Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Microwave-assisted Synthesis of Pharmacologically Active 4-Phenoxyquinolines and their Benzazole-quinoline Hybrids Through SNAr Reaction of 4,7-dichloroquinoline and Phenols Using [bmim][PF6] as a Green Solvent

Author(s): Duván A. Rodríguez Enciso, Carlos E. Puerto Galvis and Vladimir V. Kouznetsov*

Volume 20, Issue 5, 2023

Published on: 11 November, 2022

Page: [546 - 559] Pages: 14

DOI: 10.2174/1570179419666220830090614

Price: $65

Abstract

Background: Quinoline and its derivatives have been shown to display a wide spectrum of biological properties, especially anticancer activity. Particularly, diverse potent anticancer drugs are based on the 4-phenoxyquinoline skeleton, acting as small-molecules VEGR2 and/or c-Met kinase inhibitors. However, the design of new drugs based on these quinoline derivatives remains a challenge. Up till now, all approaches to 4-phenoxyquinoline skeleton construction do not obey any green chemistry principles.

Aims and Objectives: Developing a new, and efficient protocol for the synthesis of potentially bioactive 4-phenoxyquinoline derivatives and benzazole-quinoline-quinoline hybrids from commercially available 4,7-dichloroquinoline and phenol derivatives using microwave energy (MW) in the presence of 1-methyl 3-butylimidazolium hexafluorophosphate.

Methods: Neweco-efficient protocol for valuable 7-chloro-4-phenoxyquinolines and their hybrids, which is based on SNAr reaction of 4,7-dichloroquinoline with respective simple phenols and hydroxyaryl- benzazoles under MWenergy in green reaction media, is studied for the first time.

Results: We found that among various solvents tested, the ionic liquid 1-methyl 3-butylimidazolium hexafluorophosphate ([bmim][PF6]) favored the SNAr reaction affording phenoxyquinolines in excellent yields (72-82%) in 10 min. The developed protocol allowed to obtain quickly in good yields (48-60%) new diverse benzazole-quinoline hybrids, which are expected to be pharmacologically active. According to the calculated bioactivity scores, new hybrids are potential kinase inhibitors that could be useful in anticancer drug research.

Conclusion: We developed for the first time a new green, efficient method to prepare potentially bioactive functionalized 7-chloro-4-phenoxyquinolines and benzazole-quinoline molecules. Good to excellent yields of the quinoline products, use of MW irradiation in ([bmim] [PF6] as a green solvent, and short times of reactions are some of the main advantages of this new protocol.

Keywords: Microwave-assisted synthesis, Ionic liquids, Phenoxyquinolines, Molecular hybrids, Kinase inhibitors, In silico drug-likeness evaluation

Graphical Abstract

[1]
Dunn, P.J. The importance of green chemistry in process research and development. Chem. Soc. Rev., 2012, 41(4), 1452-1461.
[http://dx.doi.org/10.1039/C1CS15041C] [PMID: 21562677]
[2]
Federsel, H.J. En route to full implementation: Driving the green chemistry agenda in the pharmaceutical industry. Green Chem., 2013, 15(11), 3105-3115.
[http://dx.doi.org/10.1039/c3gc41629a]
[3]
Roschangar, F.; Sheldon, R.A.; Senanayake, C.H. Overcoming barriers to green chemistry in the pharmaceutical industry – the Green Aspiration Level™ concept. Green Chem., 2015, 17(2), 752-768.
[http://dx.doi.org/10.1039/C4GC01563K]
[4]
Curzons, A.D.; Mortimer, D.N.; Constable, D.J.C.; Cunningham, V.L. So you think your process is green, how do you know? — Using principles of sustainability to determine what is green – a corporate perspective. Green Chem., 2001, 3(1), 1-6.
[http://dx.doi.org/10.1039/b007871i]
[5]
Clarke, C.J.; Tu, W.C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev., 2018, 118(2), 747-800.
[http://dx.doi.org/10.1021/acs.chemrev.7b00571] [PMID: 29300087]
[6]
Sheldon, R.A. The greening of solvents: Towards sustainable organic synthesis. Curr. Opin. Green Sustain. Chem., 2019, 18, 13-19.
[http://dx.doi.org/10.1016/j.cogsc.2018.11.006]
[7]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[8]
Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov., 2017, 12(6), 583-597.
[http://dx.doi.org/10.1080/17460441.2017.1319357] [PMID: 28399679]
[9]
Glen, H.; Mason, S.; Patel, H.; Macleod, K.; Brunton, V.G. E7080, a multi-targeted tyrosine kinase inhibitor suppresses tumor cell migration and invasion. BMC Cancer, 2011, 11(1), 309.
[http://dx.doi.org/10.1186/1471-2407-11-309] [PMID: 21781317]
[10]
Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; Gianoukakis, A.G.; Kiyota, N.; Taylor, M.H.; Kim, S.B.; Krzyzanowska, M.K.; Dutcus, C.E.; de las Heras, B.; Zhu, J.; Sherman, S.I. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med., 2015, 372(7), 621-630.
[http://dx.doi.org/10.1056/NEJMoa1406470] [PMID: 25671254]
[11]
Nosov, D.A.; Esteves, B.; Lipatov, O.N.; Lyulko, A.A.; Anischenko, A.A.; Chacko, R.T.; Doval, D.C.; Strahs, A.; Slichenmyer, W.J.; Bhargava, P. Antitumor activity and safety of tivozanib (AV-951) in a phase II randomized discontinuation trial in patients with renal cell carcinoma. J. Clin. Oncol., 2012, 30(14), 1678-1685.
[http://dx.doi.org/10.1200/JCO.2011.35.3524] [PMID: 22493422]
[12]
Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A.D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y.C.; Joly, A.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther., 2011, 10(12), 2298-2308.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0264] [PMID: 21926191]
[13]
De Luca, A.; Normanno, N. Tivozanib, a pan-VEGFR tyrosine kinase inhibitor for the potential treatment of solid tumors. IDrugs, 2010, 13(9), 636-645.
[PMID: 20799147]
[14]
Shah, M.A.; Wainberg, Z.A.; Catenacci, D.V.T.; Hochster, H.S.; Ford, J.; Kunz, P.; Lee, F.C.; Kallender, H.; Cecchi, F.; Rabe, D.C.; Keer, H.; Martin, A.M.; Liu, Y.; Gagnon, R.; Bonate, P.; Liu, L.; Gilmer, T.; Bottaro, D.P. Phase II study evaluating 2 dosing schedules of oral foretinib (GSK1363089), cMET/VEGFR2 inhibitor, in patients with metastatic gastric cancer. PLoS One, 2013, 8(3), e54014.
[http://dx.doi.org/10.1371/journal.pone.0054014] [PMID: 23516391]
[15]
Parikh, P.K.; Ghate, M.D. Recent advances in the discovery of small molecule c-Met kinase inhibitors. Eur. J. Med. Chem., 2018, 143, 1103-1138.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.044] [PMID: 29157685]
[16]
Mo, H.N.; Liu, P. Targeting MET in cancer therapy. Chronic Dis. Transl. Med., 2017, 3(3), 148-153.
[http://dx.doi.org/10.1016/j.cdtm.2017.06.002] [PMID: 29063069]
[17]
Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97, 419-443.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.053] [PMID: 25479684]
[18]
Salahuddin; Shaharyar, M.; Mazumder, A. Benzimidazoles: A biologically active compounds. Arab. J. Chem., 2017, 10, S157-S173.
[http://dx.doi.org/10.1016/j.arabjc.2012.07.017]
[19]
Singh, S.; Veeraswamy, G.; Bhattarai, D.; Goo, J.I.; Lee, K.; Choi, Y. Recent advances in the development of pharmacologically active compounds that contain a benzoxazole scaffold. Asian J. Org. Chem., 2015, 4(12), 1338-1361.
[http://dx.doi.org/10.1002/ajoc.201500235]
[20]
Montoya, A.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J.; Insuasty, B. Synthesis and in vitro antitumor activity of a novel series of 2-pyrazoline derivatives bearing the 4-aryloxy-7-chloroquinoline fragment. Molecules, 2014, 19(11), 18656-18675.
[http://dx.doi.org/10.3390/molecules191118656] [PMID: 25405285]
[21]
Gayam, V.; Ravi, S. Cinnamoylated chloroquine analogues: A new structural class of antimalarial agents. Eur. J. Med. Chem., 2017, 135, 382-391.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.063] [PMID: 28460312]
[22]
Salve, P.S.; Alegaon, S.G. Synthesis of new 7-chloro-4-phenoxyquinoline analogues as potential antitubercular agents. Med. Chem. Res., 2018, 27(1), 1-14.
[http://dx.doi.org/10.1007/s00044-017-1970-2]
[23]
Qin, H.L.; Zhang, Z.W.; Lekkala, R.; Alsulami, H.; Rakesh, K.P. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur. J. Med. Chem., 2020, 193, 112215.
[http://dx.doi.org/10.1016/j.ejmech.2020.112215] [PMID: 32179331]
[24]
Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today, 2004, 9(15), 641-651.
[http://dx.doi.org/10.1016/S1359-6446(04)03163-0] [PMID: 15279847]
[25]
Hopkins, A.; Mason, J.; Overington, J. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol., 2006, 16(1), 127-136.
[http://dx.doi.org/10.1016/j.sbi.2006.01.013] [PMID: 16442279]
[26]
Claudio Viegas-Junior. Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A.M. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[27]
Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem., 2005, 48(21), 6523-6543.
[http://dx.doi.org/10.1021/jm058225d] [PMID: 16220969]
[28]
Oliveira Pedrosa, M.; Duarte da Cruz, R.; Oliveira Viana, J.; de Moura, R.; Ishiki, H.; Barbosa Filho, J.; Diniz, M.; Scotti, M.; Scotti, L.; Bezerra Mendonca, F.; Jaime, F. Hybrid compounds as direct multitarget ligands: A review. Curr. Top. Med. Chem., 2017, 17(9), 1044-1079.
[http://dx.doi.org/10.2174/1568026616666160927160620] [PMID: 27697048]
[29]
Proschak, E.; Stark, H.; Merk, D. Polypharmacology by design: A medicinal chemist’s perspective on multitargeting compounds. J. Med. Chem., 2019, 62(2), 420-444.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00760] [PMID: 30035545]
[30]
Chen, Y.L.; Zhao, Y.L.; Lu, C.M.; Tzeng, C.C.; Wang, J.P. Synthesis, cytotoxicity, and anti-inflammatory evaluation of 2-(furan-2-yl)-4-(phenoxy)quinoline derivatives. Part 4. Bioorg. Med. Chem., 2006, 14(13), 4373-4378.
[http://dx.doi.org/10.1016/j.bmc.2006.02.039] [PMID: 16524734]
[31]
Liao, W.; Hu, G.; Guo, Z.; Sun, D.; Zhang, L.; Bu, Y.; Li, Y.; Liu, Y.; Gong, P. Design and biological evaluation of novel 4-(2-fluorophenoxy)quinoline derivatives bearing an imidazolone moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2015, 23(15), 4410-4422.
[http://dx.doi.org/10.1016/j.bmc.2015.06.026] [PMID: 26169763]
[32]
Tang, Q.; Zhang, G.; Du, X.; Zhu, W.; Li, R.; Lin, H.; Li, P.; Cheng, M.; Gong, P.; Zhao, Y. Discovery of novel 6,7-disubstituted-4-phenoxyquinoline derivatives bearing 5-(aminomethylene)pyrimidine-2,4,6-trione moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2014, 22(4), 1236-1249.
[http://dx.doi.org/10.1016/j.bmc.2014.01.014] [PMID: 24485123]
[33]
Qi, B.; Mi, B.; Zhai, X.; Xu, Z.; Zhang, X.; Tian, Z.; Gong, P. Discovery and optimization of novel 4-phenoxy-6,7-disubstituted quinolines possessing semicarbazones as c-Met kinase inhibitors. Bioorg. Med. Chem., 2013, 21(17), 5246-5260.
[http://dx.doi.org/10.1016/j.bmc.2013.06.026] [PMID: 23838381]
[34]
Tang, Q.; Zhao, Y.; Du, X.; Chong, L.; Gong, P.; Guo, C. Design, synthesis, and structure–activity relationships of novel 6,7-disubstituted-4-phenoxyquinoline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2013, 69, 77-89.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.019] [PMID: 24012712]
[35]
Kubo, K.; Ohyama, S.; Shimizu, T.; Takami, A.; Murooka, H.; Nishitoba, T.; Kato, S.; Yagi, M.; Kobayashi, Y.; Iinuma, N.; Isoe, T.; Nakamura, K.; Iijima, H.; Osawa, T.; Izawa, T.; Isoe, T. Synthesis and structure–activity relationship for new series of 4-Phenoxyquinoline derivatives as specific inhibitors of platelet-derived growth factor receptor tyrosine kinase. Bioorg. Med. Chem., 2003, 11(23), 5117-5133.
[http://dx.doi.org/10.1016/j.bmc.2003.08.020] [PMID: 14604675]
[36]
Long, G.; Meek, M. E. N N-Dimethylformamide. Concise international chemical assessment document 31. World Health Organization, 2001.
[37]
Kim, T.H.; Kim, S.G. Clinical outcomes of occupational exposure to n,n-dimethylformamide: Perspectives from experimental toxicology. Saf. Health Work, 2011, 2(2), 97-104.
[http://dx.doi.org/10.5491/SHAW.2011.2.2.97] [PMID: 22953193]
[38]
Haiß, A.; Jordan, A.; Westphal, J.; Logunova, E.; Gathergood, N.; Kümmerer, K. On the way to greener ionic liquids: Identification of a fully mineralizable phenylalanine-based ionic liquid. Green Chem., 2016, 18(16), 4361-4373.
[http://dx.doi.org/10.1039/C6GC00417B]
[39]
Qureshi, Z.S.; Deshmukh, K.M.; Bhanage, B.M. Applications of ionic liquids in organic synthesis and catalysis. Clean Technol. Environ. Policy, 2014, 16(8), 1487-1513.
[http://dx.doi.org/10.1007/s10098-013-0660-0]
[40]
Park, J.; Jung, Y.; Kusumah, P.; Lee, J.; Kwon, K.; Lee, C. Application of ionic liquids in hydrometallurgy. Int. J. Mol. Sci., 2014, 15(9), 15320-15343.
[http://dx.doi.org/10.3390/ijms150915320] [PMID: 25177864]
[41]
Radai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem., 2018, 22(6), 533-556.
[http://dx.doi.org/10.2174/1385272822666171227152013]
[42]
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5), 3508-3576.
[http://dx.doi.org/10.1021/cr1003248] [PMID: 21469639]
[43]
Obst, M.; König, B. Organic synthesis without conventional solvents. Eur. J. Org. Chem., 2018, 2018(31), 4213-4232.
[http://dx.doi.org/10.1002/ejoc.201800556]
[44]
Kaur, N. Ionic liquid: An efficient and recyclable medium for the synthesis of fused six-membered oxygen heterocycles. Synth. Commun., 2019, 49(13), 1679-1707.
[http://dx.doi.org/10.1080/00397911.2019.1568149]
[45]
Kaur, G.; Sharma, A.; Banerjee, B. [Bmim]PF6: An efficient tool for the synthesis of diverse bioactive heterocycles. J. Serb. Chem. Soc., 2018, 83(10), 1071-1097.
[http://dx.doi.org/10.2298/JSC180103052K]
[46]
Howarth, J. Oxidation of aromatic aldehydes in the ionic liquid [bmim]PF6. Tetrahedron Lett., 2000, 41(34), 6627-6629.
[http://dx.doi.org/10.1016/S0040-4039(00)01037-6]
[47]
Kappe, C.O. My twenty years in microwave chemistry: From kitchen ovens to microwaves that aren’t microwaves. Chem. Rec., 2019, 19(1), 15-39.
[http://dx.doi.org/10.1002/tcr.201800045] [PMID: 29905399]
[48]
Henary, M.; Kananda, C.; Rotolo, L.; Savino, B.; Owens, E.A.; Cravotto, G. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Advances, 2020, 10(24), 14170-14197.
[http://dx.doi.org/10.1039/D0RA01378A] [PMID: 35498463]
[49]
Kamanna, K.; Khatavi, S.Y. Microwave-accelerated carbon-carbon and carbon-heteroatom bond formation via multi-component reactions: A brief overview. Curr. Microw. Chem., 2020, 7(1), 23-39.
[http://dx.doi.org/10.2174/2213346107666200218124147]
[50]
Gulati, S.; John, S.E.; Shankaraiah, N. Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects. Beilstein J. Org. Chem., 2021, 17, 819-865.
[http://dx.doi.org/10.3762/bjoc.17.71] [PMID: 33968258]
[51]
Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave assisted synthesis – a critical technology overview. Green Chem., 2004, 6(3), 128-141.
[http://dx.doi.org/10.1039/B310502D]
[52]
Singh, M.S.; Chowdhury, S. Recent developments in solvent-free multicomponent reactions: A perfect synergy for eco-compatible organic synthesis. RSC Advances, 2012, 2(11), 4547-4592.
[http://dx.doi.org/10.1039/c2ra01056a]
[53]
Martínez-Palou, R. Microwave-assisted synthesis using ionic liquids. Mol. Divers., 2010, 14(1), 3-25.
[http://dx.doi.org/10.1007/s11030-009-9159-3] [PMID: 19507045]
[54]
Bueno, J.; Rojas Ruiz, F.A.; Villabona Estupinan, S.; Kouznetsov, V.V. In vitro antimycobacterial activity of new 7-chloroquinoline derivatives. Lett. Drug Des. Discov., 2012, 9, 126-134.
[http://dx.doi.org/10.2174/157018012799079761]
[55]
Kouznetsov, V.V.; Sojo, F.; Rojas-Ruiz, F.A.; Merchan-Arenas, D.R.; Arvelo, F. Synthesis and cytotoxic evaluation of 7-chloro-4-phenoxyquinolines with formyl, oxime and thiosemicarbazone scaffolds. Med. Chem. Res., 2016, 25(11), 2718-2727.
[http://dx.doi.org/10.1007/s00044-016-1688-6]
[56]
Valdivieso, E.; Mejías, F.; Torrealba, C.; Benaim, G.; Kouznetsov, V.V.; Sojo, F.; Rojas-Ruiz, F.A.; Arvelo, F.; Dagger, F. In vitro 4-Aryloxy-7-chloroquinoline derivatives are effective in mono- and combined therapy against Leishmania donovani and induce mitocondrial membrane potential disruption. Acta Trop., 2018, 183, 36-42.
[http://dx.doi.org/10.1016/j.actatropica.2018.03.023] [PMID: 29604246]
[57]
Fonseca-Berzal, C.; Rojas Ruiz, F.A.; Escario, J.A.; Kouznetsov, V.V.; Gómez-Barrio, A. In vitro phenotypic screening of 7-chloro-4-amino(oxy)quinoline derivatives as putative anti- Trypanosoma cruzi agents. Bioorg. Med. Chem. Lett., 2014, 24(4), 1209-1213.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.071] [PMID: 24461296]
[58]
Henderson, R.K.; Hill, A.P.; Redman, A.M.; Sneddon, H.F. Development of GSK’s acid and base selection guides. Green Chem., 2015, 17(2), 945-949.
[http://dx.doi.org/10.1039/C4GC01481B]
[59]
Reyes, H.; Beltran, H.I.; Rivera-Becerril, E. One pot synthesis of 2-phenylbenzoxazoles by potassium cyanide assisted reaction of o-aminophenols and benzaldehydes. Tetrahedron Lett., 2011, 52(2), 308-310.
[http://dx.doi.org/10.1016/j.tetlet.2010.11.038]
[60]
Cho, Y.H.; Lee, C.Y.; Cheon, C.H. Cyanide as a powerful catalyst for facile synthesis of benzofused heteroaromatic compounds via aerobic oxidation. Tetrahedron, 2013, 69(32), 6565-6573.
[http://dx.doi.org/10.1016/j.tet.2013.05.138]
[61]
Huynh, T.K.C.; Nguyen, T.H.A.; Nguyen, T.C.T.; Hoang, T.K.D. Synthesis and insight into the structure–activity relationships of 2-phenylbenzimidazoles as prospective anticancer agents. RSC Advances, 2020, 10(35), 20543-20551.
[http://dx.doi.org/10.1039/D0RA02282A] [PMID: 35517717]
[62]
Eren, B.; Bekdemir, Y. Simple, mild, and highly efficient synthesis of 2-substituted benzimidazoles and bis-benzimidazoles. Quim. Nova, 2014, 37(4), 643-647.
[http://dx.doi.org/10.5935/0100-4042.20140096]
[63]
Kahveci, B.; Mentese, E. Microwave-assisted synthesis of benzimidazoles and their derivatives from 1994 to 2016-A review. Curr. Microw. Chem., 2016, 4(1), 73-101.
[http://dx.doi.org/10.2174/2213335603666160517154048]
[64]
Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Zanatta, N.; Bonacorso, H.G. Ionic liquids in heterocyclic synthesis. Chem. Rev., 2008, 108(6), 2015-2050.
[http://dx.doi.org/10.1021/cr078399y] [PMID: 18543878]
[65]
Salari, H.; Hallett, J.P.; Padervand, M.; Gholami, M.R. Systems designed with an ionic liquid and molecular solvents to investigate the kinetics of an SNAr reaction. Prog. React. Kinet. Mech., 2013, 38(2), 157-170.
[http://dx.doi.org/10.3184/146867813X13632857557572]
[66]
Hawker, R.R.; Haines, R.S.; Harper, J.B. Predicting solvent effects in ionic liquids: E xtension of a nucleophilic aromatic substitution reaction on a benzene to a pyridine. J. Phys. Org. Chem., 2018, 31(10), e3862.
[http://dx.doi.org/10.1002/poc.3862]
[67]
Hawker, R.R.; Harper, J.B.; Anderson, L.; Boulatov, R. Organic reaction outcomes in ionic liquids. Adv. Phys. Org. Chem., 2018, 52, 49-85.
[http://dx.doi.org/10.1016/bs.apoc.2018.09.001]
[68]
Carda-Broch, S.; Berthod, A.; Armstrong, D.W. Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal. Bioanal. Chem., 2003, 375(2), 191-199.
[http://dx.doi.org/10.1007/s00216-002-1684-1] [PMID: 12560962]
[69]
Gazitúa, M.; Tapia, R.A.; Contreras, R.; Campodónico, P.R. Mechanistic pathways of aromatic nucleophilic substitution in conventional solvents and ionic liquids. New J. Chem., 2014, 38(6), 2611-2618.
[http://dx.doi.org/10.1039/C4NJ00130C]
[70]
Kappe, C.O.; Stadler, A.; Dallinger, D. Microwaves in Organic and Medicinal Chemistry, 2nd ed; Wiley-VCH: Weinheim, 2012, pp. 9-9.
[http://dx.doi.org/10.1002/9783527647828.ch2]
[71]
de la Hoz, A.; Díaz-Ortiz, Á.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34(2), 164-178.
[http://dx.doi.org/10.1039/B411438H] [PMID: 15672180]
[72]
D’Anna, F.; Marullo, S.; Noto, R. Ionic liquids/[bmim][N3] mixtures: Promising media for the synthesis of aryl azides by SNAr. J. Org. Chem., 2008, 73(16), 6224-6228.
[http://dx.doi.org/10.1021/jo800676d] [PMID: 18624414]
[73]
Allen, C.; McCann, B.W.; Acevedo, O. Ionic liquid effects on nucleophilic aromatic substitution reactions from QM/MM simulations. J. Phys. Chem. B, 2015, 119(3), 743-752.
[http://dx.doi.org/10.1021/jp504967r] [PMID: 25011571]
[74]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[75]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[76]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[77]
Študentová, H.; Vitásková, D.; Melichar, B. Lenvatinib for the treatment of kidney cancer. Expert Rev. Anticancer Ther., 2018, 18(6), 511-518.
[http://dx.doi.org/10.1080/14737140.2018.1470506] [PMID: 29737893]
[78]
Krajewska, J.; Kukulska, A.; Jarzab, B. Drug safety evaluation of lenvatinib for thyroid cancer. Expert Opin. Drug Saf., 2015, 14(12), 1935-1943.
[http://dx.doi.org/10.1517/14740338.2015.1102883] [PMID: 26484847]
[79]
He, X.; Wu, Y.; Jin, W.; Wang, X.; Wu, C.; Shang, Y. Highly efficient AgNO 3 -catalyzed approach to 2-(benzo[ d]azol-2-yl)phenols from salicylaldehydes with 2-aminothiophenol, 2-aminophenol and benzene-1,2-diamine. Appl. Organomet. Chem., 2018, 32(4), e4284.
[http://dx.doi.org/10.1002/aoc.4284]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy