Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Ketogenic Diet: An Effective Treatment Approach for Neurodegenerative Diseases

Author(s): Ye Tao, Sean X. Leng and Haiyan Zhang*

Volume 20, Issue 12, 2022

Published on: 03 October, 2022

Page: [2303 - 2319] Pages: 17

DOI: 10.2174/1570159X20666220830102628

Price: $65

Abstract

This review discusses the effects and mechanisms of a ketogenic diet on neurodegenerative diseases on the basis of available evidence. A ketogenic diet refers to a high-fat, mediumprotein, and low-carbohydrate diet that leads to a metabolic shift to ketosis. This review systematically summarizes the scientific literature supporting this effective treatment approach for neurodegenerative diseases, including effects on mitochondrial function, oxidative stress, neuronal apoptosis, neuroinflammation, and the microbiota–gut-brain axis. It also highlights the clinical evidence for the effects of the ketogenic diet in the treatment of Alzheimer's disease, Parkinson's disease, and motor neuron disease. Finally, it discusses the common adverse effects of ketogenic therapy. Although the complete mechanism of the ketogenic diet in the treatment of neurodegenerative diseases remains to be elucidated, its clinical efficacy has attracted many new followers. The ketogenic diet is a good candidate for adjuvant therapy, but its specific applicability depends on the type and the degree of the disease.

Keywords: Ketogenic diet, neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, brain gut axis.

Graphical Abstract

[1]
Cunnane, S.C.; Courchesne-Loyer, A.; St-Pierre, V.; Vandenberghe, C.; Pierotti, T.; Fortier, M.; Croteau, E.; Castellano, C.A. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2016, 1367(1), 12-20.
[http://dx.doi.org/10.1111/nyas.12999] [PMID: 26766547]
[2]
Martin-McGill, K.J.; Bresnahan, R.; Levy, R.G.; Cooper, P.N. Ketogenic diets for drug-resistant epilepsy. Cochrane Database Syst. Rev., 2020, 6(6), CD001903.
[PMID: 32588435]
[3]
Paoli, A.; Bianco, A.; Damiani, E.; Bosco, G. Ketogenic diet in neuromuscular and neurodegenerative diseases. BioMed Res. Int., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/474296] [PMID: 25101284]
[4]
Kossoff, E.H.; Hartman, A.L. Ketogenic diets. Curr. Opin. Neurol., 2012, 25(2), 173-178.
[http://dx.doi.org/10.1097/WCO.0b013e3283515e4a] [PMID: 22322415]
[5]
Ferreira, L.; Lisenko, K.; Barros, B.; Zangeronimo, M.; Pereira, L.; Sousa, R. Influence of medium-chain triglycerides on consumption and weight gain in rats: a systematic review. J. Anim. Physiol. Anim. Nutr. (Berl.), 2014, 98(1), 1-8.
[http://dx.doi.org/10.1111/jpn.12030] [PMID: 23298149]
[6]
Giordano, C.; Marchiò, M.; Timofeeva, E.; Biagini, G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front. Neurol., 2014, 5, 63-63.
[http://dx.doi.org/10.3389/fneur.2014.00063] [PMID: 24808888]
[7]
Kossoff, E.H.; Krauss, G.L.; McGrogan, J.R.; Freeman, J.M. Efficacy of the Atkins diet as therapy for intractable epilepsy. Neurology, 2003, 61(12), 1789-1791.
[http://dx.doi.org/10.1212/01.WNL.0000098889.35155.72] [PMID: 14694049]
[8]
Murray, A.J.; Knight, N.S.; Cole, M.A.; Cochlin, L.E.; Carter, E.; Tchabanenko, K.; Pichulik, T.; Gulston, M.K.; Atherton, H.J.; Schroeder, M.A.; Deacon, R.M.J.; Kashiwaya, Y.; King, M.T.; Pawlosky, R.; Rawlins, J.N.P.; Tyler, D.J.; Griffin, J.L.; Robertson, J.; Veech, R.L.; Clarke, K. Novel ketone diet enhances physical and cognitive performance. FASEB J., 2016, 30(12), 4021-4032.
[http://dx.doi.org/10.1096/fj.201600773R] [PMID: 27528626]
[9]
Choragiewicz, T.; Zarnowska, I.; Gasior, M.; Zarnowski, T. Anticonvulsant and neuroprotective effects of the ketogenic diet. Przegl. Lek., 2010, 67(3), 205-212.
[PMID: 20687386]
[10]
Miller, V.J.; Villamena, F.A.; Volek, J.S. Nutritional ketosis and mitohormesis: potential implications for mitochondrial function and human health. J. Nutr. Metab., 2018, 2018, 1-27.
[http://dx.doi.org/10.1155/2018/5157645] [PMID: 29607218]
[11]
Gough, S.M.; Casella, A.; Ortega, K.J.; Hackam, A.S. Neuroprotection by the ketogenic diet: Evidence and controversies. Front. Nutr., 2021, 8, 782657.
[http://dx.doi.org/10.3389/fnut.2021.782657] [PMID: 34888340]
[12]
Noh, H.S.; Kim, Y.S.; Lee, H.P.; Chung, K.M.; Kim, D.W.; Kang, S.S.; Cho, G.J.; Choi, W.S. The protective effect of a ketogenic diet on kainic acid-induced hippocampal cell death in the male ICR mice. Epilepsy Res., 2003, 53(1-2), 119-128.
[http://dx.doi.org/10.1016/S0920-1211(02)00262-0] [PMID: 12576173]
[13]
Hoang, T.; Kuljanin, M.; Smith, M.D.; Jelokhani-Niaraki, M. A biophysical study on molecular physiology of the uncoupling proteins of the central nervous system. Biosci. Rep., 2015, 35(4), e00226.
[http://dx.doi.org/10.1042/BSR20150130] [PMID: 26182433]
[14]
Liu, D.; Chan, S.L.; de Souza-Pinto, N.C.; Slevin, J.R.; Wersto, R.P.; Zhan, M.; Mustafa, K.; de Cabo, R.; Mattson, M.P. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Neuromol. Med., 2006, 8(3), 389-414.
[http://dx.doi.org/10.1385/NMM:8:3:389] [PMID: 16775390]
[15]
Mohorko, N.; Černelič-Bizjak , M.; Poklar-Vatovec , T.; Grom , G.; Kenig , S.; Petelin , A.; Jenko-Pražnikar , Z. Weight loss, improved physical performance, cognitive function, eating behavior, and metabolic profile in a 12-week ketogenic diet in obese adults. Nutr. Res., 2019, 62, 64-77.
[http://dx.doi.org/10.1016/j.nutres.2018.11.007] [PMID: 30803508]
[16]
Orlando, A.; Chimienti, G.; Notarnicola, M.; Russo, F. The Ketogenic diet improves gut–brain axis in a rat model of irritable bowel syndrome: Impact on 5-HT and BDNF systems. Int. J. Mol. Sci., 2022, 23(3), 1098.
[http://dx.doi.org/10.3390/ijms23031098] [PMID: 35163022]
[17]
Colucci-D’Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int. J. Mol. Sci., 2020, 21(20), 7777.
[http://dx.doi.org/10.3390/ijms21207777] [PMID: 33096634]
[18]
Lee, J.; Seroogy, K.B.; Mattson, M.P. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J. Neurochem., 2002, 80(3), 539-547.
[http://dx.doi.org/10.1046/j.0022-3042.2001.00747.x] [PMID: 11905999]
[19]
Maswood, N.; Young, J.; Tilmont, E.; Zhang, Z.; Gash, D.M.; Gerhardt, G.A.; Grondin, R.; Roth, G.S.; Mattison, J.; Lane, M.A.; Carson, R.E.; Cohen, R.M.; Mouton, P.R.; Quigley, C.; Mattson, M.P.; Ingram, D.K. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 2004, 101(52), 18171-18176.
[http://dx.doi.org/10.1073/pnas.0405831102] [PMID: 15604149]
[20]
Chianese, R.; Coccurello, R.; Viggiano, A.; Scafuro, M.; Fiore, M.; Coppola, G.; Operto, F.F.; Fasano, S.; Laye, S.; Pierantoni, R.; Meccariello, R. Impact of dietary fats on brain functions. Curr. Neuropharmacol., 2018, 16(7), 1059-1085.
[http://dx.doi.org/10.2174/1570159X15666171017102547] [PMID: 29046155]
[21]
Koh, S.; Dupuis, N.; Auvin, S. Ketogenic diet and neuroinflammation. Epilepsy Res., 2020, 167, 106454.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106454] [PMID: 32987244]
[22]
Rinninella, E.; Cintoni, M.; Raoul, P.; Lopetuso, L.R.; Scaldaferri, F.; Pulcini, G.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients, 2019, 11(10), 2393.
[http://dx.doi.org/10.3390/nu11102393] [PMID: 31591348]
[23]
Bazinet, R.P.; Layé, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci., 2014, 15(12), 771-785.
[http://dx.doi.org/10.1038/nrn3820] [PMID: 25387473]
[24]
Cederholm, T. Salem, N., Jr; Palmblad, J. ω-3 fatty acids in the prevention of cognitive decline in humans. Adv. Nutr., 2013, 4(6), 672-676.
[http://dx.doi.org/10.3945/an.113.004556] [PMID: 24228198]
[25]
Layé, S. Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukot. Essent. Fatty Acids, 2010, 82(4-6), 295-303.
[http://dx.doi.org/10.1016/j.plefa.2010.02.006] [PMID: 20227866]
[26]
Elphick, M.R. The evolution and comparative neurobiology of endocannabinoid signalling. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1607), 3201-3215.
[http://dx.doi.org/10.1098/rstb.2011.0394] [PMID: 23108540]
[27]
Fasano, S.; Meccariello, R.; Cobellis, G.; Chianese, R.; Cacciola, G.; Chioccarelli, T.; Pierantoni, R. The endocannabinoid system: an ancient signaling involved in the control of male fertility. Ann. N. Y. Acad. Sci., 2009, 1163(1), 112-124.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04437.x] [PMID: 19456333]
[28]
Marsicano, G.; Lutz, B. Neuromodulatory functions of the endocannabinoid system. J. Endocrinol. Invest., 2006, 29(3)(Suppl.), 27-46.
[PMID: 16751707]
[29]
Stella, N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia, 2010, 58(9), 1017-1030.
[http://dx.doi.org/10.1002/glia.20983] [PMID: 20468046]
[30]
Pagotto, U.; Marsicano, G.; Cota, D.; Lutz, B.; Pasquali, R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr. Rev., 2006, 27(1), 73-100.
[http://dx.doi.org/10.1210/er.2005-0009] [PMID: 16306385]
[31]
Lafourcade, M.; Larrieu, T.; Mato, S.; Duffaud, A.; Sepers, M.; Matias, I.; De Smedt-Peyrusse, V.; Labrousse, V.F.; Bretillon, L.; Matute, C.; Rodríguez-Puertas, R.; Layé, S.; Manzoni, O. J. Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat. Neurosci., 2011, 14(3), 345-350.
[http://dx.doi.org/10.1038/nn.2736] [PMID: 21278728]
[32]
Thomazeau, A.; Bosch-Bouju, C.; Manzoni, O.; Layé, S. Nutritional n-3 PUFA deficiency abolishes endocannabinoid gating of hippocampal long-term potentiation. Cereb. Cortex, 2017, 27(4), 2571-2579.
[http://dx.doi.org/10.1093/cercor/bhw052] [PMID: 26946127]
[33]
Maalouf, M.; Rho, J.M.; Mattson, M.P. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res. Brain Res. Rev., 2009, 59(2), 293-315.
[http://dx.doi.org/10.1016/j.brainresrev.2008.09.002] [PMID: 18845187]
[34]
Jarrett, S.G.; Milder, J.B.; Liang, L.P.; Patel, M. The ketogenic diet increases mitochondrial glutathione levels. J. Neurochem., 2008, 106(3), 1044-1051.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05460.x] [PMID: 18466343]
[35]
Ziegler, D.R.; Ribeiro, L.C.; Hagenn, M.; Siqueira, R.; Araújo, E.; Torres, I.L.S.; Gottfried, C.; Netto, C.A.; Gonçalves, C.A. Ketogenic diet increases glutathione peroxidase activity in rat hippocampus. Neurochem. Res., 2003, 28(12), 1793-1797.
[http://dx.doi.org/10.1023/A:1026107405399] [PMID: 14649719]
[36]
Kim, D.Y.; Davis, L.M.; Sullivan, P.G.; Maalouf, M.; Simeone, T.A.; Brederode, J.; Rho, J.M. Ketone bodies are protective against oxidative stress in neocortical neurons. J. Neurochem., 2007, 101(5), 1316-1326.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04483.x] [PMID: 17403035]
[37]
Maalouf, M.; Sullivan, P.G.; Davis, L.; Kim, D.Y.; Rho, J.M. Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience, 2007, 145(1), 256-264.
[http://dx.doi.org/10.1016/j.neuroscience.2006.11.065] [PMID: 17240074]
[38]
Noh, H.S.; Hah, Y.S.; Nilufar, R.; Han, J.; Bong, J.H.; Kang, S.S.; Cho, G.J.; Choi, W.S. Acetoacetate protects neuronal cells from oxidative glutamate toxicity. J. Neurosci. Res., 2006, 83(4), 702-709.
[http://dx.doi.org/10.1002/jnr.20736] [PMID: 16435389]
[39]
Peixoto, L.; Abel, T. The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology, 2013, 38(1), 62-76.
[http://dx.doi.org/10.1038/npp.2012.86] [PMID: 22669172]
[40]
Pinto, A.; Bonucci, A.; Maggi, E.; Corsi, M.; Businaro, R. Anti-oxidant and anti-inflammatory activity of ketogenic diet: New perspectives for neuroprotection in Alzheimer’s disease. Antioxidants (Basel), 2018, 7(5), 63.
[http://dx.doi.org/10.3390/antiox7050063] [PMID: 29710809]
[41]
Shimazu, T.; Hirschey, M.D.; Newman, J.; He, W.; Shirakawa, K.; Le Moan, N.; Grueter, C.A.; Lim, H.; Saunders, L.R.; Stevens, R.D.; Newgard, C.B.; Farese, R.V., Jr; de Cabo, R.; Ulrich, S.; Akassoglou, K.; Verdin, E. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science, 2013, 339(6116), 211-214.
[http://dx.doi.org/10.1126/science.1227166] [PMID: 23223453]
[42]
Wei, T.; Tian, W.; Liu, F.; Xie, G. Protective effects of exogenous β-hydroxybutyrate on paraquat toxicity in rat kidney. Biochem. Biophys. Res. Commun., 2014, 447(4), 666-671.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.074] [PMID: 24755084]
[43]
Nagao, M. Toh, R.; Irino, Y.; Mori, T.; Nakajima, H.; Hara, T.; Honjo, T.; Satomi-Kobayashi, S.; Shinke, T.; Tanaka, H.; Ishida, T.; Hirata, K. β-Hydroxybutyrate elevation as a compensatory response against oxidative stress in cardiomyocytes. Biochem. Biophys. Res. Commun., 2016, 475(4), 322-328.
[http://dx.doi.org/10.1016/j.bbrc.2016.05.097] [PMID: 27216458]
[44]
Tanegashima, K.; Sato-Miyata, Y.; Funakoshi, M.; Nishito, Y.; Aigaki, T.; Hara, T. Epigenetic regulation of the glucose transporter gene Slc2a1 by β-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice. Genes Cells, 2017, 22(1), 71-83.
[http://dx.doi.org/10.1111/gtc.12456] [PMID: 27935189]
[45]
Noh, H.S.; Kim, Y.S.; Kim, Y.H.; Han, J.Y.; Park, C.H.; Kang, A.K.; Shin, H.S.; Kang, S.S.; Cho, G.J.; Choi, W.S. Ketogenic diet protects the hippocampus from kainic acid toxicity by inhibiting the dissociation of bad from 14-3-3. J. Neurosci. Res., 2006, 84(8), 1829-1836.
[http://dx.doi.org/10.1002/jnr.21057] [PMID: 17058267]
[46]
Kim, D.Y.; Vallejo, J.; Rho, J.M. Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. J. Neurochem., 2010, 114(1), 130-141.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06728.x] [PMID: 20374433]
[47]
Greco, T.; Glenn, T.C.; Hovda, D.A.; Prins, M.L. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity. J. Cereb. Blood Flow Metab., 2016, 36(9), 1603-1613.
[http://dx.doi.org/10.1177/0271678X15610584] [PMID: 26661201]
[48]
Elamin, M.; Ruskin, D.N.; Masino, S.A.; Sacchetti, P. Ketone-Based Metabolic Therapy: Is Increased NAD+ a Primary Mechanism? Front. Mol. Neurosci., 2017, 10, 377.
[http://dx.doi.org/10.3389/fnmol.2017.00377] [PMID: 29184484]
[49]
Yang, Y.; Sauve, A.A. NAD + metabolism: Bioenergetics, signaling and manipulation for therapy. Biochim. Biophys. Acta. Proteins Proteomics, 2016, 1864(12), 1787-1800.
[http://dx.doi.org/10.1016/j.bbapap.2016.06.014] [PMID: 27374990]
[50]
Frey, S.; Geffroy, G.; Desquiret-Dumas, V.; Gueguen, N.; Bris, C.; Belal, S.; Amati-Bonneau, P.; Chevrollier, A.; Barth, M.; Henrion, D.; Lenaers, G.; Bonneau, D.; Reynier, P.; Procaccio, V. The addition of ketone bodies alleviates mitochondrial dysfunction by restoring complex I assembly in a MELAS cellular model. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(1), 284-291.
[http://dx.doi.org/10.1016/j.bbadis.2016.10.028] [PMID: 27815040]
[51]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[52]
Davis, L.M.; Rho, J.M.; Sullivan, P.G. UCP-mediated free fatty acid uncoupling of isolated cortical mitochondria from fasted animals: Correlations to dietary modulations. Epilepsia, 2008, 49(Suppl. 8), 117-119.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01854.x] [PMID: 19049607]
[53]
Sullivan, P.G.; Rippy, N.A.; Dorenbos, K.; Concepcion, R.C.; Agarwal, A.K.; Rho, J.M. The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann. Neurol., 2004, 55(4), 576-580.
[http://dx.doi.org/10.1002/ana.20062] [PMID: 15048898]
[54]
Brand, M.D.; Affourtit, C.; Esteves, T.C.; Green, K.; Lambert, A.J.; Miwa, S.; Pakay, J.L.; Parker, N. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic. Biol. Med., 2004, 37(6), 755-767.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.05.034] [PMID: 15304252]
[55]
Echtay, K. Mitochondrial uncoupling proteins - What is their physiological role? Free Radic. Biol. Med., 2007, 43(10), 1351-1371.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.08.011] [PMID: 17936181]
[56]
Mookerjee, S.A.; Divakaruni, A.S.; Jastroch, M.; Brand, M.D. Mitochondrial uncoupling and lifespan. Mech. Ageing Dev., 2010, 131(7-8), 463-472.
[http://dx.doi.org/10.1016/j.mad.2010.03.010] [PMID: 20363244]
[57]
Mailloux, R.J.; Harper, M.E. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med., 2011, 51(6), 1106-1115.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.022] [PMID: 21762777]
[58]
Skulachev, V.P. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q. Rev. Biophys., 1996, 29(2), 169-202.
[http://dx.doi.org/10.1017/S0033583500005795] [PMID: 8870073]
[59]
Bough, K.J.; Wetherington, J.; Hassel, B.; Pare, J.F.; Gawryluk, J.W.; Greene, J.G.; Shaw, R.; Smith, Y.; Geiger, J.D.; Dingledine, R.J. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann. Neurol., 2006, 60(2), 223-235.
[http://dx.doi.org/10.1002/ana.20899] [PMID: 16807920]
[60]
Devivo, D.C.; Leckie, M.P.; Ferrendelli, J.S.; McDougal, D.B., Jr Chronic ketosis and cerebral metabolism. Ann. Neurol., 1978, 3(4), 331-337.
[http://dx.doi.org/10.1002/ana.410030410] [PMID: 666275]
[61]
Suzuki, M.; Suzuki, M.; Sato, K.; Dohi, S.; Sato, T.; Matsuura, A.; Hiraide, A. Effect of beta-hydroxybutyrate, a cerebral function improving agent, on cerebral hypoxia, anoxia and ischemia in mice and rats. Jpn. J. Pharmacol., 2001, 87(2), 143-150.
[http://dx.doi.org/10.1254/jjp.87.143] [PMID: 11700013]
[62]
Lu, Y.; Yang, Y.Y.; Zhou, M.W.; Liu, N.; Xing, H.Y.; Liu, X.X.; Li, F. Ketogenic diet attenuates oxidative stress and inflammation after spinal cord injury by activating Nrf2 and suppressing the NF-κB signaling pathways. Neurosci. Lett., 2018, 683, 13-18.
[http://dx.doi.org/10.1016/j.neulet.2018.06.016] [PMID: 29894768]
[63]
Liśkiewicz, A.D.; Kasprowska, D.; Wojakowska, A.; Polański, K.; Lewin-Kowalik, J.; Kotulska, K.; Jędrzejowska-Szypułka, H. Long-term high fat ketogenic diet promotes renal tumor growth in a rat model of tuberous sclerosis. Sci. Rep., 2016, 6(1), 21807.
[http://dx.doi.org/10.1038/srep21807] [PMID: 26892894]
[64]
Chorley, B.N.; Campbell, M.R.; Wang, X.; Karaca, M.; Sambandan, D.; Bangura, F.; Xue, P.; Pi, J.; Kleeberger, S.R.; Bell, D.A. Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Res., 2012, 40(15), 7416-7429.
[http://dx.doi.org/10.1093/nar/gks409] [PMID: 22581777]
[65]
Liu, B.; Hong, J.S. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther., 2003, 304(1), 1-7.
[http://dx.doi.org/10.1124/jpet.102.035048] [PMID: 12490568]
[66]
Milder, J.B.; Liang, L.P.; Patel, M. Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet. Neurobiol. Dis., 2010, 40(1), 238-244.
[http://dx.doi.org/10.1016/j.nbd.2010.05.030] [PMID: 20594978]
[67]
Gano, L.B.; Patel, M.; Rho, J.M. Ketogenic diets, mitochondria, and neurological diseases. J. Lipid Res., 2014, 55(11), 2211-2228.
[http://dx.doi.org/10.1194/jlr.R048975] [PMID: 24847102]
[68]
Ko, A.; Sim, N.S.; Choi, H.S.; Yang, D.; Kim, S.H.; Lee, J.S.; Kim, D.S.; Lee, J.H.; Kim, H.D.; Kang, H.C. Efficacy of the ketogenic diet for pediatric epilepsy according to the presence of detectable somatic mTOR pathway mutations in the brain. J. Clin. Neurol., 2022, 18(1), 71-78.
[http://dx.doi.org/10.3988/jcn.2022.18.1.71] [PMID: 35021279]
[69]
McDaniel, S.S.; Rensing, N.R.; Thio, L.L.; Yamada, K.A.; Wong, M. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia, 2011, 52(3), e7-e11.
[http://dx.doi.org/10.1111/j.1528-1167.2011.02981.x] [PMID: 21371020]
[70]
Fang, Z.; Li, X.; Wang, S.; Jiang, Q.; Loor, J.J.; Jiang, X.; Ju, L.; Yu, H.; Shen, T.; Chen, M.; Song, Y.; Wang, Z.; Du, X.; Liu, G. Overactivation of hepatic mechanistic target of rapamycin kinase complex 1 (mTORC1) is associated with low transcriptional activity of transcription factor EB and lysosomal dysfunction in dairy cows with clinical ketosis. J. Dairy Sci., 2022, 105(5), 4520-4533.
[http://dx.doi.org/10.3168/jds.2021-20892] [PMID: 35248377]
[71]
Reyes, N.A.; Fisher, J.K.; Austgen, K.; VandenBerg, S.; Huang, E.J.; Oakes, S.A. Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. J. Clin. Invest., 2010, 120(10), 3673-3679.
[http://dx.doi.org/10.1172/JCI42986] [PMID: 20890041]
[72]
Hu, Z.G.; Wang, H.D.; Jin, W.; Yin, H.X. Ketogenic diet reduces cytochrome c release and cellular apoptosis following traumatic brain injury in juvenile rats. Ann. Clin. Lab. Sci., 2009, 39(1), 76-83.
[PMID: 19201746]
[73]
Luan, G.; Zhao, Y.; Zhai, F.; Chen, Y.; Li, T. Ketogenic diet reduces Smac/Diablo and cytochrome c release and attenuates neuronal death in a mouse model of limbic epilepsy. Brain Res. Bull., 2012, 89(3-4), 79-85.
[http://dx.doi.org/10.1016/j.brainresbull.2012.07.002] [PMID: 22796483]
[74]
McDougall, A.; Bayley, M.; Munce, S.E.P. The ketogenic diet as a treatment for traumatic brain injury: a scoping review. Brain Inj., 2018, 32(4), 416-422.
[http://dx.doi.org/10.1080/02699052.2018.1429025] [PMID: 29359959]
[75]
Noh, H.S.; Kang, S.S.; Kim, D.W.; Kim, Y.H.; Park, C.H.; Han, J.Y.; Cho, G.J.; Choi, W.S. Ketogenic diet increases calbindin-D28k in the hippocampi of male ICR mice with kainic acid seizures. Epilepsy Res., 2005, 65(3), 153-159.
[http://dx.doi.org/10.1016/j.eplepsyres.2005.05.008] [PMID: 16046100]
[76]
Noh, H.S.; Kim, D.W.; Kang, S.S.; Cho, G.J.; Choi, W.S. Ketogenic diet prevents clusterin accumulation induced by kainic acid in the hippocampus of male ICR mice. Brain Res., 2005, 1042(1), 114-118.
[http://dx.doi.org/10.1016/j.brainres.2005.01.097] [PMID: 15823260]
[77]
Hu, Z.G.; Wang, H.D.; Qiao, L.; Yan, W.; Tan, Q.F.; Yin, H.X. The protective effect of the ketogenic diet on traumatic brain injury-induced cell death in juvenile rats. Brain Inj., 2009, 23(5), 459-465.
[http://dx.doi.org/10.1080/02699050902788469] [PMID: 19408168]
[78]
Jeon, B.T.; Lee, D.H.; Kim, K.H.; Kim, H.J.; Kang, S.S.; Cho, G.J.; Choi, W.S.; Roh, G.S. Ketogenic diet attenuates kainic acid-induced hippocampal cell death by decreasing AMPK/ACC pathway activity and HSP70. Neurosci. Lett., 2009, 453(1), 49-53.
[http://dx.doi.org/10.1016/j.neulet.2009.01.068] [PMID: 19429014]
[79]
Karamikheirabad, M.; Behzadi, G.; Faghihi, M.; Raoofian, R.; Ejtemaei Mehr, S.; Zuure, W.A.; Sadeghipour, H.R. A role for endocannabinoids in acute stress-induced suppression of the hypothalamic-pituitary-gonadal axis in male rats. Clin. Exp. Reprod. Med., 2013, 40(4), 155-162.
[http://dx.doi.org/10.5653/cerm.2013.40.4.155] [PMID: 24505561]
[80]
Vauzour, D.; Martinsen, A.; Layé, S. Neuroinflammatory processes in cognitive disorders: Is there a role for flavonoids and n-3 polyunsaturated fatty acids in counteracting their detrimental effects? Neurochem. Int., 2015, 89, 63-74.
[http://dx.doi.org/10.1016/j.neuint.2015.08.004] [PMID: 26260547]
[81]
Orr, S.K.; Palumbo, S.; Bosetti, F.; Mount, H.T.; Kang, J.X.; Greenwood, C.E.; Ma, D.W.L.; Serhan, C.N.; Bazinet, R.P. Unesterified docosahexaenoic acid is protective in neuroinflammation. J. Neurochem., 2013, 127(3), 378-393.
[http://dx.doi.org/10.1111/jnc.12392] [PMID: 23919613]
[82]
Madore, C.; Nadjar, A.; Delpech, J.C.; Sere, A.; Aubert, A.; Portal, C.; Joffre, C.; Layé, S. Nutritional n-3 PUFAs deficiency during perinatal periods alters brain innate immune system and neuronal plasticity-associated genes. Brain Behav. Immun., 2014, 41, 22-31.
[http://dx.doi.org/10.1016/j.bbi.2014.03.021] [PMID: 24735929]
[83]
Rey, C.; Nadjar, A.; Buaud, B.; Vaysse, C.; Aubert, A.; Pallet, V.; Layé, S.; Joffre, C. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro. Brain Behav. Immun., 2016, 55, 249-259.
[http://dx.doi.org/10.1016/j.bbi.2015.12.013] [PMID: 26718448]
[84]
Lukiw, W.J.; Bazan, N.G. Neuroinflammatory signaling upregulation in Alzheimer’s disease. Neurochem. Res., 2000, 25(9/10), 1173-1184.
[http://dx.doi.org/10.1023/A:1007627725251] [PMID: 11059791]
[85]
De Smedt-Peyrusse, V.; Sargueil, F.; Moranis, A.; Harizi, H.; Mongrand, S.; Layé, S. Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J. Neurochem., 2008, 105(2), 296-307.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05129.x] [PMID: 18021297]
[86]
Zhu, M.; Wang, X.; Hjorth, E.; Colas, R.A.; Schroeder, L.; Granholm, A.C.; Serhan, C.N.; Schultzberg, M. Pro-resolving lipid mediators improve neuronal survival and increase Aβ42 phagocytosis. Mol. Neurobiol., 2016, 53(4), 2733-2749.
[http://dx.doi.org/10.1007/s12035-015-9544-0] [PMID: 26650044]
[87]
Freund-Levi, Y.; Hjorth, E.; Lindberg, C.; Cederholm, T.; Faxen-Irving, G.; Vedin, I.; Palmblad, J.; Wahlund, L.O.; Schultzberg, M.; Basun, H.; Eriksdotter Jönhagen, M. Effects of omega-3 fatty acids on inflammatory markers in cerebrospinal fluid and plasma in Alzheimer’s disease: the OmegAD study. Dement. Geriatr. Cogn. Disord., 2009, 27(5), 481-490.
[http://dx.doi.org/10.1159/000218081] [PMID: 19439966]
[88]
Wang, X.; Puerta, E.; Cedazo-Minguez, A.; Hjorth, E.; Schultzberg, M. Insufficient resolution response in the hippocampus of a senescence-accelerated mouse model--SAMP8. J. Mol. Neurosci., 2015, 55(2), 396-405.
[http://dx.doi.org/10.1007/s12031-014-0346-z] [PMID: 24913689]
[89]
Koppel, S.J.; Swerdlow, R.H. Neuroketotherapeutics: A modern review of a century-old therapy. Neurochem. Int., 2018, 117, 114-125.
[http://dx.doi.org/10.1016/j.neuint.2017.05.019] [PMID: 28579059]
[90]
Ruskin, D.N.; Kawamura, M.; Masino, S.A. Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet. PLoS One, 2009, 4(12), e8349.
[http://dx.doi.org/10.1371/journal.pone.0008349] [PMID: 20041135]
[91]
Yang, X.; Cheng, B. Neuroprotective and anti-inflammatory activities of ketogenic diet on MPTP-induced neurotoxicity. J. Mol. Neurosci., 2010, 42(2), 145-153.
[http://dx.doi.org/10.1007/s12031-010-9336-y] [PMID: 20333481]
[92]
Nandivada, P.; Fell, G.L.; Pan, A.H.; Nose, V.; Ling, P.R.; Bistrian, B.R.; Puder, M. Eucaloric ketogenic diet reduces hypoglycemia and inflammation in mice with endotoxemia. Lipids, 2016, 51(6), 703-714.
[http://dx.doi.org/10.1007/s11745-016-4156-7] [PMID: 27117864]
[93]
Benlloch, M.; López-Rodríguez, M.M.; Cuerda-Ballester, M.; Drehmer, E.; Carrera, S.; Ceron, J.J.; Tvarijonaviciute, A.; Chirivella, J.; Fernández-García, D.; de la Rubia Ortí, J.E. Satiating effect of a ketogenic diet and its impact on muscle improvement and oxidation state in multiple sclerosis patients. Nutrients, 2019, 11(5), 1156.
[http://dx.doi.org/10.3390/nu11051156] [PMID: 31126118]
[94]
Youm, Y.H.; Nguyen, K.Y.; Grant, R.W.; Goldberg, E.L.; Bodogai, M.; Kim, D.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T.D.; Kang, S.; Horvath, T.L.; Fahmy, T.M.; Crawford, P.A.; Biragyn, A.; Alnemri, E.; Dixit, V.D. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat. Med., 2015, 21(3), 263-269.
[http://dx.doi.org/10.1038/nm.3804] [PMID: 25686106]
[95]
Goldberg, E.L. Asher, J.L.; Molony, R.D.; Shaw, A.C.; Zeiss, C.J.; Wang, C.; Morozova-Roche, L.A.; Herzog, R.I.; Iwasaki, A.; Dixit, V.D. β-hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares. Cell Rep., 2017, 18(9), 2077-2087.
[http://dx.doi.org/10.1016/j.celrep.2017.02.004] [PMID: 28249154]
[96]
Bae, H.R.; Kim, D.H.; Park, M.H.; Lee, B.; Kim, M.J.; Lee, E.K.; Chung, K.W.; Kim, S.M. Im, D.S.; Chung, H.Y. β-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget, 2016, 7(41), 66444-66454.
[http://dx.doi.org/10.18632/oncotarget.12119] [PMID: 27661104]
[97]
Cullingford, T.E. The ketogenic diet; fatty acids, fatty acid-activated receptors and neurological disorders. Prostaglandins Leukot. Essent. Fatty Acids, 2004, 70(3), 253-264.
[http://dx.doi.org/10.1016/j.plefa.2003.09.008] [PMID: 14769484]
[98]
Rahman, M.; Muhammad, S.; Khan, M.A.; Chen, H.; Ridder, D.A.; Müller-Fielitz, H.; Pokorná, B.; Vollbrandt, T.; Stölting, I.; Nadrowitz, R.; Okun, J.G.; Offermanns, S.; Schwaninger, M. The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat. Commun., 2014, 5(1), 3944.
[http://dx.doi.org/10.1038/ncomms4944] [PMID: 24845831]
[99]
Dupuis, N.; Curatolo, N.; Benoist, J.F.; Auvin, S. Ketogenic diet exhibits anti-inflammatory properties. Epilepsia, 2015, 56(7), e95-e98.
[http://dx.doi.org/10.1111/epi.13038] [PMID: 26011473]
[100]
Wang, X.; Song, Y.; Chen, J.; Zhang, S.; Le, Y.; Xie, Z.; Ouyang, W.; Tong, J. Subcutaneous administration of β-hydroxybutyrate improves learning and memory of sepsis surviving mice. Neurotherapeutics, 2020, 17(2), 616-626.
[http://dx.doi.org/10.1007/s13311-019-00806-4] [PMID: 31853744]
[101]
Lin, C.; Chao, H.; Li, Z.; Xu, X.; Liu, Y.; Bao, Z.; Hou, L.; Liu, Y.; Wang, X.; You, Y.; Liu, N.; Ji, J. Omega-3 fatty acids regulate NLRP3 inflammasome activation and prevent behavior deficits after traumatic brain injury. Exp. Neurol., 2017, 290, 115-122.
[http://dx.doi.org/10.1016/j.expneurol.2017.01.005] [PMID: 28077335]
[102]
Harun-Or-Rashid, M.; Inman, D.M. Reduced AMPK activation and increased HCAR activation drive anti-inflammatory response and neuroprotection in glaucoma. J. Neuroinflammation, 2018, 15(1), 313.
[http://dx.doi.org/10.1186/s12974-018-1346-7] [PMID: 30424795]
[103]
Shi, X. Li, X.; Li, D.; Li, Y.; Song, Y.; Deng, Q.; Wang, J.; Zhang, Y.; Ding, H.; Yin, L.; Zhang, Y.; Wang, Z.; Li, X.; Liu, G. β-Hydroxybutyrate activates the NF-κB signaling pathway to promote the expression of pro-inflammatory factors in calf hepatocytes. Cell. Physiol. Biochem., 2014, 33(4), 920-932.
[http://dx.doi.org/10.1159/000358664] [PMID: 24713665]
[104]
Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med., 2018, 24(4), 392-400.
[http://dx.doi.org/10.1038/nm.4517] [PMID: 29634682]
[105]
Long-Smith, C.; O’Riordan, K.J.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota-gut-brain axis: New therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol., 2020, 60(1), 477-502.
[http://dx.doi.org/10.1146/annurev-pharmtox-010919-023628] [PMID: 31506009]
[106]
Rawat, K.; Singh, N.; Kumari, P.; Saha, L. A review on preventive role of ketogenic diet (KD) in CNS disorders from the gut microbiota perspective. Rev. Neurosci., 2021, 32(2), 143-157.
[http://dx.doi.org/10.1515/revneuro-2020-0078] [PMID: 33070123]
[107]
Savignac, H.M.; Corona, G.; Mills, H.; Chen, L.; Spencer, J.P.E.; Tzortzis, G.; Burnet, P.W.J. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem. Int., 2013, 63(8), 756-764.
[http://dx.doi.org/10.1016/j.neuint.2013.10.006] [PMID: 24140431]
[108]
Gareau, M.G.; Wine, E.; Rodrigues, D.M.; Cho, J.H.; Whary, M.T.; Philpott, D.J.; MacQueen, G.; Sherman, P.M. Bacterial infection causes stress-induced memory dysfunction in mice. Gut, 2011, 60(3), 307-317.
[http://dx.doi.org/10.1136/gut.2009.202515] [PMID: 20966022]
[109]
Sochocka, M. Donskow-Łysoniewska, K.; Diniz, B.S.; Kurpas, D.; Brzozowska, E.; Leszek, J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—a critical review. Mol. Neurobiol., 2019, 56(3), 1841-1851.
[http://dx.doi.org/10.1007/s12035-018-1188-4] [PMID: 29936690]
[110]
Megur, A. Baltriukienė D.; Bukelskienė V.; Burokas, A. The microbiota–gut–brain axis and Alzheimer’s disease: Neuroinflammation is to blame? Nutrients, 2020, 13(1), 37.
[http://dx.doi.org/10.3390/nu13010037] [PMID: 33374235]
[111]
Mulak, A.; Bonaz, B. Brain-gut-microbiota axis in Parkinson’s disease. World J. Gastroenterol., 2015, 21(37), 10609-10620.
[http://dx.doi.org/10.3748/wjg.v21.i37.10609] [PMID: 26457021]
[112]
Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; Chesselet, M.F.; Keshavarzian, A.; Shannon, K.M.; Krajmalnik-Brown, R.; Wittung-Stafshede, P.; Knight, R.; Mazmanian, S.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 2016, 167(6), 1469-1480.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[113]
Socała, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Włodarczyk, M.; Zielińska, A.; Poleszak, E.; Fichna, J.; Wlaź P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res., 2021, 172, 105840.
[http://dx.doi.org/10.1016/j.phrs.2021.105840] [PMID: 34450312]
[114]
Blacher, E.; Bashiardes, S.; Shapiro, H.; Rothschild, D.; Mor, U.; Dori-Bachash, M.; Kleimeyer, C.; Moresi, C.; Harnik, Y.; Zur, M.; Zabari, M.; Brik, R.B.Z.; Kviatcovsky, D.; Zmora, N.; Cohen, Y.; Bar, N.; Levi, I.; Amar, N.; Mehlman, T.; Brandis, A.; Biton, I.; Kuperman, Y.; Tsoory, M.; Alfahel, L.; Harmelin, A.; Schwartz, M.; Israelson, A.; Arike, L.; Johansson, M.E.V.; Hansson, G.C.; Gotkine, M.; Segal, E.; Elinav, E. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature, 2019, 572(7770), 474-480.
[http://dx.doi.org/10.1038/s41586-019-1443-5] [PMID: 31330533]
[115]
Gotkine, M.; Kviatcovsky, D.; Elinav, E. Amyotrophic lateral sclerosis and intestinal microbiota—toward establishing cause and effect. Gut Microbes, 2020, 11(6), 1833-1841.
[http://dx.doi.org/10.1080/19490976.2020.1767464] [PMID: 32501768]
[116]
Boddy, S.L.; Giovannelli, I.; Sassani, M.; Cooper-Knock, J.; Snyder, M.P.; Segal, E.; Elinav, E.; Barker, L.A.; Shaw, P.J.; McDermott, C.J. The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Med., 2021, 19(1), 13.
[http://dx.doi.org/10.1186/s12916-020-01885-3] [PMID: 33468103]
[117]
Leeming, E.R.; Johnson, A.J.; Spector, T.D.; Le Roy, C.I. Effect of diet on the gut microbiota: Rethinking intervention duration. Nutrients, 2019, 11(12), 2862.
[http://dx.doi.org/10.3390/nu11122862] [PMID: 31766592]
[118]
Moszak, M. Szulińska, M.; Bogdański, P. You are what you eat—the relationship between diet, microbiota, and metabolic disorders—a review. Nutrients, 2020, 12(4), 1096.
[http://dx.doi.org/10.3390/nu12041096] [PMID: 32326604]
[119]
Paoli, A.; Mancin, L.; Bianco, A.; Thomas, E.; Mota, J.F.; Piccini, F. Ketogenic diet and microbiota: Friends or enemies? Genes (Basel), 2019, 10(7), 534.
[http://dx.doi.org/10.3390/genes10070534] [PMID: 31311141]
[120]
Dowis, K.; Banga, S. The potential health benefits of the ketogenic diet: A narrative review. Nutrients, 2021, 13(5), 1654.
[http://dx.doi.org/10.3390/nu13051654] [PMID: 34068325]
[121]
Zhu, S.; Jiang, Y.; Xu, K.; Cui, M.; Ye, W.; Zhao, G.; Jin, L.; Chen, X. The progress of gut microbiome research related to brain disorders. J. Neuroinflammation, 2020, 17(1), 25.
[http://dx.doi.org/10.1186/s12974-020-1705-z] [PMID: 31952509]
[122]
Nagpal, R.; Neth, B.J.; Wang, S.; Craft, S.; Yadav, H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine, 2019, 47, 529-542.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.032] [PMID: 31477562]
[123]
Ma, D.; Wang, A.C.; Parikh, I.; Green, S.J.; Hoffman, J.D.; Chlipala, G.; Murphy, M.P.; Sokola, B.S.; Bauer, B.; Hartz, A.M.S.; Lin, A.L. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci. Rep., 2018, 8(1), 6670.
[http://dx.doi.org/10.1038/s41598-018-25190-5] [PMID: 29703936]
[124]
Tang, Y.; Wang, Q.; Liu, J. Microbiota-gut-brain axis: A novel potential target of ketogenic diet for epilepsy. Curr. Opin. Pharmacol., 2021, 61, 36-41.
[http://dx.doi.org/10.1016/j.coph.2021.08.018] [PMID: 34607252]
[125]
Bourassa, M.W.; Alim, I.; Bultman, S.J.; Ratan, R.R. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci. Lett., 2016, 625, 56-63.
[http://dx.doi.org/10.1016/j.neulet.2016.02.009] [PMID: 26868600]
[126]
Mathewson, N.D.; Jenq, R.; Mathew, A.V.; Koenigsknecht, M.; Hanash, A.; Toubai, T.; Oravecz-Wilson, K.; Wu, S.R.; Sun, Y.; Rossi, C.; Fujiwara, H.; Byun, J.; Shono, Y.; Lindemans, C.; Calafiore, M.; Schmidt, T.M.; Honda, K.; Young, V.B.; Pennathur, S.; van den Brink, M.; Reddy, P. Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat. Immunol., 2016, 17(5), 505-513.
[http://dx.doi.org/10.1038/ni.3400] [PMID: 26998764]
[127]
Olson, C.A.; Vuong, H.E.; Yano, J.M.; Liang, Q.Y.; Nusbaum, D.J.; Hsiao, E.Y. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell, 2018, 173(7), 1728-1741.e13.
[http://dx.doi.org/10.1016/j.cell.2018.04.027] [PMID: 29804833]
[128]
Devkota, S.; Wang, Y.; Musch, M.W.; Leone, V.; Fehlner-Peach, H.; Nadimpalli, A.; Antonopoulos, D.A.; Jabri, B.; Chang, E.B. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature, 2012, 487(7405), 104-108.
[http://dx.doi.org/10.1038/nature11225] [PMID: 22722865]
[129]
Tagliabue, A.; Ferraris, C.; Uggeri, F.; Trentani, C.; Bertoli, S.; de Giorgis, V.; Veggiotti, P.; Elli, M. Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 Deficiency Syndrome: A 3-month prospective observational study. Clin. Nutr. ESPEN, 2017, 17, 33-37.
[http://dx.doi.org/10.1016/j.clnesp.2016.11.003] [PMID: 28361745]
[130]
Swidsinski, A.; Dörffel, Y.; Loening-Baucke, V.; Gille, C.; Göktas, Ö.; Reißhauer, A.; Neuhaus, J.; Weylandt, K.H.; Guschin, A.; Bock, M. Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet. Front. Microbiol., 2017, 8, 1141.
[http://dx.doi.org/10.3389/fmicb.2017.01141] [PMID: 28702003]
[131]
McGrattan, A.M.; McEvoy, C.T.; McGuinness, B.; McKinley, M.C.; Woodside, J.V. Effect of dietary interventions in mild cognitive impairment: a systematic review. Br. J. Nutr., 2018, 120(12), 1388-1405.
[http://dx.doi.org/10.1017/S0007114518002945] [PMID: 30409231]
[132]
Bai, D.; Fan, J.; Li, M.; Dong, C.; Gao, Y.; Fu, M.; Huang, G.; Liu, H. Effects of folic acid combined with DHA supplementation on cognitive function and amyloid-β-related biomarkers in older adults with mild cognitive impairment by a randomized, double blind, placebo-controlled trial. J. Alzheimers Dis., 2021, 81(1), 155-167.
[http://dx.doi.org/10.3233/JAD-200997] [PMID: 33749643]
[133]
Joffre, C.; Nadjar, A.; Lebbadi, M.; Calon, F.; Laye, S. n-3 LCPUFA improves cognition: The young, the old and the sick. Prostaglandins Leukot. Essent. Fatty Acids, 2014, 91(1-2), 1-20.
[http://dx.doi.org/10.1016/j.plefa.2014.05.001] [PMID: 24908517]
[134]
Bo, Y.; Zhang, X.; Wang, Y.; You, J.; Cui, H.; Zhu, Y.; Pang, W.; Liu, W.; Jiang, Y.; Lu, Q. The n-3 polyunsaturated fatty acids supplementation improved the cognitive function in the chinese elderly with mild cognitive impairment: A double-blind randomized controlled trial. Nutrients, 2017, 9(1), 54.
[http://dx.doi.org/10.3390/nu9010054] [PMID: 28075381]
[135]
Yurko-Mauro, K.; McCarthy, D.; Rom, D.; Nelson, E.B.; Ryan, A.S.; Blackwell, A.; Salem, N., Jr; Stedman, M. Beneficial effects of docosahexaenoic acid on cognition in age‐related cognitive decline. Alzheimers Dement., 2010, 6(6), 456-464.
[http://dx.doi.org/10.1016/j.jalz.2010.01.013] [PMID: 20434961]
[136]
Reger, M.A.; Henderson, S.T.; Hale, C.; Cholerton, B.; Baker, L.D.; Watson, G.S.; Hyde, K.; Chapman, D.; Craft, S. Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol. Aging, 2004, 25(3), 311-314.
[http://dx.doi.org/10.1016/S0197-4580(03)00087-3] [PMID: 15123336]
[137]
Krikorian, R.; Shidler, M.D.; Dangelo, K.; Couch, S.C.; Benoit, S.C.; Clegg, D.J. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol. Aging, 2012, 33(2), 425.e19-425.e27.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.10.006] [PMID: 21130529]
[138]
Rebello, C.J.; Keller, J.N.; Liu, A.G.; Johnson, W.D.; Greenway, F.L. Pilot feasibility and safety study examining the effect of medium chain triglyceride supplementation in subjects with mild cognitive impairment: A randomized controlled trial. BBA Clin., 2015, 3, 123-125.
[http://dx.doi.org/10.1016/j.bbacli.2015.01.001] [PMID: 26675661]
[139]
Brandt, J.; Buchholz, A.; Henry-Barron, B.; Vizthum, D.; Avramopoulos, D.; Cervenka, M.C. Preliminary report on the feasibility and efficacy of the modified atkins diet for treatment of mild cognitive impairment and early Alzheimer’s disease. J. Alzheimers Dis., 2019, 68(3), 969-981.
[http://dx.doi.org/10.3233/JAD-180995] [PMID: 30856112]
[140]
Fortier, M.; Castellano, C.A.; Croteau, E.; Langlois, F.; Bocti, C.; St-Pierre, V.; Vandenberghe, C.; Bernier, M.; Roy, M.; Descoteaux, M.; Whittingstall, K.; Lepage, M.; Turcotte, É.E.; Fulop, T.; Cunnane, S.C. A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment. Alzheimers Dement., 2019, 15(5), 625-634.
[http://dx.doi.org/10.1016/j.jalz.2018.12.017] [PMID: 31027873]
[141]
Neth, B.J.; Mintz, A.; Whitlow, C.; Jung, Y.; Solingapuram Sai, K.; Register, T.C.; Kellar, D.; Lockhart, S.N.; Hoscheidt, S.; Maldjian, J.; Heslegrave, A.J.; Blennow, K.; Cunnane, S.C.; Castellano, C.A.; Zetterberg, H.; Craft, S. Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer’s disease: a pilot study. Neurobiol. Aging, 2020, 86, 54-63.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.09.015] [PMID: 31757576]
[142]
Dahlgren, K.; Gibas, K.J. Ketogenic diet, high intensity interval training (HIIT) and memory training in the treatment of mild cognitive impairment: A case study. Diabetes Metab. Syndr., 2018, 12(5), 819-822.
[http://dx.doi.org/10.1016/j.dsx.2018.04.031] [PMID: 29678606]
[143]
Swerdlow, R.H. Brain aging, Alzheimer’s disease, and mitochondria. Biochim. Biophys. Acta Mol. Basis Dis., 2011, 1812(12), 1630-1639.
[http://dx.doi.org/10.1016/j.bbadis.2011.08.012] [PMID: 21920438]
[144]
Swerdlow, R.H. Alzheimer’s disease pathologic cascades: who comes first, what drives what. Neurotox. Res., 2012, 22(3), 182-194.
[http://dx.doi.org/10.1007/s12640-011-9272-9] [PMID: 21913048]
[145]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[146]
Castellano, C.A.; Nugent, S.; Paquet, N.; Tremblay, S.; Bocti, C.; Lacombe, G.; Imbeault, H.; Turcotte, É.; Fulop, T.; Cunnane, S.C. Lower brain 18F-fluorodeoxyglucose uptake but normal 11C-acetoacetate metabolism in mild Alzheimer’s disease dementia. J. Alzheimers Dis., 2014, 43(4), 1343-1353.
[http://dx.doi.org/10.3233/JAD-141074] [PMID: 25147107]
[147]
Winkler, E.A.; Nishida, Y.; Sagare, A.P.; Rege, S.V.; Bell, R.D.; Perlmutter, D.; Sengillo, J.D.; Hillman, S.; Kong, P.; Nelson, A.R.; Sullivan, J.S.; Zhao, Z.; Meiselman, H.J.; Wenby, R.B.; Soto, J.; Abel, E.D.; Makshanoff, J.; Zuniga, E.; De Vivo, D.C.; Zlokovic, B.V. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci., 2015, 18(4), 521-530.
[http://dx.doi.org/10.1038/nn.3966] [PMID: 25730668]
[148]
Taylor, M.K.; Sullivan, D.K.; Swerdlow, R.H.; Vidoni, E.D.; Morris, J.K.; Mahnken, J.D.; Burns, J.M. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am. J. Clin. Nutr., 2017, 106(6), 1463-1470.
[http://dx.doi.org/10.3945/ajcn.117.162263] [PMID: 29070566]
[149]
Kashiwaya, Y.; Bergman, C.; Lee, J.H.; Wan, R.; King, M.T.; Mughal, M.R.; Okun, E.; Clarke, K.; Mattson, M.P.; Veech, R.L. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol. Aging, 2013, 34(6), 1530-1539.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.11.023] [PMID: 23276384]
[150]
Gu, Y.; Luchsinger, J.A.; Stern, Y.; Scarmeas, N. Mediterranean diet, inflammatory and metabolic biomarkers, and risk of Alzheimer’s disease. J. Alzheimers Dis., 2010, 22(2), 483-492.
[http://dx.doi.org/10.3233/JAD-2010-100897] [PMID: 20847399]
[151]
Balietti, M.; Giorgetti, B.; Fattoretti, P.; Grossi, Y.; Di Stefano, G.; Casoli, T.; Platano, D.; Solazzi, M.; Orlando, F.; Aicardi, G.; Bertoni-Freddari, C. Ketogenic diets cause opposing changes in synaptic morphology in CA1 hippocampus and dentate gyrus of late-adult rats. Rejuvenation Res., 2008, 11(3), 631-640.
[http://dx.doi.org/10.1089/rej.2007.0650] [PMID: 18593281]
[152]
Yao, J.; Diaz Brinton, R. Targeting mitochondrial bioenergetics for Alzheimer’s prevention and treatment. Curr. Pharm. Des., 2011, 17(31), 3474-3479.
[http://dx.doi.org/10.2174/138161211798072517] [PMID: 21902662]
[153]
Studzinski, C.M.; MacKay, W.A.; Beckett, T.L.; Henderson, S.T.; Murphy, M.P.; Sullivan, P.G.; Burnham, W.M. Induction of ketosis may improve mitochondrial function and decrease steady-state amyloid-β precursor protein (APP) levels in the aged dog. Brain Res., 2008, 1226, 209-217.
[http://dx.doi.org/10.1016/j.brainres.2008.06.005] [PMID: 18582445]
[154]
Wilkins, H.M.; Swerdlow, R.H. Amyloid precursor protein processing and bioenergetics. Brain Res. Bull., 2017, 133, 71-79.
[http://dx.doi.org/10.1016/j.brainresbull.2016.08.009] [PMID: 27545490]
[155]
Beckett, T.L.; Studzinski, C.M.; Keller, J.N.; Paul Murphy, M.; Niedowicz, D.M. A ketogenic diet improves motor performance but does not affect β-amyloid levels in a mouse model of Alzheimer’s Disease. Brain Res., 2013, 1505, 61-67.
[http://dx.doi.org/10.1016/j.brainres.2013.01.046] [PMID: 23415649]
[156]
Brownlow, M.L.; Benner, L.; D’Agostino, D.; Gordon, M.N.; Morgan, D. Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer’s pathology. PLoS One, 2013, 8(9), e75713-e75713.
[http://dx.doi.org/10.1371/journal.pone.0075713] [PMID: 24069439]
[157]
Kashiwaya, Y. Takeshima, T.; Mori, N.; Nakashima, K.; Clarke, K.; Veech, R.L. D -β-Hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 2000, 97(10), 5440-5444.
[http://dx.doi.org/10.1073/pnas.97.10.5440] [PMID: 10805800]
[158]
Yin, J.X.; Maalouf, M.; Han, P.; Zhao, M.; Gao, M.; Dharshaun, T.; Ryan, C.; Whitelegge, J.; Wu, J.; Eisenberg, D.; Reiman, E.M.; Schweizer, F.E.; Shi, J. Ketones block amyloid entry and improve cognition in an Alzheimer’s model. Neurobiol. Aging, 2016, 39, 25-37.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.11.018] [PMID: 26923399]
[159]
Henderson, S.T.; Vogel, J.L.; Barr, L.J.; Garvin, F.; Jones, J.J.; Costantini, L.C. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab. (Lond.), 2009, 6(1), 31.
[http://dx.doi.org/10.1186/1743-7075-6-31] [PMID: 19664276]
[160]
Torosyan, N.; Sethanandha, C.; Grill, J.D.; Dilley, M.L.; Lee, J.; Cummings, J.L.; Ossinalde, C.; Silverman, D.H. Changes in regional cerebral blood flow associated with a 45 day course of the ketogenic agent, caprylidene, in patients with mild to moderate Alzheimer’s disease: Results of a randomized, double-blinded, pilot study. Exp. Gerontol., 2018, 111, 118-121.
[http://dx.doi.org/10.1016/j.exger.2018.07.009] [PMID: 30006299]
[161]
Henderson, S.T.; Poirier, J. Pharmacogenetic analysis of the effects of polymorphisms in APOE, IDE and IL1B on a ketone body based therapeutic on cognition in mild to moderate Alzheimer’s disease; a randomized, double-blind, placebo-controlled study. BMC Med. Genet., 2011, 12(1), 137.
[http://dx.doi.org/10.1186/1471-2350-12-137] [PMID: 21992747]
[162]
Phillips, M.C.L.; Deprez, L.M.; Mortimer, G.M.N.; Murtagh, D.K.J.; McCoy, S.; Mylchreest, R.; Gilbertson, L.J.; Clark, K.M.; Simpson, P.V.; McManus, E.J.; Oh, J.E.; Yadavaraj, S.; King, V.M.; Pillai, A.; Romero-Ferrando, B.; Brinkhuis, M.; Copeland, B.M.; Samad, S.; Liao, S.; Schepel, J.A.C. Randomized crossover trial of a modified ketogenic diet in Alzheimer’s disease. Alzheimers Res. Ther., 2021, 13(1), 51.
[http://dx.doi.org/10.1186/s13195-021-00783-x] [PMID: 33622392]
[163]
Ota, M.; Matsuo, J.; Ishida, I.; Takano, H.; Yokoi, Y.; Hori, H.; Yoshida, S.; Ashida, K.; Nakamura, K.; Takahashi, T.; Kunugi, H. Effects of a medium-chain triglyceride-based ketogenic formula on cognitive function in patients with mild-to-moderate Alzheimer’s disease. Neurosci. Lett., 2019, 690, 232-236.
[http://dx.doi.org/10.1016/j.neulet.2018.10.048] [PMID: 30367958]
[164]
Newport, M.T.; VanItallie, T.B.; Kashiwaya, Y.; King, M.T.; Veech, R.L. A new way to produce hyperketonemia: Use of ketone ester in a case of Alzheimer’s disease. Alzheimers Dement., 2015, 11(1), 99-103.
[http://dx.doi.org/10.1016/j.jalz.2014.01.006] [PMID: 25301680]
[165]
Croteau, E.; Castellano, C.A.; Richard, M.A.; Fortier, M.; Nugent, S.; Lepage, M.; Duchesne, S.; Whittingstall, K.; Turcotte, É.E.; Bocti, C.; Fülöp, T.; Cunnane, S.C. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer’s disease. J. Alzheimers Dis., 2018, 64(2), 551-561.
[http://dx.doi.org/10.3233/JAD-180202] [PMID: 29914035]
[166]
Taylor, M.K.; Sullivan, D.K.; Mahnken, J.D.; Burns, J.M.; Swerdlow, R.H. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2018, 4(1), 28-36.
[http://dx.doi.org/10.1016/j.trci.2017.11.002] [PMID: 29955649]
[167]
Tieu, K. Perier, C.; Caspersen, C.; Teismann, P.; Wu, D.C.; Yan, S.D.; Naini, A.; Vila, M.; Jackson-Lewis, V.; Ramasamy, R.; Przedborski, S. D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J. Clin. Invest., 2003, 112(6), 892-901.
[http://dx.doi.org/10.1172/JCI200318797] [PMID: 12975474]
[168]
Veyrat-Durebex, C.; Reynier, P.; Procaccio, V.; Hergesheimer, R.; Corcia, P.; Andres, C.R.; Blasco, H. How can a ketogenic diet improve motor function? Front. Mol. Neurosci., 2018, 11, 15-15.
[http://dx.doi.org/10.3389/fnmol.2018.00015] [PMID: 29434537]
[169]
Cheng, B.; Yang, X.; An, L.; Gao, B.; Liu, X.; Liu, S. Ketogenic diet protects dopaminergic neurons against 6-OHDA neurotoxicity via up-regulating glutathione in a rat model of Parkinson’s disease. Brain Res., 2009, 1286, 25-31.
[http://dx.doi.org/10.1016/j.brainres.2009.06.060] [PMID: 19559687]
[170]
Wang, S.; Yuan, Y.H.; Chen, N.H.; Wang, H.B. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease. Int. Immunopharmacol., 2019, 67, 458-464.
[http://dx.doi.org/10.1016/j.intimp.2018.12.019] [PMID: 30594776]
[171]
Yilmaz, R.; Strafella, A.P.; Bernard, A.; Schulte, C.; van den Heuvel, L.; Schneiderhan-Marra, N.; Knorpp, T.; Joos, T.O.; Leypoldt, F.; Geritz, J.; Hansen, C.; Heinzel, S.; Apel, A.; Gasser, T.; Lang, A.E.; Berg, D.; Maetzler, W.; Marras, C. Serum inflammatory profile for the discrimination of clinical subtypes in Parkinson’s disease. Front. Neurol., 2018, 9, 1123-1123.
[http://dx.doi.org/10.3389/fneur.2018.01123] [PMID: 30622507]
[172]
Burguillos, M.A.; Deierborg, T.; Kavanagh, E.; Persson, A.; Hajji, N.; Garcia-Quintanilla, A.; Cano, J.; Brundin, P.; Englund, E.; Venero, J.L.; Joseph, B. Caspase signalling controls microglia activation and neurotoxicity. Nature, 2011, 472(7343), 319-324.
[http://dx.doi.org/10.1038/nature09788] [PMID: 21389984]
[173]
Chuang, Y.H.; Lee, P.C.; Vlaar, T.; Mulot, C.; Loriot, M.A.; Hansen, J.; Lill, C.M.; Ritz, B.; Elbaz, A. Pooled analysis of the HLA-DRB1 by smoking interaction in Parkinson disease. Ann. Neurol., 2017, 82(5), 655-664.
[http://dx.doi.org/10.1002/ana.25065] [PMID: 28981958]
[174]
Aliseychik, M.P.; Andreeva, T.V.; Rogaev, E.I. Immunogenetic factors of neurodegenerative diseases: The role of HLA class II. Biochemistry (Mosc.), 2018, 83(9), 1104-1116.
[http://dx.doi.org/10.1134/S0006297918090122] [PMID: 30472949]
[175]
Colonna, M.; Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol., 2017, 35(1), 441-468.
[http://dx.doi.org/10.1146/annurev-immunol-051116-052358] [PMID: 28226226]
[176]
Lofrumento, D.D.; Saponaro, C.; Cianciulli, A.; De Nuccio, F.; Mitolo, V.; Nicolardi, G.; Panaro, M.A. MPTP-induced neuroinflammation increases the expression of pro-inflammatory cytokines and their receptors in mouse brain. Neuroimmunomodulation, 2011, 18(2), 79-88.
[http://dx.doi.org/10.1159/000320027] [PMID: 20938211]
[177]
Lee, E.; Park, H.R.; Ji, S.T.; Lee, Y.; Lee, J. Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model by downregulating the activations of nuclear factor-κB, ERK, and JNK. J. Neurosci. Res., 2014, 92(1), 130-139.
[http://dx.doi.org/10.1002/jnr.23307] [PMID: 24166733]
[178]
Morris, G.; Maes, M.; Berk, M.; Carvalho, A.F.; Puri, B.K. Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogressive disorders. Eur. Psychiatry, 2020, 63(1), e8-e8.
[http://dx.doi.org/10.1192/j.eurpsy.2019.13] [PMID: 32093791]
[179]
McDonald, T.J.W.; Cervenka, M.C. Lessons learned from recent clinical trials of ketogenic diet therapies in adults. Curr. Opin. Clin. Nutr. Metab. Care, 2019, 22(6), 418-424.
[http://dx.doi.org/10.1097/MCO.0000000000000596] [PMID: 31503023]
[180]
Elbarbry, F.; Nguyen, V.; Mirka, A.; Zwickey, H.; Rosenbaum, R. A new validated HPLC method for the determination of levodopa: Application to study the impact of ketogenic diet on the pharmacokinetics of levodopa in Parkinson’s participants. Biomed. Chromatogr., 2019, 33(1), e4382.
[http://dx.doi.org/10.1002/bmc.4382] [PMID: 30203852]
[181]
Jabre, M.G.; Bejjani, B.P.W.; VanItallie, T.B. Treatment of Parkinson disease with diet-induced hyperketonemia: A feasibility study. Neurology, 2006, 66(4), 617-617.
[http://dx.doi.org/10.1212/01.wnl.0000216108.57529.b1] [PMID: 16505339]
[182]
Shaafi, S.; Najmi, S.; Aliasgharpour, H.; Mahmoudi, J.; Sadigh-Etemad, S.; Farhoudi, M.; Baniasadi, N. The efficacy of the ketogenic diet on motor functions in Parkinson’s disease: A rat model. Iran. J. Neurol., 2016, 15(2), 63-69.
[PMID: 27326359]
[183]
VanItallie, T.B.; Nonas, C.; Di Rocco, A.; Boyar, K.; Hyams, K.; Heymsfield, S.B. Treatment of Parkinson disease with diet-induced hyperketonemia: A feasibility study. Neurology, 2005, 64(4), 728-730.
[http://dx.doi.org/10.1212/01.WNL.0000152046.11390.45] [PMID: 15728303]
[184]
Phillips, M.C.L.; Murtagh, D.K.J.; Gilbertson, L.J.; Asztely, F.J.S.; Lynch, C.D.P. Low-fat versus ketogenic diet in Parkinson’s disease: A pilot randomized controlled trial. Mov. Disord., 2018, 33(8), 1306-1314.
[http://dx.doi.org/10.1002/mds.27390] [PMID: 30098269]
[185]
Krikorian, R.; Shidler, M.D.; Summer, S.S.; Sullivan, P.G.; Duker, A.P.; Isaacson, R.S.; Espay, A.J. Nutritional ketosis for mild cognitive impairment in Parkinson’s disease: A controlled pilot trial. Clin Park Relat Disord, 2019, 1, 41-47.
[http://dx.doi.org/10.1016/j.prdoa.2019.07.006] [PMID: 34316598]
[186]
Sorenson, E.J.; Stalker, A.P.; Kurland, L.T.; Windebank, A.J. Amyotrophic lateral sclerosis in Olmsted County, Minnesota, 1925 to 1998. Neurology, 2002, 59(2), 280-282.
[http://dx.doi.org/10.1212/WNL.59.2.280] [PMID: 12136072]
[187]
Miller, R.G.; Mitchell, J.D.; Lyon, M.; Moore, D.H. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Amyotrophic lateral sclerosis and other motor neuron disorders: official publication of the World Federation of Neurology. Research Group on Motor Neuron Diseases, 2003, 4(3), 191-206.
[188]
Robberecht, W.; Philips, T. The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci., 2013, 14(4), 248-264.
[http://dx.doi.org/10.1038/nrn3430] [PMID: 23463272]
[189]
Valko, K.; Ciesla, L. Amyotrophic lateral sclerosis. Prog. Med. Chem., 2019, 58, 63-117.
[http://dx.doi.org/10.1016/bs.pmch.2018.12.001] [PMID: 30879475]
[190]
Caplliure-Llopis, J.; Peralta-Chamba, T.; Carrera-Juliá, S.; Cuerda-Ballester, M.; Drehmer-Rieger, E.; López-Rodriguez, M.M.; Rubia Ortí, J.E. Therapeutic alternative of the ketogenic Mediterranean diet to improve mitochondrial activity in Amyotrophic Lateral Sclerosis (ALS): A Comprehensive Review. Food Sci. Nutr., 2020, 8(1), 23-35.
[http://dx.doi.org/10.1002/fsn3.1324] [PMID: 31993129]
[191]
Deng-Bryant, Y.; Prins, M.L.; Hovda, D.A.; Harris, N.G. Ketogenic diet prevents alterations in brain metabolism in young but not adult rats after traumatic brain injury. J. Neurotrauma, 2011, 28(9), 1813-1825.
[http://dx.doi.org/10.1089/neu.2011.1822] [PMID: 21635175]
[192]
Kong, G.; Huang, Z.; Ji, W.; Wang, X.; Liu, J.; Wu, X.; Huang, Z.; Li, R.; Zhu, Q. The ketone metabolite β-hydroxybutyrate attenuates oxidative stress in spinal cord injury by suppression of class i histone deacetylases. J. Neurotrauma, 2017, 34(18), 2645-2655.
[http://dx.doi.org/10.1089/neu.2017.5192] [PMID: 28683591]
[193]
Veech, R.L.; Bradshaw, P.C.; Clarke, K.; Curtis, W.; Pawlosky, R.; King, M.T. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life, 2017, 69(5), 305-314.
[http://dx.doi.org/10.1002/iub.1627] [PMID: 28371201]
[194]
Pasinetti, G.M.; Bilski, A.E.; Zhao, W. Sirtuins as therapeutic targets of ALS. Cell Res., 2013, 23(9), 1073-1074.
[http://dx.doi.org/10.1038/cr.2013.94] [PMID: 23856645]
[195]
Hor, J.H.; Santosa, M.M.; Lim, V.J.W.; Ho, B.X.; Taylor, A.; Khong, Z.J.; Ravits, J.; Fan, Y.; Liou, Y.C.; Soh, B.S.; Ng, S.Y. ALS motor neurons exhibit hallmark metabolic defects that are rescued by SIRT3 activation. Cell Death Differ., 2021, 28(4), 1379-1397.
[http://dx.doi.org/10.1038/s41418-020-00664-0] [PMID: 33184465]
[196]
Song, W.; Song, Y.; Kincaid, B.; Bossy, B.; Bossy-Wetzel, E. Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: Neuroprotection by SIRT3 and PGC-1α. Neurobiol. Dis., 2013, 51, 72-81.
[http://dx.doi.org/10.1016/j.nbd.2012.07.004] [PMID: 22819776]
[197]
Körner, S.; Böselt, S.; Thau, N.; Rath, K.J.; Dengler, R.; Petri, S. Differential sirtuin expression patterns in amyotrophic lateral sclerosis (ALS) postmortem tissue: neuroprotective or neurotoxic properties of sirtuins in ALS? Neurodegener. Dis., 2013, 11(3), 141-152.
[http://dx.doi.org/10.1159/000338048] [PMID: 22796962]
[198]
Zhao, Z.; Lange, D.J.; Voustianiouk, A.; MacGrogan, D.; Ho, L.; Suh, J.; Humala, N.; Thiyagarajan, M.; Wang, J.; Pasinetti, G.M. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci., 2006, 7(1), 29.
[http://dx.doi.org/10.1186/1471-2202-7-29] [PMID: 16584562]
[199]
Zhao, W.; Varghese, M.; Vempati, P.; Dzhun, A.; Cheng, A.; Wang, J.; Lange, D.; Bilski, A.; Faravelli, I.; Pasinetti, G.M. Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease. PLoS One, 2012, 7(11), e49191.
[http://dx.doi.org/10.1371/journal.pone.0049191] [PMID: 23145119]
[200]
Ari, C.; Poff, A.M.; Held, H.E.; Landon, C.S.; Goldhagen, C.R.; Mavromates, N.; D’Agostino, D.P. Metabolic therapy with Deanna Protocol supplementation delays disease progression and extends survival in amyotrophic lateral sclerosis (ALS) mouse model. PLoS One, 2014, 9(7), e103526.
[http://dx.doi.org/10.1371/journal.pone.0103526] [PMID: 25061944]
[201]
Dhamija, R.; Eckert, S.; Wirrell, E. Ketogenic diet. Can. J. Neurol. Sci., 2013, 40(2), 158-167.
[http://dx.doi.org/10.1017/s0317167100013676] [PMID: 23419562]
[202]
Bansal, S.; Cramp, L.; Blalock, D.; Zelleke, T.; Carpenter, J.; Kao, A. The ketogenic diet: initiation at goal calories versus gradual caloric advancement. Pediatr. Neurol., 2014, 50(1), 26-30.
[http://dx.doi.org/10.1016/j.pediatrneurol.2013.08.006] [PMID: 24200038]
[203]
McDonald, T.J.W.; Cervenka, M.C. Ketogenic diets for adult neurological disorders. Neurotherapeutics, 2018, 15(4), 1018-1031.
[http://dx.doi.org/10.1007/s13311-018-0666-8] [PMID: 30225789]
[204]
Ułamek-Kozioł M.; Pluta, R.; Bogucka-Kocka, A.; Czuczwar, S. To treat or not to treat drug-refractory epilepsy by the ketogenic diet? That is the question. Ann. Agric. Environ. Med., 2016, 23(4), 533-536.
[http://dx.doi.org/10.5604/12321966.1226841] [PMID: 28030918]
[205]
Włodarek, D. Role of ketogenic diets in neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). Nutrients, 2019, 11(1), 169.
[http://dx.doi.org/10.3390/nu11010169] [PMID: 30650523]
[206]
Han, L.; Liu, J.; Zhu, L.; Tan, F.; Qin, Y.; Huang, H.; Yu, Y. Free fatty acid can induce cardiac dysfunction and alter insulin signaling pathways in the heart. Lipids Health Dis., 2018, 17(1), 185.
[http://dx.doi.org/10.1186/s12944-018-0834-1] [PMID: 30089498]
[207]
Yuan, X.; Wang, J.; Yang, S.; Gao, M.; Cao, L.; Li, X.; Hong, D.; Tian, S.; Sun, C. Effect of the ketogenic diet on glycemic control, insulin resistance, and lipid metabolism in patients with T2DM: a systematic review and meta-analysis. Nutr. Diabetes, 2020, 10(1), 38.
[http://dx.doi.org/10.1038/s41387-020-00142-z] [PMID: 33257645]
[208]
Xu, S.; Tao, H.; Cao, W.; Cao, L.; Lin, Y.; Zhao, S.M.; Xu, W.; Cao, J.; Zhao, J.Y. Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduct. Target. Ther., 2021, 6(1), 54.
[http://dx.doi.org/10.1038/s41392-020-00411-4] [PMID: 33558457]
[209]
Hashim, S.A.; VanItallie, T.B. Ketone body therapy: from the ketogenic diet to the oral administration of ketone ester. J. Lipid Res., 2014, 55(9), 1818-1826.
[http://dx.doi.org/10.1194/jlr.R046599] [PMID: 24598140]
[210]
Rusek, M.; Pluta, R. Ułamek-Kozioł M.; Czuczwar, S.J. Ketogenic diet in Alzheimer’s disease. Int. J. Mol. Sci., 2019, 20(16), 3892.
[http://dx.doi.org/10.3390/ijms20163892] [PMID: 31405021]
[211]
Jaff, N.G.; Maki, P.M. Scientific insights into brain fog during the menopausal transition. Climacteric, 2021, 24(4), 317-318.
[http://dx.doi.org/10.1080/13697137.2021.1942700] [PMID: 34240672]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy