Kim, D.W.; Mahipal, A.; Chen, D.T.; Cao, B.; Masawi, F.; Kim, R.D. Phase I study of tramatinib combined with sorafenib in patients (pts) with advanced hepatocellular cancer (HCC). J. Clin. Oncol., 2019, 37, 431.
[http://dx.doi.org/10.1200/JCO.2019.37.4_suppl.431]
[33]
Wang, C.; Jin, H.; Gao, D.; Lieftink, C.; Evers, B.; Jin, G.; Xue, Z.; Wang, L.; Beijersbergen, R.L.; Qin, W.; Bernards, R. Phospho-ERK is a biomarker of response to a synthetic lethal drug combination of sorafenib and MEK inhibition in liver cancer. J. Hepatol., 2018, 69(5), 1057-1065.
[http://dx.doi.org/10.1016/j.jhep.2018.07.004] [PMID: 30030148]
[34]
Chen, Y.; Liu, Y.C.; Sung, Y.C.; Ramjiawan, R.R.; Lin, T.T.; Chang, C.C.; Jeng, K.S.; Chang, C.F.; Liu, C.H.; Gao, D.Y.; Hsu, F.F.; Duyverman, A.M.; Kitahara, S.; Huang, P.; Dima, S.; Popescu, I.; Flaherty, K.T.; Zhu, A.X.; Bardeesy, N.; Jain, R.K.; Benes, C.H.; Duda, D.G. Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors. Sci. Rep., 2017, 7(1), 44123.
[http://dx.doi.org/10.1038/srep44123] [PMID: 28276530]
[35]
Tai, W.M.; Yong, W.P.; Lim, C.; Low, L.S.; Tham, C.K.; Koh, T.S.; Ng, Q.S.; Wang, W.W.; Wang, L.Z.; Hartano, S.; Thng, C.H.; Huynh, H.; Lim, K.T.; Toh, H.C.; Goh, B.C.; Choo, S.P. A phase Ib study of selumetinib (AZD6244, ARRY-142886) in combination with sorafenib in advanced hepatocellular carcinoma (HCC). Ann. Oncol., 2016, 27(12), 2210-2215.
[http://dx.doi.org/10.1093/annonc/mdw415] [PMID: 27681866]
[36]
Ou, D.L.; Shen, Y.C.; Liang, J.D.; Liou, J.Y.; Yu, S.L.; Fan, H.H.; Wang, D.S.; Lu, Y.S.; Hsu, C.; Cheng, A.L. Induction of Bim expression contributes to the antitumor synergy between sorafenib and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor CI-1040 in hepatocellular carcinoma. Clin. Cancer Res., 2009, 15(18), 5820-5828.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-3294] [PMID: 19737956]
[37]
Sieghart, W.; Losert, D.; Strommer, S.; Cejka, D.; Schmid, K.; Rasoul-Rockenschaub, S.; Bodingbauer, M.; Crevenna, R.; Monia, B.P.; Peck-Radosavljevic, M.; Wacheck, V. Mcl-1 overexpression in hepatocellular carcinoma: A potential target for antisense therapy. J. Hepatol., 2006, 44(1), 151-157.
[http://dx.doi.org/10.1016/j.jhep.2005.09.010] [PMID: 16289418]
[38]
Zhu, M.; Zhang, Y.M. Function of myeloid cell leukaemia-1 and its regulative relations with hepatocellular carcinoma. Hepatoma Res., 2017, 3, 129-140.
[http://dx.doi.org/10.20517/2394-5079.2017.14]
[39]
Liu, L.; Cao, Y.; Chen, C.; Zhang, X.; McNabola, A.; Wilkie, D.; Wilhelm, S.; Lynch, M.; Carter, C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res., 2006, 66(24), 11851-11858.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1377] [PMID: 17178882]
[40]
Mills, J.R.; Hippo, Y.; Robert, F.; Chen, S.M.H.; Malina, A.; Lin, C.J.; Trojahn, U.; Wendel, H.G.; Charest, A.; Bronson, R.T.; Kogan, S.C.; Nadon, R.; Housman, D.E.; Lowe, S.W.; Pelletier, J. mTORC1 promotes survival through translational control of Mcl-1. Proc. Natl. Acad. Sci. USA, 2008, 105(31), 10853-10858.
[http://dx.doi.org/10.1073/pnas.0804821105] [PMID: 18664580]
[41]
Schacter, J.L.; Henson, E.S.; Gibson, S.B. Estrogen regulation of anti-apoptotic Bcl-2 family member Mcl-1 expression in breast cancer cells. PLoS One, 2014, 9(6), e100364.
[http://dx.doi.org/10.1371/journal.pone.0100364] [PMID: 24971890]
[42]
Hu, J.; Dang, N.; Menu, E.; De Bryune, E.; Xu, D.; Van Camp, B.; Van Valckenborgh, E.; Vanderkerken, K. Activation of ATF4 mediates unwanted Mcl-1 accumulation by proteasome inhibition. Blood, 2012, 119(3), 826-837.
[http://dx.doi.org/10.1182/blood-2011-07-366492] [PMID: 22128141]
[43]
Becker, T.M.; Boyd, S.C.; Mijatov, B.; Gowrishankar, K.; Snoyman, S.; Pupo, G.M.; Scolyer, R.A.; Mann, G.J.; Kefford, R.F.; Zhang, X.D.; Rizos, H. Mutant B-RAF-Mcl-1 survival signaling depends on the STAT3 transcription factor. Oncogene, 2014, 33(9), 1158-1166.
[http://dx.doi.org/10.1038/onc.2013.45] [PMID: 23455323]
[44]
Tamburini, J.; Chapuis, N.; Bardet, V.; Park, S.; Sujobert, P.; Willems, L.; Ifrah, N.; Dreyfus, F.; Mayeux, P.; Lacombe, C.; Bouscary, D. Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: Rationale for therapeutic inhibition of both pathways. Blood, 2008, 111(1), 379-382.
[http://dx.doi.org/10.1182/blood-2007-03-080796] [PMID: 17878402]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy