Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Review Article

Current Trends in Immuno-Oncology

Author(s): Tulsi Dipakbhai Patel, Venkata Gangadhar Vanteddu* and Bawari Sweta*

Volume 21, Issue 2, 2023

Published on: 26 December, 2022

Page: [96 - 107] Pages: 12

DOI: 10.2174/1871525720666220829142225

Price: $65

Abstract

Surgery, radiation, chemotherapy, and targeted therapy were the four basic kinds of cancer treatment until recently. Immuno-oncology (IO), or the concept that cancer cells were damaged by activating the body's immune system, has emerged and is explained as a unique and crucial method for treating different cancers over the last decade. The US Food and Drug Administration and the European Medicines Agency both approved this newly recognized way of treating cancer in 2020. Within IO, different therapeutic classes have arisen, which are the subject of this article. Immune checkpoint inhibitors are currently the most well-known therapeutic class of immuno-oncology medications due to their amazing ability to show efficacy in a variety of tumor types. Biomarkers were tested for different tumors like gastrointestinal cancer, whole Head, lower and upper part Neck cancer, and also cervical cancer by programmed death-ligand 1 (PD-L1) check point and their targets and are currently being utilized prior to treatment by using Pembrolizumab. However, the significance of PD-L1 expression for immune check point reticence therapy in other/different onco-cancer types remains unclear. Homogenized immuneoncology drugs with regular therapy have been recently studied and clinical efficacy outcomes have shown to be significantly improved. While IO agents are fast transforming the marketed treatment for cancer patients, there are still a number of obstacles to overcome in terms of associating their adverse effects and confirming those different healthcare systems, such as financing these expensive therapies. In addition to cancer vaccines and chimeric antigen receptor T-cell treatments, other IO drugs are in pipeline containing chimeric antigen receptor T-cell therapies; earlier ones have their own set of toxicities and high cost related challenges.

Keywords: Anti-tumor, Immuno Cancer Therapy, Tumor-immune response, Immunooncology, Cancer, Anti-Inflammatory Therapy.

Graphical Abstract

[1]
Perkins, D.; Wang, Z.; Donovan, C.; He, H.; Mark, D.; Guan, G.; Wang, Y.; Walunas, T.; Bluestone, J.; Listman, J.; Finn, P.W. Regulation of CTLA-4 expression during T cell activation. J. Immunol., 1996, 156(11), 4154-4159.
[PMID: 8666782]
[2]
Le Mercier, I.; Lines, J.L.; Noelle, R.J. Beyond CTLA-4 and PD-1, the generation Z of negative checkpoint regulators. Front. Immunol., 2015, 6, 418.
[http://dx.doi.org/10.3389/fimmu.2015.00418] [PMID: 26347741]
[3]
Chen, L.; Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol., 2013, 13(4), 227-242.
[http://dx.doi.org/10.1038/nri3405] [PMID: 23470321]
[4]
Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science, 1996, 271(5256), 1734-1736.
[http://dx.doi.org/10.1126/science.271.5256.1734] [PMID: 8596936]
[5]
Linsley, P.S.; Brady, W.; Grosmaire, L.; Aruffo, A.; Damle, N.K.; Ledbetter, J.A. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J. Exp. Med., 1991, 173(3), 721-730.
[http://dx.doi.org/10.1084/jem.173.3.721] [PMID: 1847722]
[6]
Walunas, T.L.; Lenschow, D.J.; Bakker, C.Y.; Linsley, P.S.; Freeman, G.J.; Green, J.M.; Thompson, C.B.; Bluestone, J.A. CTLA-4 can function as a negative regulator of T cell activation. Immunity, 1994, 1(5), 405-413.
[http://dx.doi.org/10.1016/1074-7613(94)90071-X] [PMID: 7882171]
[7]
Tivol, E.A.; Borriello, F.; Schweitzer, A.N.; Lynch, W.P.; Bluestone, J.A.; Sharpe, A.H. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995, 3(5), 541-547.
[http://dx.doi.org/10.1016/1074-7613(95)90125-6] [PMID: 7584144]
[8]
Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol., 2016, 39(1), 98-106.
[http://dx.doi.org/10.1097/COC.0000000000000239] [PMID: 26558876]
[9]
Wing, K.; Onishi, Y.; Prieto-Martin, P.; Yamaguchi, T.; Miyara, M.; Fehervari, Z.; Nomura, T.; Sakaguchi, S. CTLA-4 control over Foxp3+ regulatory T cell function. Science, 2008, 322(5899), 271-275.
[http://dx.doi.org/10.1126/science.1160062] [PMID: 18845758]
[10]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[11]
Melero, I.; Berman, D.M.; Aznar, M.A.; Korman, A.J.; Pérez Gracia, J.L.; Haanen, J. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat. Rev. Cancer, 2015, 15(8), 457-472.
[http://dx.doi.org/10.1038/nrc3973] [PMID: 26205340]
[12]
Takahashi, T.; Tagami, T.; Yamazaki, S.; Uede, T.; Shimizu, J.; Sakaguchi, N.; Mak, T.W.; Sakaguchi, S. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med., 2000, 192(2), 303-310.
[http://dx.doi.org/10.1084/jem.192.2.303] [PMID: 10899917]
[13]
Chambers, C.A.; Sullivan, T.J.; Truong, T.; Allison, J.P. Secondary but not primary T cell responses are enhanced in CTLA-4-deficient CD8+ T cells. Eur. J. Immunol., 1998, 28(10), 3137-3143.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199810)28:10<3137::AID-IMMU3137>3.0.CO;2-X] [PMID: 9808182]
[14]
Lau, L.L.; Jamieson, B.D.; Somasundaram, T.; Ahmed, R. Cytotoxic T-cell memory without antigen. Nature, 1994, 369(6482), 648-652.
[http://dx.doi.org/10.1038/369648a0] [PMID: 7516038]
[15]
Veiga-Fernandes, H.; Walter, U.; Bourgeois, C.; McLean, A.; Rocha, B. Response of naïve and memory CD8+ T cells to antigen stimulation in vivo. Nat. Immunol., 2000, 1(1), 47-53.
[http://dx.doi.org/10.1038/76907] [PMID: 10881174]
[16]
Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; Zinzindohoué, F.; Bruneval, P.; Cugnenc, P.H.; Trajanoski, Z.; Fridman, W.H.; Pagès, F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 2006, 313(5795), 1960-1964.
[http://dx.doi.org/10.1126/science.1129139] [PMID: 17008531]
[17]
Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer, 2012, 12(4), 298-306.
[http://dx.doi.org/10.1038/nrc3245] [PMID: 22419253]
[18]
Pedicord, V.A.; Montalvo, W.; Leiner, I.M.; Allison, J.P. Single dose of anti-CTLA-4 enhances CD8+ T-cell memory formation, function, and maintenance. Proc. Natl. Acad. Sci. USA, 2011, 108(1), 266-271.
[http://dx.doi.org/10.1073/pnas.1016791108] [PMID: 21173239]
[19]
Simpson, T.R.; Li, F.; Montalvo-Ortiz, W.; Sepulveda, M.A.; Bergerhoff, K.; Arce, F.; Roddie, C.; Henry, J.Y.; Yagita, H.; Wolchok, J.D.; Peggs, K.S.; Ravetch, J.V.; Allison, J.P.; Quezada, S.A. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med., 2013, 210(9), 1695-1710.
[http://dx.doi.org/10.1084/jem.20130579] [PMID: 23897981]
[20]
Amos, S.M.; Duong, C.P.M.; Westwood, J.A.; Ritchie, D.S.; Junghans, R.P.; Darcy, P.K.; Kershaw, M.H. Autoimmunity associated with immunotherapy of cancer. Blood, 2011, 118(3), 499-509.
[http://dx.doi.org/10.1182/blood-2011-01-325266] [PMID: 21531979]
[21]
Beavis, P.A.; Henderson, M.A.; Giuffrida, L.; Davenport, A.J.; Petley, E.V.; House, I.G.; Lai, J.; Sek, K.; Milenkovski, N.; John, L.B.; Mardiana, S.; Slaney, C.Y.; Trapani, J.A.; Loi, S.; Kershaw, M.H.; Haynes, N.M.; Darcy, P.K. Dual PD-1 and CTLA-4 checkpoint blockade promotes antitumor immune responses through CD4Foxp3 cell-mediated modulation of CD103 dendritic cells. Cancer Immunol. Res., 2018, 6(9), 1069-1081.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0291] [PMID: 30018045]
[22]
Saito, T.; Nishikawa, H.; Wada, H.; Nagano, Y.; Sugiyama, D.; Atarashi, K.; Maeda, Y.; Hamaguchi, M.; Ohkura, N.; Sato, E.; Nagase, H.; Nishimura, J.; Yamamoto, H.; Takiguchi, S.; Tanoue, T.; Suda, W.; Morita, H.; Hattori, M.; Honda, K.; Mori, M.; Doki, Y.; Sakaguchi, S. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat. Med., 2016, 22(6), 679-684.
[http://dx.doi.org/10.1038/nm.4086] [PMID: 27111280]
[23]
Tao, H.; Mimura, Y.; Aoe, K.; Kobayashi, S.; Yamamoto, H.; Matsuda, E.; Okabe, K.; Matsumoto, T.; Sugi, K.; Ueoka, H. Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer, 2012, 75(1), 95-101.
[http://dx.doi.org/10.1016/j.lungcan.2011.06.002] [PMID: 21719142]
[24]
Satoh, M.; Iida, S.; Shitara, K. Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies. Expert Opin. Biol. Ther., 2006, 6(11), 1161-1173.
[http://dx.doi.org/10.1517/14712598.6.11.1161] [PMID: 17049014]
[25]
Selby, M.J.; Engelhardt, J.J.; Quigley, M.; Henning, K.A.; Chen, T.; Srinivasan, M.; Korman, A.J. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res., 2013, 1(1), 32-42.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0013] [PMID: 24777248]
[26]
Chen, I-J.; Chuang, C-H.; Hsieh, Y-C.; Lu, Y.C.; Lin, W.W.; Huang, C.C.; Cheng, T.C.; Cheng, Y.A.; Cheng, K.W.; Wang, Y.T.; Chen, F.M.; Cheng, T.L.; Tzou, S.C. Selective antibody activation through protease-activated pro-antibodies that mask binding sites with inhibitory domains. Sci. Rep., 2017, 7(1), 11587.
[http://dx.doi.org/10.1038/s41598-017-11886-7] [PMID: 28912497]
[27]
Tuve, S.; Chen, B-M.; Liu, Y.; Cheng, T.L.; Touré, P.; Sow, P.S.; Feng, Q.; Kiviat, N.; Strauss, R.; Ni, S.; Li, Z.Y.; Roffler, S.R.; Lieber, A. Combination of tumor site-located CTL-associated antigen-4 blockade and systemic regulatory T-cell depletion induces tumor-destructive immune responses. Cancer Res., 2007, 67(12), 5929-5939.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4296] [PMID: 17575163]
[28]
Fransen, M.F.; van der Sluis, T.C.; Ossendorp, F.; Arens, R.; Melief, C.J.M. Controlled local delivery of CTLA-4 blocking antibody induces CD8+ T-cell-dependent tumor eradication and decreases risk of toxic side effects. Clin. Cancer Res., 2013, 19(19), 5381-5389.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0781] [PMID: 23788581]
[29]
Huang, C.T.; Workman, C.J.; Flies, D.; Pan, X.; Marson, A.L.; Zhou, G.; Hipkiss, E.L.; Ravi, S.; Kowalski, J.; Levitsky, H.I.; Powell, J.D.; Pardoll, D.M.; Drake, C.G.; Vignali, D.A. Role of LAG-3 in regulatory T cells. Immunity, 2004, 21(4), 503-513.
[http://dx.doi.org/10.1016/j.immuni.2004.08.010] [PMID: 15485628]
[30]
Baixeras, E.; Huard, B.; Miossec, C.; Jitsukawa, S.; Martin, M.; Hercend, T.; Auffray, C.; Triebel, F.; Piatier-Tonneau, D. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J. Exp. Med., 1992, 176(2), 327-337.
[http://dx.doi.org/10.1084/jem.176.2.327] [PMID: 1380059]
[31]
Deng, W-W.; Mao, L.; Yu, G-T.; Bu, L.L.; Ma, S.R.; Liu, B.; Gutkind, J.S.; Kulkarni, A.B.; Zhang, W.F.; Sun, Z.J. LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma. OncoImmunology, 2016, 5(11), e1239005.
[http://dx.doi.org/10.1080/2162402X.2016.1239005] [PMID: 27999760]
[32]
Huard, B.; Prigent, P.; Tournier, M.; Bruniquel, D.; Triebel, F. CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur. J. Immunol., 1995, 25(9), 2718-2721.
[http://dx.doi.org/10.1002/eji.1830250949] [PMID: 7589152]
[33]
Workman, C.J.; Cauley, L.S.; Kim, I.J.; Blackman, M.A.; Woodland, D.L.; Vignali, D.A. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J. Immunol., 2004, 172(9), 5450-5455.
[http://dx.doi.org/10.4049/jimmunol.172.9.5450] [PMID: 15100286]
[34]
Blackburn, S.D.; Shin, H.; Haining, W.N.; Zou, T.; Workman, C.J.; Polley, A.; Betts, M.R.; Freeman, G.J.; Vignali, D.A.; Wherry, E.J. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol., 2009, 10(1), 29-37.
[http://dx.doi.org/10.1038/ni.1679] [PMID: 19043418]
[35]
Grosso, J.F.; Kelleher, C.C.; Harris, T.J.; Maris, C.H.; Hipkiss, E.L.; De Marzo, A.; Anders, R.; Netto, G.; Getnet, D.; Bruno, T.C.; Goldberg, M.V.; Pardoll, D.M.; Drake, C.G. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J. Clin. Invest., 2007, 117(11), 3383-3392.
[http://dx.doi.org/10.1172/JCI31184] [PMID: 17932562]
[36]
Matsuzaki, J.; Gnjatic, S.; Mhawech-Fauceglia, P.; Beck, A.; Miller, A.; Tsuji, T.; Eppolito, C.; Qian, F.; Lele, S.; Shrikant, P.; Old, L.J.; Odunsi, K. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl. Acad. Sci. USA, 2010, 107(17), 7875-7880.
[http://dx.doi.org/10.1073/pnas.1003345107] [PMID: 20385810]
[37]
Camisaschi, C.; Casati, C.; Rini, F.; Perego, M.; De Filippo, A.; Triebel, F.; Parmiani, G.; Belli, F.; Rivoltini, L.; Castelli, C. LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. J. Immunol., 2010, 184(11), 6545-6551.
[http://dx.doi.org/10.4049/jimmunol.0903879] [PMID: 20421648]
[38]
Yang, Z-Z.; Kim, H.J.; Villasboas, J.C.; Chen, Y.P.; Price-Troska, T.; Jalali, S.; Wilson, M.; Novak, A.J.; Ansell, S.M. Expression of LAG-3 defines exhaustion of intratumoral PD-1+ T cells and correlates with poor outcome in follicular lymphoma. Oncotarget, 2017, 8(37), 61425-61439.
[http://dx.doi.org/10.18632/oncotarget.18251] [PMID: 28977875]
[39]
Huang, R-Y.; Francois, A.; McGray, A.R.; Miliotto, A.; Odunsi, K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. OncoImmunology, 2016, 6(1), e1249561.
[http://dx.doi.org/10.1080/2162402X.2016.1249561] [PMID: 28197366]
[40]
Wierz, M.; Pierson, S.; Guyonnet, L.; Viry, E.; Lequeux, A.; Oudin, A.; Niclou, S.P.; Ollert, M.; Berchem, G.; Janji, B.; Guérin, C.; Paggetti, J.; Moussay, E. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood, 2018, 131(14), 1617-1621.
[http://dx.doi.org/10.1182/blood-2017-06-792267] [PMID: 29439955]
[41]
Huang, R-Y.; Eppolito, C.; Lele, S.; Shrikant, P.; Matsuzaki, J.; Odunsi, K. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget, 2015, 6(29), 27359-27377.
[http://dx.doi.org/10.18632/oncotarget.4751] [PMID: 26318293]
[42]
Lichtenegger, F.S.; Rothe, M.; Schnorfeil, F.M.; Deiser, K.; Krupka, C.; Augsberger, C.; Schlüter, M.; Neitz, J.; Subklewe, M. Targeting LAG-3 and PD-1 to enhance T cell activationby antigen-presenting cells. Front. Immunol., 2018, 9, 385.
[http://dx.doi.org/10.3389/fimmu.2018.00385] [PMID: 29535740]
[43]
Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; Horton, H.F.; Fouser, L.; Carter, L.; Ling, V.; Bowman, M.R.; Carreno, B.M.; Collins, M.; Wood, C.R.; Honjo, T. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med., 2000, 192(7), 1027-1034.
[http://dx.doi.org/10.1084/jem.192.7.1027] [PMID: 11015443]
[44]
Latchman, Y.; Wood, C.R.; Chernova, T.; Chaudhary, D.; Borde, M.; Chernova, I.; Iwai, Y.; Long, A.J.; Brown, J.A.; Nunes, R.; Greenfield, E.A.; Bourque, K.; Boussiotis, V.A.; Carter, L.L.; Carreno, B.M.; Malenkovich, N.; Nishimura, H.; Okazaki, T.; Honjo, T.; Sharpe, A.H.; Freeman, G.J. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol., 2001, 2(3), 261-268.
[http://dx.doi.org/10.1038/85330] [PMID: 11224527]
[45]
Ahmadzadeh, M.; Johnson, L.A.; Heemskerk, B.; Wunderlich, J.R.; Dudley, M.E.; White, D.E.; Rosenberg, S.A. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, 2009, 114(8), 1537-1544.
[http://dx.doi.org/10.1182/blood-2008-12-195792] [PMID: 19423728]
[46]
Barber, DL; Wherry, EJ; Masopust, D. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, 439(7077), 682-687.
[47]
Catakovic, K.; Klieser, E.; Neureiter, D.; Geisberger, R. T cell exhaustion: From pathophysiological basics to tumor immunotherapy. Cell Commun. Signal., 2017, 15(1), 1.
[http://dx.doi.org/10.1186/s12964-016-0160-z] [PMID: 28073373]
[48]
Peng, W.; Liu, C.; Xu, C.; Lou, Y.; Chen, J.; Yang, Y.; Yagita, H.; Overwijk, W.W.; Lizée, G.; Radvanyi, L.; Hwu, P. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-γ inducible chemokines. Cancer Res., 2012, 72(20), 5209-5218.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1187] [PMID: 22915761]
[49]
Taube, J.M.; Klein, A.; Brahmer, J.R.; Xu, H.; Pan, X.; Kim, J.H.; Chen, L.; Pardoll, D.M.; Topalian, S.L.; Anders, R.A. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res., 2014, 20(19), 5064-5074.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3271] [PMID: 24714771]
[50]
Nomi, T.; Sho, M.; Akahori, T.; Hamada, K.; Kubo, A.; Kanehiro, H.; Nakamura, S.; Enomoto, K.; Yagita, H.; Azuma, M.; Nakajima, Y. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin. Cancer Res., 2007, 13(7), 2151-2157.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2746] [PMID: 17404099]
[51]
Ohigashi, Y.; Sho, M.; Yamada, Y.; Tsurui, Y.; Hamada, K.; Ikeda, N.; Mizuno, T.; Yoriki, R.; Kashizuka, H.; Yane, K.; Tsushima, F.; Otsuki, N.; Yagita, H.; Azuma, M.; Nakajima, Y. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin. Cancer Res., 2005, 11(8), 2947-2953.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1469] [PMID: 15837746]
[52]
Hamanishi, J.; Mandai, M.; Iwasaki, M.; Okazaki, T.; Tanaka, Y.; Yamaguchi, K.; Higuchi, T.; Yagi, H.; Takakura, K.; Minato, N.; Honjo, T.; Fujii, S. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl. Acad. Sci. USA, 2007, 104(9), 3360-3365.
[http://dx.doi.org/10.1073/pnas.0611533104] [PMID: 17360651]
[53]
Green, M.R.; Monti, S.; Rodig, S.J.; Juszczynski, P.; Currie, T.; O’Donnell, E.; Chapuy, B.; Takeyama, K.; Neuberg, D.; Golub, T.R.; Kutok, J.L.; Shipp, M.A. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood, 2010, 116(17), 3268-3277.
[http://dx.doi.org/10.1182/blood-2010-05-282780] [PMID: 20628145]
[54]
Jung, H.I.; Jeong, D.; Ji, S.; Ahn, T.S.; Bae, S.H.; Chin, S.; Chung, J.C.; Kim, H.C.; Lee, M.S.; Baek, M.J. Overexpression of PD-L1 and PD-L2 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res. Treat., 2017, 49(1), 246-254.
[http://dx.doi.org/10.4143/crt.2016.066] [PMID: 27456947]
[55]
Lee, J.; Ahn, E.; Kissick, H.T.; Ahmed, R. Reinvigorating exhausted T cells by blockade of the PD-1 pathway. For. Immunopathol. Dis. Therap., 2015, 6(1-2), 7-17.
[http://dx.doi.org/10.1615/ForumImmunDisTher.2015014188] [PMID: 28286692]
[56]
Zhang, L.; Gajewski, T.F.; Kline, J. PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood, 2009, 114(8), 1545-1552.
[http://dx.doi.org/10.1182/blood-2009-03-206672] [PMID: 19417208]
[57]
Sznol, M.; Chen, L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin. Cancer Res., 2013, 19(5), 1021-1034.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2063] [PMID: 23460533]
[58]
Hobo, W.; Maas, F.; Adisty, N.; de Witte, T.; Schaap, N.; van der Voort, R.; Dolstra, H. siRNA silencing of PD-L1 and PD-L2 on dendritic cells augments expansion and function of minor histocompatibility antigen-specific CD8+ T cells. Blood, 2010, 116(22), 4501-4511.
[http://dx.doi.org/10.1182/blood-2010-04-278739] [PMID: 20682852]
[59]
Yu, X.; Harden, K.; Gonzalez, L.C.; Francesco, M.; Chiang, E.; Irving, B.; Tom, I.; Ivelja, S.; Refino, C.J.; Clark, H.; Eaton, D.; Grogan, J.L. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol., 2009, 10(1), 48-57.
[http://dx.doi.org/10.1038/ni.1674] [PMID: 19011627]
[60]
Stanietsky, N.; Simic, H.; Arapovic, J.; Toporik, A.; Levy, O.; Novik, A.; Levine, Z.; Beiman, M.; Dassa, L.; Achdout, H.; Stern-Ginossar, N.; Tsukerman, P.; Jonjic, S.; Mandelboim, O. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl. Acad. Sci. USA, 2009, 106(42), 17858-17863.
[http://dx.doi.org/10.1073/pnas.0903474106] [PMID: 19815499]
[61]
Joller, N.; Lozano, E.; Burkett, P.R.; Patel, B.; Xiao, S.; Zhu, C.; Xia, J.; Tan, T.G.; Sefik, E.; Yajnik, V.; Sharpe, A.H.; Quintana, F.J.; Mathis, D.; Benoist, C.; Hafler, D.A.; Kuchroo, V.K. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity, 2014, 40(4), 569-581.
[http://dx.doi.org/10.1016/j.immuni.2014.02.012] [PMID: 24745333]
[62]
Bottino, C.; Castriconi, R.; Pende, D.; Rivera, P.; Nanni, M.; Carnemolla, B.; Cantoni, C.; Grassi, J.; Marcenaro, S.; Reymond, N.; Vitale, M.; Moretta, L.; Lopez, M.; Moretta, A. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med., 2003, 198(4), 557-567.
[http://dx.doi.org/10.1084/jem.20030788] [PMID: 12913096]
[63]
Lozano, E.; Dominguez-Villar, M.; Kuchroo, V.; Hafler, D.A. The TIGIT/CD226 axis regulates human T cell function. J. Immunol., 2012, 188(8), 3869-3875.
[http://dx.doi.org/10.4049/jimmunol.1103627] [PMID: 22427644]
[64]
Goding, S.R.; Wilson, K.A.; Xie, Y.; Harris, K.M.; Baxi, A.; Akpinarli, A.; Fulton, A.; Tamada, K.; Strome, S.E.; Antony, P.A. Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J. Immunol., 2013, 190(9), 4899-4909.
[http://dx.doi.org/10.4049/jimmunol.1300271] [PMID: 23536636]
[65]
Johnston, R.J.; Comps-Agrar, L.; Hackney, J.; Yu, X.; Huseni, M.; Yang, Y.; Park, S.; Javinal, V.; Chiu, H.; Irving, B.; Eaton, D.L.; Grogan, J.L. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell, 2014, 26(6), 923-937.
[http://dx.doi.org/10.1016/j.ccell.2014.10.018] [PMID: 25465800]
[66]
Chauvin, J-M.; Pagliano, O.; Fourcade, J.; Sun, Z.; Wang, H.; Sander, C.; Kirkwood, J.M.; Chen, T.H.; Maurer, M.; Korman, A.J.; Zarour, H.M. TIGIT and PD-1 impair tumor antigen-specific CD8⁺ T cells in melanoma patients. J. Clin. Invest., 2015, 125(5), 2046-2058.
[http://dx.doi.org/10.1172/JCI80445] [PMID: 25866972]
[67]
Joller, N.; Hafler, J.P.; Brynedal, B.; Kassam, N.; Spoerl, S.; Levin, S.D.; Sharpe, A.H.; Kuchroo, V.K. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J. Immunol., 2011, 186(3), 1338-1342.
[http://dx.doi.org/10.4049/jimmunol.1003081] [PMID: 21199897]
[68]
Hung, AL.; Maxwell, R; Theodros, D TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology, 2018, 7(8), e1466769.
[69]
Kurtulus, S.; Sakuishi, K.; Ngiow, S.F.; Joller, N.; Tan, D.J.; Teng, M.W.; Smyth, M.J.; Kuchroo, V.K.; Anderson, A.C. TIGIT predominantly regulates the immune response via regulatory T cells. J. Clin. Invest., 2015, 125(11), 4053-4062.
[http://dx.doi.org/10.1172/JCI81187] [PMID: 26413872]
[70]
Talpaz, M.; Shah, N.P.; Kantarjian, H.; Donato, N.; Nicoll, J.; Paquette, R.; Cortes, J.; O’Brien, S.; Nicaise, C.; Bleickardt, E.; Blackwood-Chirchir, M.A.; Iyer, V.; Chen, T.T.; Huang, F.; Decillis, A.P.; Sawyers, C.L. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2006, 354(24), 2531-2541.
[http://dx.doi.org/10.1056/NEJMoa055229] [PMID: 16775234]
[71]
Burke, B.A.; Carroll, M. BCR-ABL: A multi-faceted promoter of DNA mutation in chronic myelogeneous leukemia. Leukemia, 2010, 24(6), 1105-1112.
[http://dx.doi.org/10.1038/leu.2010.67] [PMID: 20445577]
[72]
López-Andrade, B.; Sartori, F.; Gutiérrez, A.; García, L.; Cunill, V.; Durán, M.A.; Sampol, A.; Bernués, M.; Iglesias, J.; Ramos, R.; Lladó, J.; Sánchez, M.; Amat, J.C.; Martínez-Serra, J. Acute lymphoblastic leukemia with E1A3 BCR/ABL fusion protein. A report of two cases. Exp. Hematol. Oncol., 2016, 5, 21.
[http://dx.doi.org/10.1186/s40164-016-0049-y] [PMID: 27478684]
[73]
Neuendorff, N.R.; Burmeister, T.; Dörken, B.; Westermann, J. BCR-ABL-positive acute myeloid leukemia: A new entity? Analysis of clinical and molecular features. Ann. Hematol., 2016, 95(8), 1211-1221.
[http://dx.doi.org/10.1007/s00277-016-2721-z] [PMID: 27297971]
[74]
Hantschel, O. Structure, regulation, signaling, and targeting of ABl kinases in cancer. Genes Cancer, 2012, 3(5-6), 436-446.
[http://dx.doi.org/10.1177/1947601912458584] [PMID: 23226581]
[75]
Cuellar, S.; Vozniak, M.; Rhodes, J.; Forcello, N.; Olszta, D. BCR-ABL1 tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia. J. Oncol. Pharm. Pract., 2018, 24(6), 433-452.
[http://dx.doi.org/10.1177/1078155217710553] [PMID: 28580869]
[76]
Greuber, E.K.; Smith-Pearson, P.; Wang, J.; Pendergast, A.M. Role of ABL family kinases in cancer: From leukaemia to solid tumours. Nat. Rev. Cancer, 2013, 13(8), 559-571.
[http://dx.doi.org/10.1038/nrc3563] [PMID: 23842646]
[77]
Pelletier, S.D.; Hong, D.S.; Hu, Y.; Liu, Y.; Li, S. Lack of the adhesion molecules P-selectin and intercellular adhesion molecule-1 accelerate the development of BCR/ABL-induced chronic myeloid leukemia-like myeloproliferative disease in mice. Blood, 2004, 104(7), 2163-2171.
[http://dx.doi.org/10.1182/blood-2003-09-3033] [PMID: 15213099]
[78]
La Rosée, P.; O’Dwyer, M.E.; Druker, B.J. Insights from pre-clinical studies for new combination treatment regimens with the Bcr-Abl kinase inhibitor imatinib mesylate (Gleevec/Glivec) in chronic myelogenous leukemia: A translational perspective. Leukemia, 2002, 16(7), 1213-1219.
[http://dx.doi.org/10.1038/sj.leu.2402555] [PMID: 12094245]
[79]
Mumprecht, S.; Schürch, C.; Schwaller, J.; Solenthaler, M.; Ochsenbein, A.F. Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood, 2009, 114(8), 1528-1536.
[http://dx.doi.org/10.1182/blood-2008-09-179697] [PMID: 19420358]
[80]
Manlove, L.S.; Schenkel, J.M.; Manlove, K.R.; Pauken, K.E.; Williams, R.T.; Vezys, V.; Farrar, M.A. Heterologous vaccination and checkpoint blockade synergize to induce antileukemia immunity. J. Immunol., 2016, 196(11), 4793-4804.
[http://dx.doi.org/10.4049/jimmunol.1600130] [PMID: 27183622]
[81]
Bouchon, A.; Cella, M.; Grierson, H.L.; Cohen, J.I.; Colonna, M. Activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J. Immunol., 2001, 167(10), 5517-5521.
[http://dx.doi.org/10.4049/jimmunol.167.10.5517] [PMID: 11698418]
[82]
Hsi, E.D.; Steinle, R.; Balasa, B.; Szmania, S.; Draksharapu, A.; Shum, B.P.; Huseni, M.; Powers, D.; Nanisetti, A.; Zhang, Y.; Rice, A.G.; van Abbema, A.; Wong, M.; Liu, G.; Zhan, F.; Dillon, M.; Chen, S.; Rhodes, S.; Fuh, F.; Tsurushita, N.; Kumar, S.; Vexler, V.; Shaughnessy, J.D., Jr; Barlogie, B.; van Rhee, F.; Hussein, M.; Afar, D.E.; Williams, M.B. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin. Cancer Res., 2008, 14(9), 2775-2784.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4246] [PMID: 18451245]
[83]
Cruz-Munoz, M.E.; Dong, Z.; Shi, X.; Zhang, S.; Veillette, A. Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nat. Immunol., 2009, 10(3), 297-305.
[http://dx.doi.org/10.1038/ni.1693] [PMID: 19151721]
[84]
Cheng, M.; Chen, Y.; Xiao, W.; Sun, R.; Tian, Z. NK cell-based immunotherapy for malignant diseases. Cell. Mol. Immunol., 2013, 10(3), 230-252.
[http://dx.doi.org/10.1038/cmi.2013.10] [PMID: 23604045]
[85]
Frohn, C.; Höppner, M.; Schlenke, P.; Kirchner, H.; Koritke, P.; Luhm, J. Anti-myeloma activity of natural killer lymphocytes. Br. J. Haematol., 2002, 119(3), 660-664.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03879.x] [PMID: 12437641]
[86]
Liu, C.; Lou, Y.; Lizée, G.; Qin, H.; Liu, S.; Rabinovich, B.; Kim, G.J.; Wang, Y.H.; Ye, Y.; Sikora, A.G.; Overwijk, W.W.; Liu, Y.J.; Wang, G.; Hwu, P. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice. J. Clin. Invest., 2008, 118(3), 1165-1175.
[http://dx.doi.org/10.1172/JCI33583] [PMID: 18259609]
[87]
Mocikat, R.; Braumüller, H.; Gumy, A.; Egeter, O.; Ziegler, H.; Reusch, U.; Bubeck, A.; Louis, J.; Mailhammer, R.; Riethmüller, G.; Koszinowski, U.; Röcken, M. Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity, 2003, 19(4), 561-569.
[http://dx.doi.org/10.1016/S1074-7613(03)00264-4] [PMID: 14563320]
[88]
Vivier, E.; Raulet, D.H.; Moretta, A.; Caligiuri, M.A.; Zitvogel, L.; Lanier, L.L.; Yokoyama, W.M.; Ugolini, S. Innate or adaptive immunity? The example of natural killer cells. Science, 2011, 331(6013), 44-49.
[http://dx.doi.org/10.1126/science.1198687] [PMID: 21212348]
[89]
Anderson, A.C.; Joller, N.; Kuchroo, V.K. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity, 2016, 44(5), 989-1004.
[http://dx.doi.org/10.1016/j.immuni.2016.05.001] [PMID: 27192565]
[90]
Han, G.; Chen, G.; Shen, B.; Li, Y. Tim-3: An activation marker and activation limiter of innate immune cells. Front. Immunol., 2013, 4, 449.
[http://dx.doi.org/10.3389/fimmu.2013.00449] [PMID: 24339828]
[91]
Nakayama, M.; Akiba, H.; Takeda, K.; Kojima, Y.; Hashiguchi, M.; Azuma, M.; Yagita, H.; Okumura, K. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood, 2009, 113(16), 3821-3830.
[http://dx.doi.org/10.1182/blood-2008-10-185884] [PMID: 19224762]
[92]
Freeman, G.J.; Casasnovas, J.M.; Umetsu, D.T.; DeKruyff, R.H. TIM genes: A family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol. Rev., 2010, 235(1), 172-189.
[http://dx.doi.org/10.1111/j.0105-2896.2010.00903.x] [PMID: 20536563]
[93]
Maurya, N.; Gujar, R.; Gupta, M.; Yadav, V.; Verma, S.; Sen, P. Immunoregulation of dendritic cells by the receptor T cell Ig and mucin protein-3 via Bruton’s tyrosine kinase and c-Src. J. Immunol., 2014, 193(7), 3417-3425.
[http://dx.doi.org/10.4049/jimmunol.1400395] [PMID: 25172495]
[94]
Chiba, S.; Baghdadi, M.; Akiba, H.; Yoshiyama, H.; Kinoshita, I.; Dosaka-Akita, H.; Fujioka, Y.; Ohba, Y.; Gorman, J.V.; Colgan, J.D.; Hirashima, M.; Uede, T.; Takaoka, A.; Yagita, H.; Jinushi, M. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol., 2012, 13(9), 832-842.
[http://dx.doi.org/10.1038/ni.2376] [PMID: 22842346]
[95]
Dardalhon, V.; Anderson, A.C.; Karman, J.; Apetoh, L.; Chandwaskar, R.; Lee, D.H.; Cornejo, M.; Nishi, N.; Yamauchi, A.; Quintana, F.J.; Sobel, R.A.; Hirashima, M.; Kuchroo, V.K. Tim-3/galectin-9 pathway: Regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells. J. Immunol., 2010, 185(3), 1383-1392.
[http://dx.doi.org/10.4049/jimmunol.0903275] [PMID: 20574007]
[96]
Fourcade, J.; Sun, Z.; Benallaoua, M.; Guillaume, P.; Luescher, I.F.; Sander, C.; Kirkwood, J.M.; Kuchroo, V.; Zarour, H.M. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med., 2010, 207(10), 2175-2186.
[http://dx.doi.org/10.1084/jem.20100637] [PMID: 20819923]
[97]
Gautron, A-S.; Dominguez-Villar, M.; de Marcken, M.; Hafler, D.A. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells. Eur. J. Immunol., 2014, 44(9), 2703-2711.
[http://dx.doi.org/10.1002/eji.201344392] [PMID: 24838857]
[98]
da Silva, I.P.; Gallois, A.; Jimenez-Baranda, S.; Khan, S.; Anderson, A.C.; Kuchroo, V.K.; Osman, I.; Bhardwaj, N. Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol. Res., 2014, 2(5), 410-422.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0171] [PMID: 24795354]
[99]
Weber, J.K.; Zhou, R. Phosphatidylserine-induced conformational modulation of immune cell exhaustion-associated receptor TIM3. Sci. Rep., 2017, 7(1), 13579.
[http://dx.doi.org/10.1038/s41598-017-14064-x] [PMID: 29051586]
[100]
Anderson, AC Tim-3: An emerging target in the cancer immunotherapy landscape. Cancer Immunol. Res., 2014, 2(5), 393-398.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0039]
[101]
Sakuishi, K.; Apetoh, L.; Sullivan, J.M.; Blazar, B.R.; Kuchroo, V.K.; Anderson, A.C. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med., 2010, 207(10), 2187-2194.
[http://dx.doi.org/10.1084/jem.20100643] [PMID: 20819927]
[102]
de Oliveira, C.E.C.; Oda, J.M.M.; Losi Guembarovski, R.; de Oliveira, K.B.; Ariza, C.B.; Neto, J.S.; Banin Hirata, B.K.; Watanabe, M.A. CC chemokine receptor 5: The interface of host immunity and cancer. Dis. Markers, 2014, 2014, 126954.
[http://dx.doi.org/10.1155/2014/126954] [PMID: 24591756]
[103]
Lesokhin, A.M.; Hohl, T.M.; Kitano, S.; Cortez, C.; Hirschhorn-Cymerman, D.; Avogadri, F.; Rizzuto, G.A.; Lazarus, J.J.; Pamer, E.G.; Houghton, A.N.; Merghoub, T.; Wolchok, J.D. Monocytic CCR2(+) myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer Res., 2012, 72(4), 876-886.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1792] [PMID: 22174368]
[104]
Lim, H.W.; Lee, J.; Hillsamer, P.; Kim, C.H. Human Th17 cells share major trafficking receptors with both polarized effector T cells and Foxp3+ regulatory T cells. J. Immunol., 2008, 180(1), 122-129.
[http://dx.doi.org/10.4049/jimmunol.180.1.122] [PMID: 18097011]
[105]
Mack, M.; Cihak, J.; Simonis, C.; Luckow, B.; Proudfoot, A.E.; Plachý, J.; Brühl, H.; Frink, M.; Anders, H.J.; Vielhauer, V.; Pfirstinger, J.; Stangassinger, M.; Schlöndorff, D. Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice. J. Immunol., 2001, 166(7), 4697-4704.
[http://dx.doi.org/10.4049/jimmunol.166.7.4697] [PMID: 11254730]
[106]
Sica, A.; Saccani, A.; Bottazzi, B.; Bernasconi, S.; Allavena, P.; Gaetano, B.; Fei, F.; LaRosa, G.; Scotton, C.; Balkwill, F.; Mantovani, A. Defective expression of the monocyte chemotactic protein-1 receptor CCR2 in macrophages associated with human ovarian carcinoma. J. Immunol., 2000, 164(2), 733-738.
[http://dx.doi.org/10.4049/jimmunol.164.2.733] [PMID: 10623817]
[107]
Umansky, V.; Blattner, C.; Gebhardt, C.; Utikal, J. CCR5 in recruitment and activation of myeloid-derived suppressor cells in melanoma. Cancer Immunol. Immunother., 2017, 66(8), 1015-1023.
[http://dx.doi.org/10.1007/s00262-017-1988-9] [PMID: 28382399]
[108]
Weitzenfeld, P.; Ben-Baruch, A. The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett., 2014, 352(1), 36-53.
[http://dx.doi.org/10.1016/j.canlet.2013.10.006] [PMID: 24141062]
[109]
Huang, B.; Lei, Z.; Zhao, J.; Gong, W.; Liu, J.; Chen, Z.; Liu, Y.; Li, D.; Yuan, Y.; Zhang, G.M.; Feng, Z.H. CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett., 2007, 252(1), 86-92.
[http://dx.doi.org/10.1016/j.canlet.2006.12.012] [PMID: 17257744]
[110]
Lim, S.Y.; Yuzhalin, A.E.; Gordon-Weeks, A.N.; Muschel, R.J. Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget, 2016, 7(19), 28697-28710.
[http://dx.doi.org/10.18632/oncotarget.7376] [PMID: 26885690]
[111]
Chang, L-Y.; Lin, Y-C.; Mahalingam, J.; Huang, C.T.; Chen, T.W.; Kang, C.W.; Peng, H.M.; Chu, Y.Y.; Chiang, J.M.; Dutta, A.; Day, Y.J.; Chen, T.C.; Yeh, C.T.; Lin, C.Y. Tumor-derived chemokine CCL5 enhances TGF-β-mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells. Cancer Res., 2012, 72(5), 1092-1102.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2493] [PMID: 22282655]
[112]
Sanford, D.E.; Belt, B.A.; Panni, R.Z.; Mayer, A.; Deshpande, A.D.; Carpenter, D.; Mitchem, J.B.; Plambeck-Suess, S.M.; Worley, L.A.; Goetz, B.D.; Wang-Gillam, A.; Eberlein, T.J.; Denardo, D.G.; Goedegebuure, S.P.; Linehan, D.C. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: A role for targeting the CCL2/CCR2 axis. Clin. Cancer Res., 2013, 19(13), 3404-3415.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0525] [PMID: 23653148]
[113]
Franklin, R.A.; Liao, W.; Sarkar, A.; Kim, M.V.; Bivona, M.R.; Liu, K.; Pamer, E.G.; Li, M.O. The cellular and molecular origin of tumor-associated macrophages. Science, 2014, 344(6186), 921-925.
[http://dx.doi.org/10.1126/science.1252510] [PMID: 24812208]
[114]
Loberg, R.D.; Ying, C.; Craig, M.; Yan, L.; Snyder, L.A.; Pienta, K.J. CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia, 2007, 9(7), 556-562.
[http://dx.doi.org/10.1593/neo.07307] [PMID: 17710158]
[115]
Wolf, M.J.; Hoos, A.; Bauer, J.; Boettcher, S.; Knust, M.; Weber, A.; Simonavicius, N.; Schneider, C.; Lang, M.; Stürzl, M.; Croner, R.S.; Konrad, A.; Manz, M.G.; Moch, H.; Aguzzi, A.; van Loo, G.; Pasparakis, M.; Prinz, M.; Borsig, L.; Heikenwalder, M. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell, 2012, 22(1), 91-105.
[http://dx.doi.org/10.1016/j.ccr.2012.05.023] [PMID: 22789541]
[116]
Tan, M.C.B.; Goedegebuure, P.S.; Belt, B.A.; Flaherty, B.; Sankpal, N.; Gillanders, W.E.; Eberlein, T.J.; Hsieh, C.S.; Linehan, D.C. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J. Immunol., 2009, 182(3), 1746-1755.
[http://dx.doi.org/10.4049/jimmunol.182.3.1746] [PMID: 19155524]
[117]
Kitamura, T.; Qian, B.-Z.; Soong, D.; Cassetta, L.; Noy, R.; Sugano, G.; Kato, Y.; Li, J.; Pollard, J.W. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J. Exp. Med., 2015, 212(7), 1043-1059.
[http://dx.doi.org/10.1084/jem.20141836] [PMID: 26056232]
[118]
Lefebvre, E.; Moyle, G.; Reshef, R.; Richman, L.P.; Thompson, M.; Hong, F.; Chou, H.L.; Hashiguchi, T.; Plato, C.; Poulin, D.; Richards, T.; Yoneyama, H.; Jenkins, H.; Wolfgang, G.; Friedman, S.L. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS One, 2016, 11(6), e0158156.
[http://dx.doi.org/10.1371/journal.pone.0158156] [PMID: 27347680]
[119]
Mellor, A.L.; Munn, D.H. Tryptophan catabolism and T-cell tolerance: Immunosuppression by starvation? Immunol. Today, 1999, 20(10), 469-473.
[http://dx.doi.org/10.1016/S0167-5699(99)01520-0] [PMID: 10500295]
[120]
Mellor, A.L.; Munn, D.H. IDO expression by dendritic cells: Tolerance and tryptophan catabolism. Nat. Rev. Immunol., 2004, 4(10), 762-774.
[http://dx.doi.org/10.1038/nri1457] [PMID: 15459668]
[121]
Oda, S.; Sugimoto, H.; Yoshida, T.; Shiro, Y. Crystallization and preliminary crystallographic studies of human indoleamine 2,3-dioxygenase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2006, 62(Pt 3), 221-223.
[http://dx.doi.org/10.1107/S1744309106003356] [PMID: 16511306]
[122]
Thomas, S.R.; Salahifar, H.; Mashima, R.; Hunt, N.H.; Richardson, D.R.; Stocker, R. Antioxidants inhibit indoleamine 2,3-dioxygenase in IFN-γ-activated human macrophages: Posttranslational regulation by pyrrolidine dithiocarbamate. J. Immunol., 2001, 166(10), 6332-6340.
[http://dx.doi.org/10.4049/jimmunol.166.10.6332] [PMID: 11342657]
[123]
Platten, M.; Wick, W.; Van den Eynde, B.J. Tryptophan catabolism in cancer: Beyond IDO and tryptophan depletion. Cancer Res., 2012, 72(21), 5435-5440.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0569] [PMID: 23090118]
[124]
Routy, J.P.; Routy, B.; Graziani, G.M.; Mehraj, V. The kynurenine pathway is a double-edged sword in immune-privileged sites and in cancer: Implications for immunotherapy. Int. J. Tryptophan Res., 2016, 9, 67-77.
[http://dx.doi.org/10.4137/IJTR.S38355] [PMID: 27773992]
[125]
Mbongue, J.C.; Nicholas, D.A.; Torrez, T.W.; Kim, N.-S.; Firek, A.F.; Langridge, W.H.R. The role of indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines (Basel), 2015, 3(3), 703-729.
[http://dx.doi.org/10.3390/vaccines3030703] [PMID: 26378585]
[126]
Munn, D.H.; Sharma, M.D.; Hou, D.; Baban, B.; Lee, J.R.; Antonia, S.J.; Messina, J.L.; Chandler, P.; Koni, P.A.; Mellor, A.L. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest., 2004, 114(2), 280-290.
[http://dx.doi.org/10.1172/JCI21583] [PMID: 15254595]
[127]
Liu, P.; Xie, B-L.; Cai, S-H.; He, Y.W.; Zhang, G.; Yi, Y.M.; Du, J. Expression of indoleamine 2,3-dioxygenase in nasopharyngeal carcinoma impairs the cytolytic function of peripheral blood lymphocytes. BMC Cancer, 2009, 9, 416.
[http://dx.doi.org/10.1186/1471-2407-9-416] [PMID: 19948041]
[128]
Löb, S.; Königsrainer, A.; Zieker, D.; Brücher, B.L.; Rammensee, H.G.; Opelz, G.; Terness, P. IDO1 and IDO2 are expressed in human tumors: Levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol. Immunother., 2009, 58(1), 153-157.
[http://dx.doi.org/10.1007/s00262-008-0513-6] [PMID: 18418598]
[129]
Chen, P.W.; Mellon, J.K.; Mayhew, E.; Wang, S.; He, Y.G.; Hogan, N.; Niederkorn, J.Y. Uveal melanoma expression of indoleamine 2,3-deoxygenase: Establishment of an immune privileged environment by tryptophan depletion. Exp. Eye Res., 2007, 85(5), 617-625.
[http://dx.doi.org/10.1016/j.exer.2007.07.014] [PMID: 17870068]
[130]
Munn, D.H.; Sharma, M.D.; Lee, J.R.; Jhaver, K.G.; Johnson, T.S.; Keskin, D.B.; Marshall, B.; Chandler, P.; Antonia, S.J.; Burgess, R.; Slingluff, C.L., Jr; Mellor, A.L. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science, 2002, 297(5588), 1867-1870.
[http://dx.doi.org/10.1126/science.1073514] [PMID: 12228717]
[131]
Holmgaard, R.B.; Zamarin, D.; Munn, D.H.; Wolchok, J.D.; Allison, J.P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med., 2013, 210(7), 1389-1402.
[http://dx.doi.org/10.1084/jem.20130066] [PMID: 23752227]
[132]
Wainwright, D.A.; Balyasnikova, I.V.; Chang, A.L.; Ahmed, A.U.; Moon, K.S.; Auffinger, B.; Tobias, A.L.; Han, Y.; Lesniak, M.S. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin. Cancer Res., 2012, 18(22), 6110-6121.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2130] [PMID: 22932670]
[133]
Folgiero, V.; Goffredo, B.M.; Filippini, P.; Masetti, R.; Bonanno, G.; Caruso, R.; Bertaina, V.; Mastronuzzi, A.; Gaspari, S.; Zecca, M.; Torelli, G.F.; Testi, A.M.; Pession, A.; Locatelli, F.; Rutella, S. Indoleamine 2,3-dioxygenase 1 (IDO1) activity in leukemia blasts correlates with poor outcome in childhood acute myeloid leukemia. Oncotarget, 2014, 5(8), 2052-2064.
[http://dx.doi.org/10.18632/oncotarget.1504] [PMID: 24903009]
[134]
Godin-Ethier, J.; Hanafi, L.A.; Piccirillo, C.A.; Lapointe, R. Indoleamine 2,3-dioxygenase expression in human cancers: Clinical and immunologic perspectives. Clin. Cancer Res., 2011, 17(22), 6985-6991.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1331] [PMID: 22068654]
[135]
Jia, Y.; Wang, H.; Wang, Y.; Wang, T.; Wang, M.; Ma, M.; Duan, Y.; Meng, X.; Liu, L. Low expression of Bin1, along with high expression of IDO in tumor tissue and draining lymph nodes, are predictors of poor prognosis for esophageal squamous cell cancer patients. Int. J. Cancer, 2015, 137(5), 1095-1106.
[http://dx.doi.org/10.1002/ijc.29481] [PMID: 25683635]
[136]
Mangaonkar, A.; Mondal, A.K.; Fulzule, S.; Pundkar, C.; Park, E.J.; Jillella, A.; Kota, V.; Xu, H.; Savage, N.M.; Shi, H.; Munn, D.; Kolhe, R. A novel immunohistochemical score to predict early mortality in acute myeloid leukemia patients based on indoleamine 2,3 dioxygenase expression. Sci. Rep., 2017, 7(1), 12892.
[http://dx.doi.org/10.1038/s41598-017-12940-0] [PMID: 29038460]
[137]
Moon, Y.W.; Hajjar, J.; Hwu, P.; Naing, A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J. Immunother. Cancer, 2015, 3, 51.
[http://dx.doi.org/10.1186/s40425-015-0094-9] [PMID: 26674411]
[138]
Uyttenhove, C.; Pilotte, L.; Théate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; Van den Eynde, B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med., 2003, 9(10), 1269-1274.
[http://dx.doi.org/10.1038/nm934] [PMID: 14502282]
[139]
Ladomersky, E.; Zhai, L.; Lenzen, A.; Lauing, K.L.; Qian, J.; Scholtens, D.M.; Gritsina, G.; Sun, X.; Liu, Y.; Yu, F.; Gong, W.; Liu, Y.; Jiang, B.; Tang, T.; Patel, R.; Platanias, L.C.; James, C.D.; Stupp, R.; Lukas, R.V.; Binder, D.C.; Wainwright, D.A. IDO1 inhibition synergizes with radiation and PD-1 blockade to durably increase survival against advanced glioblastoma. Clin. Cancer Res., 2018, 24(11), 2559-2573.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3573] [PMID: 29500275]
[140]
Sharma, M.D.; Baban, B.; Chandler, P.; Hou, D.Y.; Singh, N.; Yagita, H.; Azuma, M.; Blazar, B.R.; Mellor, A.L.; Munn, D.H. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J. Clin. Invest., 2007, 117(9), 2570-2582.
[http://dx.doi.org/10.1172/JCI31911] [PMID: 17710230]
[141]
Mándi, Y.; Vécsei, L. The kynurenine system and immunoregulation. J. Neural Transm. (Vienna), 2012, 119(2), 197-209.
[http://dx.doi.org/10.1007/s00702-011-0681-y] [PMID: 21744051]
[142]
Dounay, A.B.; Tuttle, J.B.; Verhoest, P.R. Challenges and opportunities in the discovery of new therapeutics targeting the kynurenine pathway. J. Med. Chem., 2015, 58(22), 8762-8782.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00461] [PMID: 26207924]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy