Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

Exploring Cytokines as Potential Target in Peptic Ulcer Disease: A Systematic Update

Author(s): Alveera Zubair Ansari, Nirav Yogesh Bhatia, Sankalp Ashok Gharat, Angel Pavalu Godad and Gaurav Mahesh Doshi*

Volume 23, Issue 1, 2023

Published on: 03 October, 2022

Page: [21 - 34] Pages: 14

DOI: 10.2174/1871530322666220829142124

Price: $65

Abstract

Peptic ulcer disease (PUD) is a widespread condition that affects millions of people each year, with an incidence rate of 0.1%-1.5%, and has a significant impact on human health. A range of stimuli, such as Helicobacter pylori, non-steroidal anti-inflammatory drugs, hyperacidity, stress, alcohol, smoking, and idiopathic disease states, can produce a sore in the gastrointestinal mucosal layer. For individuals infected with H. pylori, 2%-3% remain asymptomatic throughout their life. Although PUD treatments are available, genetic variations occurring in individuals because of geographical dissimilarity and antibiotic resistance pose limitations. Specifically, inflammatory cytokine gene polymorphisms have received immense attention in recent years because they appear to affect the severity and duration of stomach inflammation, which is induced by H. pylori infection, contributing to the initiation of PUD. In such a context, in-depth knowledge of interleukins may aid in the discovery of new targets and provide precautionary approaches for the treatment of PUD. This review aims to give insights into the importance of several interleukins that cognate with PUD and contribute to ulcer progression or healing by activating or dampening the host immunity. Furthermore, the available targets with clinical evidence have been explored in this review.

Keywords: Peptic ulcer disease, inflammation, cytokines, Helicobacter pylori, gastritis, host immunity.

Graphical Abstract

[1]
Vasudevan, B. Pathophysiology and classification. Indian Dermatol. Online J., 2014, 5(3), 366.
[2]
Maliyar, K.; Mufti, A.; Syed, M.; Selk, A.; Dutil, M.; Bunce, P.E.; Alavi, A. Genital ulcer disease: A review of pathogenesis and clinical features. J. Cutan. Med. Surg., 2019, 23(6), 624-634.
[http://dx.doi.org/10.1177/1203475419858955] [PMID: 31253050]
[3]
Akita, S.; Houbara, S.; Akatsuka, M.; Hirano, A. Vascular anomalies and wounds. J. Tissue Viability, 2013, 22(4), 103-111.
[http://dx.doi.org/10.1016/j.jtv.2013.08.001] [PMID: 23993047]
[4]
Shah, H.; Yang, T.J.; Wudexi, I.; Solanki, S.; Patel, S.; Rajan, D.; Rodas, A.; Dajjani, M.; Chakinala, R.C.; Shah, P.; Sarker, K.; Patel, A.; Aronow, W. Trends and outcomes of peptic ulcer disease in patients with cirrhosis. Postgrad. Med., 2020, 132(8), 773-780.
[http://dx.doi.org/10.1080/00325481.2020.1795485] [PMID: 32654578]
[5]
Kavitt, R.T.; Lipowska, A.M.; Anyane-Yeboa, A.; Gralnek, I.M. Diagnosis and treatment of peptic ulcer disease. Am. J. Med., 2019, 132(4), 447-456.
[http://dx.doi.org/10.1016/j.amjmed.2018.12.009] [PMID: 30611829]
[6]
Peptic ulcer disease: Epidemiology, etiology, and pathogenesis. Available from: https://www.uptodate.com/contents/peptic-ulcer-disease-epidemiology-etiology-and-pathogenesis (Accessed on: 2022 Jul 8).
[7]
Chmiela, M.; Walczak, N.; Rudnicka, K. Helicobacter pylori outer membrane vesicles involvement in the infection development and Helicobacter pylori-related diseases. J. Biomed. Sci., 2018, 25(1), 1-11.
[8]
Wong, G.L.H.; Lau, L.H.S.; Ching, J.Y.L.; Tse, Y.K.; Ling, R.H.Y.; Wong, V.W.S.; Chiu, P.W.Y.; Lau, J.Y.W.; Chan, F.K.L. Prevention of recurrent idiopathic gastroduodenal ulcer bleeding: A double-blind, randomised trial. Gut, 2020, 69(4), 652-657.
[http://dx.doi.org/10.1136/gutjnl-2019-318715] [PMID: 31229990]
[9]
Quan, C.; Talley, N.J. Management of peptic ulcer disease not related to Helicobacter pylori or NSAIDs. Am. J. Gastroenterol., 2002, 97(12), 2950-2961.
[http://dx.doi.org/10.1111/j.1572-0241.2002.07068.x] [PMID: 12492176]
[10]
Koussoulas, V.; Vassiliou, S.; Giamarellos-Bourboulis, E.J.; Tassias, G.; Kotsaki, A.; Barbatzas, C.; Tzivras, M. Implications for a role of interleukin-23 in the pathogenesis of chronic gastritis and of peptic ulcer disease. Clin. Exp. Immunol., 2009, 156(1), 97-101.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03859.x] [PMID: 19210519]
[11]
Wu, D.; Zhang, Z.; Jiang, X.; Du, Y.; Zhang, S.; Yang, X.D. Inflammasome meets centrosome: Understanding the emerging role of centrosome in controlling inflammasome activation. Front. Immunol., 2022, 13, 826106.
[http://dx.doi.org/10.3389/fimmu.2022.826106] [PMID: 35281071]
[12]
Koch, K.N.; Müller, A. Helicobacter pylori activates the TLR2/NLRP3/caspase-1/IL-18 axis to induce regulatory T-cells, establish persistent infection and promote tolerance to allergens. Gut Microbes, 2015, 6(6), 382-387.
[http://dx.doi.org/10.1080/19490976.2015.1105427] [PMID: 26727421]
[13]
Ng, G.Z.; Menheniott, T.R.; Every, A.L.; Stent, A.; Judd, L.M.; Chionh, Y.T.; Dhar, P.; Komen, J.C.; Giraud, A.S.; Wang, T.C.; McGuckin, M.A.; Sutton, P. The MUC1 mucin protects against Helicobacter pylori pathogenesis in mice by regulation of the NLRP3 inflammasome. Gut, 2016, 65(7), 1087-1099.
[http://dx.doi.org/10.1136/gutjnl-2014-307175] [PMID: 26079943]
[14]
Pachathundikandi, S.K.; Backert, S. Helicobacter pylori controls NLRP3 expression by regulating hsa-miR-223-3p and IL-10 in cultured and primary human immune cells. Innate Immun., 2018, 24(1), 11-23.
[http://dx.doi.org/10.1177/1753425917738043] [PMID: 29145789]
[15]
Lamkanfi, M.; Dixit, V.M. Mechanisms and functions of inflammasomes. Cell, 2014, 157(5), 1013-1022.
[http://dx.doi.org/10.1016/j.cell.2014.04.007] [PMID: 24855941]
[16]
Koch, K.N.; Hartung, M.L.; Urban, S.; Kyburz, A.; Bahlmann, A.S.; Lind, J.; Backert, S.; Taube, C.; Müller, A. Helicobacter urease-induced activation of the TLR2/NLRP3/IL-18 axis protects against asthma. J. Clin. Invest., 2015, 125(8), 3297-3302.
[http://dx.doi.org/10.1172/JCI79337] [PMID: 26214524]
[17]
Liu, T. Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2(1), 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[18]
Chen, J.; Wang, Z.; Hu, X.; Chen, R.; Romero-Gallo, J.; Peek, R.M., Jr; Chen, L.F. BET inhibition attenuates Helicobacter pylori - induced inflammatory response by suppressing inflammatory gene transcription and enhancer activation. J. Immunol., 2016, 196(10), 4132-4142.
[http://dx.doi.org/10.4049/jimmunol.1502261] [PMID: 27084101]
[19]
J. Clin. Biochem. Nutr., 2011, 48(2), 107-111.
[http://dx.doi.org/10.3164/jcbn.10-79] [PMID: 21373261]
[20]
Gunaydin, C.; Bilge, S.S. Effects of nonsteroidal anti-inflammatory drugs at the molecular level. Eurasian J. Med., 2018, 50(2), 116-121.
[http://dx.doi.org/10.5152/eurasianjmed.2018.0010] [PMID: 30002579]
[21]
Berkowitz, L.; Schultz, B.M.; Salazar, G.A.; Pardo-Roa, C.; Sebastián, V.P.; Álvarez-Lobos, M.M.; Bueno, S.M. Impact of cigarette smoking on the gastrointestinal tract inflammation: Opposing effects in Crohn’s disease and ulcerative colitis. Front. Immunol., 2018, 9, 74.
[http://dx.doi.org/10.3389/fimmu.2018.00074] [PMID: 29441064]
[22]
López-Lázaro, M. A local mechanism by which alcohol consumption causes cancer. Oral Oncol., 2016, 62, 149-152.
[http://dx.doi.org/10.1016/j.oraloncology.2016.10.001] [PMID: 27720397]
[23]
Guillén-Mancina, E.; Calderón-Montaño, J.M.; López-Lázaro, M. Avoiding the ingestion of cytotoxic concentrations of ethanol may reduce the risk of cancer associated with alcohol consumption. Drug Alcohol Depend., 2018, 183, 201-204.
[http://dx.doi.org/10.1016/j.drugalcdep.2017.11.013] [PMID: 29289868]
[24]
Auguste, L.J.; Lackner, R.; Ratner, L.; Stein, T.A.; Bailey, B. Prevention of stress-induced erosive gastritis by parenteral administration of arachidonic acid. JPEN J. Parenter. Enteral Nutr., 1990, 14(6), 615-617.
[http://dx.doi.org/10.1177/0148607190014006615] [PMID: 2125645140]
[25]
Deding, U.; Ejlskov, L.; Grabas, M.P.K.; Nielsen, B.J.; Torp-Pedersen, C.; Bøggild, H. Perceived stress as a risk factor for peptic ulcers: A register-based cohort study. BMC Gastroenterol., 2016, 16(1), 140. HYPERLINK http://www.ncbi.nlm.nih.gov/pubmed/27894275
[http://dx.doi.org/10.1186/s12876-016-0554-9] [PMID: 27894275]
[26]
Megha, R.; Farooq, U.; Lopez, P.P. Stress-Induced Gastritis; StatPearls Internet; StatPearls Publishing: Treasure Island, FL, 2022.
[27]
Hu, Z.; Zhang, Y.; Li, Z.; Yu, Y.; Kang, W.; Han, Y.; Geng, X.; Ge, S.; Sun, Y. Effect of Helicobacter pylori infection on chronic periodontitis by the change of microecology and inflammation. Oncotarget, 2016, 7(41), 66700-66712.
[http://dx.doi.org/10.18632/oncotarget.11449] [PMID: 27602578]
[28]
Bassagh, A.; Hayatbakhsh Abasi, M.; Larussa, T.; Ghazizadeh, M.; Nemati, M.; Mirkamandar, E.; Jafarzadeh, A. Diminished circulating concentration of interleukin-35 in Helicobacter pylori -infected patients with peptic ulcer: Its association with FOXP3 gene polymorphism, bacterial virulence factor CagA, and gender of patients. Helicobacter, 2018, 23(4), e12501.
[http://dx.doi.org/10.1111/hel.12501] [PMID: 29938865]
[29]
Gulati, K.; Guhathakurta, S.; Joshi, J.; Rai, N.; Ray, A. Cytokines and their role in health and disease: A brief overview. MOJ Immunol., 2016, 4(2), 00121.
[30]
Doshi, G.; Thakkar, A. Deciphering role of cytokines for therapeutic strategies against rheumatoid arthritis. Curr. Drug Targets, 2021, 22(7), 803-815.
[http://dx.doi.org/10.2174/1389450121666201027124625] [PMID: 33109042]
[31]
Qi, C.; Jiang, F.; Yang, S. Advanced honeycomb designs for improving mechanical properties: A review. Compos., Part B Eng., 2021, 227, 109393.
[http://dx.doi.org/10.1016/j.compositesb.2021.109393]
[32]
Muñoz-Carrillo, J.L.; Contreras-Cordero, J.F.; Gutiérrez-Coronado, O.; Villalobos-Gutiérrez, P.T.; Ramos-Gracia, L.G.; Hernández-Reyes, V.E. Cytokine profiling plays a crucial role in activating immune system to clear infectious pathogens.Immune Response Activation and Immunomodulation; Tyagi, R.K.; Bisen, P.S., Eds.; IntechOpen: London, 2018.
[33]
Booth, J.S.; Salerno-Goncalves, R.; Blanchard, T.G.; Patil, S.A.; Kader, H.A.; Safta, A.M.; Morningstar, L.M.; Czinn, S.J.; Greenwald, B.D.; Sztein, M.B. Mucosal-associated invariant T cells in the human gastric mucosa and blood: Role in Helicobacter pylori infection. Front. Immunol., 2015, 6, 466.
[http://dx.doi.org/10.3389/fimmu.2015.00466] [PMID: 26441971]
[34]
Jenei-Lanzl, Z.; Meurer, A.; Zaucke, F. Interleukin-1β signaling in osteoarthritis - chondrocytes in focus. Cell. Signal., 2019, 53, 212-223.
[http://dx.doi.org/10.1016/j.cellsig.2018.10.005] [PMID: 30312659]
[35]
Cai, Y.; Xue, F.; Quan, C.; Qu, M.; Liu, N.; Zhang, Y.; Fleming, C.; Hu, X.; Zhang, H.; Weichselbaum, R.; Fu, Y.; Tieri, D.; Rouchka, E.C.; Zheng, J.; Yan, J. A critical role of the IL-1β–IL-1R signaling pathway in skin inflammation and psoriasis pathogenesis. J. Invest. Dermatol., 2019, 139(1), 146-156.
[http://dx.doi.org/10.1016/j.jid.2018.07.025] [PMID: 30120937]
[36]
Rosenzwajg, M.; Churlaud, G.; Hartemann, A.; Klatzmann, D. Interleukin 2 in the pathogenesis and therapy of type 1 diabetes. Curr. Diab. Rep., 2014, 14(12), 553.
[http://dx.doi.org/10.1007/s11892-014-0553-6] [PMID: 25344788]
[37]
Guo, Q.; Chen, X.Y.; Su, Y. Interleukin-2 signaling pathway regulating molecules in systemic lupus erythematosus. Beijing Da Xue Xue Bao, 2016, 48(6), 1100-1104.
[PMID: 27987522]
[38]
Vijayakumar, S.; Viswanathan, S.; Aghoram, R. Idiopathic CD4 lymphocytopenia: Current insights. ImmunoTargets Ther., 2020, 9, 79-93.
[http://dx.doi.org/10.2147/ITT.S214139] [PMID: 32548074]
[39]
Dong, C.; Fu, T.; Ji, J.; Li, Z.; Gu, Z. The role of interleukin-4 in rheumatic diseases. Clin. Exp. Pharmacol. Physiol., 2018, 45(8), 747-754.
[http://dx.doi.org/10.1111/1440-1681.12946] [PMID: 29655253]
[40]
Akinlade, B.; Guttman-Yassky, E.; Bruin-Weller, M.; Simpson, E.L.; Blauvelt, A.; Cork, M.J.; Prens, E.; Asbell, P.; Akpek, E.; Corren, J.; Bachert, C.; Hirano, I.; Weyne, J.; Korotzer, A.; Chen, Z.; Hultsch, T.; Zhu, X.; Davis, J.D.; Mannent, L.; Hamilton, J.D.; Teper, A.; Staudinger, H.; Rizova, E.; Pirozzi, G.; Graham, N.M.H.; Shumel, B.; Ardeleanu, M.; Wollenberg, A. Conjunctivitis in dupilumab clinical trials. Br. J. Dermatol., 2019, 181(3), 459-473.
[http://dx.doi.org/10.1111/bjd.17869] [PMID: 30851191]
[41]
Kumari, N.; Dwarakanath, B.S.; Das, A.; Bhatt, A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol., 2016, 37(9), 11553-11572.
[http://dx.doi.org/10.1007/s13277-016-5098-7] [PMID: 27260630]
[42]
Yang, Y.; Xiao, J.; Tang, L.; Wang, B.; Sun, X.; Xu, Z.; Liu, L.; Shi, S. Effects of IL-6 polymorphisms on individual susceptibility to allergic diseases: A systematic review and meta-analysis. Front. Genet., 2022, 13, 822091.
[http://dx.doi.org/10.3389/fgene.2022.822091] [PMID: 35368692]
[43]
Araki, M. Blockade of IL-6 signaling in neuromyelitis optica. Neurochem. Int., 2019, 130, 104315.
[http://dx.doi.org/10.1016/j.neuint.2018.10.012] [PMID: 30342072]
[44]
Azab, N.A.; Abd El Salam, L.; Ahmed, E.; El Sharkawy, M.; ElSharkawy, A.; El Asheiry, S.G. Interferon gamma and interleukin 8 gene polymorphisms in patients with hepatitis C virus related oral lichen planus. Arch. Oral Biol., 2018, 96, 189-194.
[http://dx.doi.org/10.1016/j.archoralbio.2018.09.015] [PMID: 30290294]
[45]
Murata, S.; Kaneko, S.; Morita, E. Interleukin-8 Levels in the stratum corneum as a biomarker for monitoring therapeutic effect in atopic dermatitis patients. Int. Arch. Allergy Immunol., 2021, 182(7), 592-606.
[http://dx.doi.org/10.1159/000512965] [PMID: 33486487]
[46]
Grzanka, R.; Damasiewicz-Bodzek, A.; Kasperska-Zajac, A. Tumor necrosis factor-alpha and Fas/Fas ligand signaling pathways in chronic spontaneous urticaria. Allergy Asthma Clin. Immunol., 2019, 15(1), 15.
[http://dx.doi.org/10.1186/s13223-019-0332-7] [PMID: 30911316]
[47]
Dima, A.; Pricopi, I.; Balanescu, E.; Balanescu, P.; Baicus, C. Interleukin 10 related to lymphopenia in lupus. Eur. J. Intern. Med., 2019, 64, e9-e10.
[http://dx.doi.org/10.1016/j.ejim.2019.04.012] [PMID: 31036439]
[48]
Kumar, S.; Shukla, R.; Ranjan, P.; Kumar, A. Interleukin-10: A compelling therapeutic target in patients with irritable bowel syndrome. Clin. Ther., 2017, 39(3), 632-643.
[http://dx.doi.org/10.1016/j.clinthera.2017.01.030] [PMID: 28237672]
[49]
Tabrez, S.; Ali, M.; Jabir, N.R.; Firoz, C.K.; Ashraf, G.M.; Hindawi, S.; Damanhouri, G.A.; Nabil Alama, M. A putative association of interleukin-10 promoter polymorphisms with cardiovascular disease. IUBMB Life, 2017, 69(7), 522-527.
[http://dx.doi.org/10.1002/iub.1637] [PMID: 28474494]
[50]
Li, Y.; Zhou, Y. Interleukin-17: The role for pathological angiogenesis in ocular neovascular diseases. Tohoku J. Exp. Med., 2019, 247(2), 87-98.
[http://dx.doi.org/10.1620/tjem.247.87] [PMID: 30773517]
[51]
Taams, L.S.; Steel, K.J.A.; Srenathan, U.; Burns, L.A.; Kirkham, B.W. IL-17 in the immunopathogenesis of spondyloarthritis. Nat. Rev. Rheumatol., 2018, 14(8), 453-466.
[http://dx.doi.org/10.1038/s41584-018-0044-2] [PMID: 30006601]
[52]
Moaaz, M.; Youssry, S.; Elfatatry, A.; El Rahman, M.A. Th17/Treg cells imbalance and their related cytokines (IL-17, IL-10 and TGF-β) in children with autism spectrum disorder. J. Neuroimmunol., 2019, 337, 577071.
[http://dx.doi.org/10.1016/j.jneuroim.2019.577071] [PMID: 31671361]
[53]
Balato, A.; Raimondo, A.; Balato, N.; Ayala, F.; Lembo, S. Interleukin-33: Increasing role in dermatological conditions. Arch. Dermatol. Res., 2016, 308(5), 287-296.
[http://dx.doi.org/10.1007/s00403-016-1638-7] [PMID: 26969580]
[54]
Chen, W.Y.; Li, L.C.; Yang, J.L. Emerging roles of IL-33/ST2 axis in renal diseases. Int. J. Mol. Sci., 2017, 18(4), 783.
[http://dx.doi.org/10.3390/ijms18040783] [PMID: 28387719]
[55]
Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in inflammatory disease. Int. J. Mol. Sci., 2019, 20(23), 6008.
[http://dx.doi.org/10.3390/ijms20236008] [PMID: 31795299]
[56]
Torres-Acosta, N.; O’Keefe, J.H.; O’Keefe, E.L.; Isaacson, R.; Small, G. Therapeutic potential of TNF-α inhibition for Alzheimer’s disease prevention. J. Alzheimers Dis., 2020, 78(2), 619-626.
[http://dx.doi.org/10.3233/JAD-200711] [PMID: 33016914]
[57]
Felice, C.; Marzo, M.; Pugliese, D.; Papa, A.; Rapaccini, G.L.; Guidi, L.; Armuzzi, A. Therapeutic drug monitoring of anti-TNF-α agents in inflammatory bowel diseases. Expert Opin. Biol. Ther., 2015, 15(8), 1107-1117.
[http://dx.doi.org/10.1517/14712598.2015.1044434] [PMID: 25947043]
[58]
Wang, Y.; Zhang, J.; Luo, P.; Zhu, J.; Feng, J.; Zhang, H.L. Tumor necrosis factor-α in Guillain-Barré syndrome, friend or foe? Expert Opin. Ther. Targets, 2017, 21(1), 103-112.
[http://dx.doi.org/10.1080/14728222.2017.1258402] [PMID: 27817222]
[59]
Hegde, R.; Awan, K.H. Effects of periodontal disease on systemic health. Dis. Mon., 2019, 65(6), 185-192.
[http://dx.doi.org/10.1016/j.disamonth.2018.09.011] [PMID: 30384973]
[60]
Lin, Z.Q.; Lin, G.Y.; He, W.W.; Zhang, C.; Zhang, R.; Li, Y.D.; Wang, F.; Qin, Y.; Duan, L.; Zhao, D.D.; Qu, X.J.; Gao, H.; Jiang, H. IL-6 and INF-γ levels in patients with brucellosis in severe epidemic region, Xinjiang, China. Infect. Dis. Poverty, 2020, 9(1), 47.
[http://dx.doi.org/10.1186/s40249-020-00666-7] [PMID: 32381058]
[61]
Chen, J.; Yue, Y.; Wang, L.; Deng, Z.; Yuan, Y.; Zhao, M.; Yuan, Z.; Tan, C.; Cao, Y. Altered gut microbiota correlated with systemic inflammation in children with Kawasaki disease. Sci. Rep., 2020, 10(1), 14525.
[http://dx.doi.org/10.1038/s41598-020-71371-6] [PMID: 32884012]
[62]
Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The role of interleukin-1 in general pathology. Inflamm. Regen., 2019, 39(1), 1-16.
[http://dx.doi.org/10.1186/s41232-019-0101-5]
[63]
Rech, T.F.; Mazzoleni, L.E.; Mazzoleni, F.; Francesconi, C.F.M.; Sander, G.B.; Michita, R.T.; Nabinger, D.D.; Milbradt, T.C.; Torresini, R.J.S.; Simon, D. Helicobacter pylori eradication: Influence of interleukin-1beta –31 C/T polymorphism. Braz. J. Infect. Dis., 2018, 22(4), 311-316.
[http://dx.doi.org/10.1016/j.bjid.2018.06.005] [PMID: 30048609]
[64]
Malfertheiner, P.; Link, A.; Selgrad, M. Helicobacter pylori: Perspectives and time trends. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(10), 628-638.
[http://dx.doi.org/10.1038/nrgastro.2014.99] [PMID: 25001975]
[65]
Shanks, A.M.; El-Omar, E.M. Helicobacter pylori infection, host genetics and gastric cancer. J. Dig. Dis., 2009, 10(3), 157-164.
[http://dx.doi.org/10.1111/j.1751-2980.2009.00380.x] [PMID: 19659782]
[66]
Ma, J.; Wu, D.; Hu, X.; Li, J.; Cao, M.; Dong, W. Associations between cytokine gene polymorphisms and susceptibility to Helicobacter pylori infection and Helicobacter pylori related gastric cancer, peptic ulcer disease: A meta-analysis. PLoS One, 2017, 12(4), e0176463.
[http://dx.doi.org/10.1371/journal.pone.0176463] [PMID: 28453551]
[67]
Cooke, J.V.; Whipple, G.H. Proteose intoxications and injury of body protein. J. Exp. Med., 1918, 28(2), 223-241.
[http://dx.doi.org/10.1084/jem.28.2.223] [PMID: 19868252]
[68]
Johnson, J.D.; Barnard, D.F.; Kulp, A.C.; Mehta, D.M. Neuroendocrine regulation of brain cytokines after psychological stress. J. Endocr. Soc., 2019, 3(7), 1302-1320.
[http://dx.doi.org/10.1210/js.2019-00053] [PMID: 31259292]
[69]
Sugimoto, M.; Yamaoka, Y.; Furuta, T. Influence of interleukin polymorphisms on development of gastric cancer and peptic ulcer. World J. Gastroenterol., 2010, 16(10), 1188-1200.
[http://dx.doi.org/10.3748/wjg.v16.i10.1188] [PMID: 20222161]
[70]
Moezi, L.; Heidari, R.; Amirghofran, Z.; Nekooeian, A.A.; Monabati, A.; Dehpour, A.R. Enhanced anti-ulcer effect of pioglitazone on gastric ulcers in cirrhotic rats: The role of nitric oxide and IL-1β. Pharmacol. Rep., 2013, 65(1), 134-143.
[http://dx.doi.org/10.1016/S1734-1140(13)70971-X] [PMID: 23563031]
[71]
Abdul-Aziz, K.K. Comparative evaluation of the anti-ulcer activity of curcumin and omeprazole during the acute phase of gastric ulcer-efficacy of curcumin in gastric ulcer prevention against omeprazole. Food Nutr. Sci., 2011, 2(6), 628-640.
[http://dx.doi.org/10.4236/fns.2011.26088]
[72]
Albaayit, S.F.A.; Abba, Y.; Abdullah, R.; Abdullah, N. Prophylactic effects of Clausena excavata Burum. f. leaf extract in ethanol-induced gastric ulcers. Drug Des. Devel. Ther., 2016, 10, 1973.
[73]
Ramis, I.B.; Vianna, J.S.; Gonçalves, C.V.; von Groll, A.; Dellagostin, O.A.; da Silva, P.E.A. Polymorphisms of the IL-6, IL-8 and IL-10 genes and the risk of gastric pathology in patients infected with Helicobacter pylori. J. Microbiol. Immunol. Infect., 2017, 50(2), 153-159.
[http://dx.doi.org/10.1016/j.jmii.2015.03.002] [PMID: 25888319]
[74]
Matsuo, K.; Oka, M.; Murase, K.; Soda, H.; Isomoto, H.; Takeshima, F.; Mizuta, Y.; Murata, I.; Kohno, S. Expression of interleukin 6 and its receptor in human gastric and colorectal cancers. J. Int. Med. Res., 2003, 31(2), 69-75.
[http://dx.doi.org/10.1177/147323000303100202] [PMID: 12760309]
[75]
Jenkins, B.J.; Grail, D.; Nheu, T.; Najdovska, M.; Wang, B.; Waring, P.; Inglese, M.; McLoughlin, R.M.; Jones, S.A.; Topley, N.; Baumann, H.; Judd, L.M.; Giraud, A.S.; Boussioutas, A.; Zhu, H.J.; Ernst, M. Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-β signaling. Nat. Med., 2005, 11(8), 845-852.
[http://dx.doi.org/10.1038/nm1282] [PMID: 16041381]
[76]
Belaia, O.F.; Gutkin, D.C.; Volchkova, E.V.; Sundukova, A.N.; Kareva, E.N.; Kochina, N.A.; Krasnoshchok, E.V.; Maloletneva, N.V.; Shabalina, O.Y.; Tuaeva, A.O. The levels of IL-4 and IL-8 in serum of patients with chronic gastritis and ulcerative disease of stomach and duodenum. Epidemiol. Infect. Dis., 2019, 24(1), 4-10.
[http://dx.doi.org/10.18821/1560-9529-2019-24-1-4-10]
[77]
Siddique, I.; Al-Qabandi, A.; Al-Ali, J.; Alazmi, W.; Memon, A.; Mustafa, A.S. Association between Helicobacter pylori genotypes and severity of chronic gastritis, peptic ulcer disease and gastric mucosal interleukin-8 levels: Evidence from a study in the Middle East. Gut Pathog., 2014, 6(1), 41.
[78]
Mosser, D.M.; Zhang, X. Interleukin-10: New perspectives on an old cytokine. Immunol. Rev., 2008, 226(1), 205-218.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00706.x] [PMID: 19161426]
[79]
Ouyang, W.; Rutz, S.; Crellin, N.K.; Valdez, P.A.; Hymowitz, S.G. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol., 2011, 29(1), 71-109.
[http://dx.doi.org/10.1146/annurev-immunol-031210-101312] [PMID: 21166540]
[80]
Zenobia, C.; Hajishengallis, G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol. 2000, 2015, 69(1), 142-159.
[http://dx.doi.org/10.1111/prd.12083] [PMID: 26252407]
[81]
Wills-Karp, M.; Nathan, A.; Page, K.; Karp, C.L. New insights into innate immune mechanisms underlying allergenicity. Mucosal Immunol., 2010, 3(2), 104-110.
[http://dx.doi.org/10.1038/mi.2009.138] [PMID: 20032970]
[82]
Gaffen, S.L.; Hajishengallis, G. A new inflammatory cytokine on the block: Re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J. Dent. Res., 2008, 87(9), 817-828.
[http://dx.doi.org/10.1177/154405910808700908] [PMID: 18719207]
[83]
Liu, B.; Wei, L.; Meyerle, C.; Tuo, J.; Sen, H.N.; Li, Z.; Chakrabarty, S.; Agron, E.; Chan, C.C.; Klein, M.L.; Chew, E.; Ferris, F.; Nussenblatt, R.B. Complement component C5a promotes expression of IL-22 and IL-17 from human T cells and its implication in age-related macular degeneration. J. Transl. Med., 2011, 9(1), 111.
[http://dx.doi.org/10.1186/1479-5876-9-111] [PMID: 21762495]
[84]
Griffin, G.K.; Newton, G.; Tarrio, M.L.; Bu, D.; Maganto-Garcia, E.; Azcutia, V.; Alcaide, P.; Grabie, N.; Luscinskas, F.W.; Croce, K.J.; Lichtman, A.H. IL-17 and TNF-α sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J. Immunol., 2012, 188(12), 6287-6299.
[http://dx.doi.org/10.4049/jimmunol.1200385] [PMID: 22566565]
[85]
Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol., 2009, 27(1), 519-550.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132612] [PMID: 19302047]
[86]
Liu, X.; He, F.; Pang, R.; Zhao, D.; Qiu, W.; Shan, K.; Zhang, J.; Lu, Y.; Li, Y.; Wang, Y. Interleukin-17 (IL-17)-induced microRNA 873 (miR-873) contributes to the pathogenesis of experimental autoimmune encephalomyelitis by targeting A20 ubiquitin-editing enzyme. J. Biol. Chem., 2014, 289(42), 28971-28986.
[http://dx.doi.org/10.1074/jbc.M114.577429] [PMID: 25183005]
[87]
Li, N.; Wang, J.; Yu, W.; Dong, K.; You, F.; Si, B.; Tang, B.; Zhang, Y.; Wang, T.; Qiao, B. MicroRNA 146a inhibits the inflammatory responses induced by interleukin 17A during the infection of Helicobacter pylori. Mol. Med. Rep., 2019, 19(2), 1388-1395.
[PMID: 30535468]
[88]
Ruland, J. Return to homeostasis: Downregulation of NF-κB responses. Nat. Immunol., 2011, 12(8), 709-714.
[http://dx.doi.org/10.1038/ni.2055] [PMID: 21772279]
[89]
Dewayani, A.; Fauzia, K.A.; Alfaray, R.I.; Waskito, L.A.; Doohan, D.; Rezkitha, Y.A.A.; Abdurachman, A.; Kobayashi, T.; I’tishom, R.; Yamaoka, Y.; Miftahussurur, M. The roles of IL-17, IL-21, and IL-23 in the Helicobacter pylori infection and gastrointestinal inflammation: A review. Toxins (Basel), 2021, 13(5), 315.
[http://dx.doi.org/10.3390/toxins13050315] [PMID: 33924897]
[90]
Li, C.Y.; Wu, C. Therapy with omeprazole modulates regulatory T cell/T helper 17 immune response in children with duodenal ulcers. Inflammopharmacology, 2018, 26(2), 337-347.
[http://dx.doi.org/10.1007/s10787-017-0380-x] [PMID: 28735449]
[91]
Kuo, C.J.; Chen, C.Y.; Lo, H.R.; Feng, C.L.; Wu, H.Y.; Huang, M.Z.; Liao, T.N.; Chen, Y.A.; Lai, C.H. Helicobacter pylori induces IL-33 production and recruits ST-2 to lipid rafts to exacerbate inflammation. Cells, 2019, 8(10), 1290.
[http://dx.doi.org/10.3390/cells8101290] [PMID: 31640262]
[92]
Payão, S.L.M.; Rasmussen, L.T. Helicobacter pylori and its reservoirs: A correlation with the gastric infection. World J. Gastrointest. Pharmacol. Ther., 2016, 7(1), 126-132.
[http://dx.doi.org/10.4292/wjgpt.v7.i1.126] [PMID: 26855818]
[93]
Morningstar-Wright, L.; Czinn, S.J.; Piazuelo, M.B.; Banerjee, A.; Godlewska, R.; Blanchard, T.G. The TNF-alpha inducing protein is associated with gastric inflammation and hyperplasia in a murine model of Helicobacter pylori infection. Front. Pharmacol., 2022, 13(Feb), 817237.
[http://dx.doi.org/10.3389/fphar.2022.817237] [PMID: 35237167]
[94]
Kak, G.; Tiwari, B.K.; Singh, Y.; Natarajan, K. Regulation of Interferon-γ receptor (IFN-γR) expression in macrophages during Mycobacterium tuberculosis infection. Biomol. Concepts, 2020, 11(1), 76-85.
[http://dx.doi.org/10.1515/bmc-2020-0006]
[95]
Essadik, A.; Jouhadi, H.; Rhouda, T. Polymorphisms of tumor necrosis factor alpha in Moroccan patients with gastric pathology: New single-nucleotide polymorphisms in TNF-α− 193. Mediators Inflamm., 2015, 2015, 143941.
[96]
Chauhan, I.; Agrawal, S.; Goel, R. Status of inflammatory markers and growth factor in gastric ulcer protective effects of Punica granatum L. peel extract in rat. Natl. J. Physiol. Pharm. Pharmacol., 2018, 8(1), 1.
[http://dx.doi.org/10.5455/njppp.2018.8.0309317072017]
[97]
Haghi Aminjan, H.; Abtahi, S.R.; Hazrati, E.; Chamanara, M.; Jalili, M.; Paknejad, B. Targeting of oxidative stress and inflammation through ROS/NF-kappaB pathway in phosphine-induced hepatotoxicity mitigation. Life Sci., 2019, 232(Sep), 116607.
[http://dx.doi.org/10.1016/j.lfs.2019.116607] [PMID: 31254582]
[98]
Liang, X.; Wang, S.; Wang, L.; Ceylan, A.F.; Ren, J.; Zhang, Y. Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of Drp1-mediated maladaptive mitochondrial fission. Pharmacol. Res., 2020, 157(Jul), 104846.
[http://dx.doi.org/10.1016/j.phrs.2020.104846] [PMID: 32339784]
[99]
Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; Prakash Mishra, A.; Nigam, M.; El Rayess, Y.; Beyrouthy, M.E.; Polito, L.; Iriti, M.; Martins, N.; Martorell, M.; Docea, A.O.; Setzer, W.N.; Calina, D.; Cho, W.C.; Sharifi-Rad, J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol., 2020, 11, 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[100]
Butcher, L.D.; den Hartog, G.; Ernst, P.B.; Crowe, S.E. Oxidative stress resulting from Helicobacter pylori infection contributes to gastric carcinogenesis. Cell. Mol. Gastroenterol. Hepatol., 2017, 3(3), 316.
[http://dx.doi.org/10.1016/j.jcmgh.2017.02.002]
[101]
Introduction and importance of medicinal plants and herbs | National Health Portal of India. Available from: https://www.nhp.gov.in/introduction-and-importance-of-medicinal-plants-and-herbs_mtl (Accessed on: 2022 Jul 8).
[102]
Yadav, S.K.; Adhikary, B.; Bandyopadhyay, S.K.; Chattopadhyay, S. Inhibition of TNF-α and NF-κB and JNK pathways accounts for the prophylactic action of the natural phenolic, allylpyrocatechol against indomethacin gastropathy. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(6), 3776-3786.
[http://dx.doi.org/10.1016/j.bbagen.2013.03.013] [PMID: 23523691]
[103]
Paturi, G.; Butts, C.A.; Bentley-Hewitt, K.L.; McGhie, T.K.; Saleh, Z.S.; McLeod, A. Apple polyphenol extracts protect against aspirin-induced gastric mucosal damage in rats. Phytother. Res., 2014, 28(12), 1846-1854.
[http://dx.doi.org/10.1002/ptr.5210] [PMID: 25069887]
[104]
Sharma, A.V.; Ganguly, K.; Paul, S.; Maulik, N.; Swarnakar, S. Curcumin heals indomethacin-induced gastric ulceration by stimulation of angiogenesis and restitution of collagen fibers via VEGF and MMP-2 mediated signaling. Antioxid. Redox Signal., 2012, 16(4), 351-362.
[http://dx.doi.org/10.1089/ars.2011.4232] [PMID: 21942294]
[105]
Zhou, D.; Yang, Q.; Tian, T.; Chang, Y.; Li, Y.; Duan, L.R.; Li, H.; Wang, S.W. Gastroprotective effect of gallic acid against ethanol-induced gastric ulcer in rats: Involvement of the Nrf2/HO-1 signaling and anti-apoptosis role. Biomed. Pharmacother., 2020, 126, 110075.
[http://dx.doi.org/10.1016/j.biopha.2020.110075] [PMID: 32179202]
[106]
Cuevas, V.M.; Calzado, Y.R.; Guerra, Y.P.; Yera, A.O.; Despaigne, S.J.; Ferreiro, R.M. Effects of grape seed extract, vitamin C, and vitamin e on ethanol- and aspirin-induced ulcers. Adv. Pharmacol. Sci., 2011, 2011, 740687.
[107]
Farzaei, M.H.; Shams-Ardekani, M.R.; Abbasabadi, Z.; Rahimi, R. Scientific evaluation of edible fruits and spices used for the treatment of peptic ulcer in traditional Iranian medicine. ISRN Gastroenterol., 2013, 2013, 1-12.
[http://dx.doi.org/10.1155/2013/136932] [PMID: 24066235]
[108]
do Nascimento, R.F.; de Oliveira Formiga, R.; Machado, F.D.F.; de Sales, I.R.P.; de Lima, G.M.; Alves Júnior, E.B. Rosmarinic acid prevents gastric ulcers via sulfhydryl groups reinforcement, antioxidant and immunomodulatory effects. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(12), 2265-2278.
[http://dx.doi.org/10.1007/s00210-020-01894-2]
[109]
Zaghlool, S.S.; Abo-Seif, A.A.; Rabeh, M.A.; Abdelmohsen, U.R.; Messiha, B.A.S. Gastro-protective and anti-oxidant potential of Althaea officinalis and Solanum nigrum on pyloric ligation/indomethacin-induced ulceration in rats. Antioxidants, 2019, 8(11), 512.
[110]
Koussoulas, V.; Giamarellos-Bourboulis, E.J.; Barbatzas, C.; Pimentel, M. Serum sTREM-1 as a surrogate marker of treatment outcome in patients with peptic ulcer disease. Dig. Dis. Sci., 2011, 56(12), 3590-3595.
[http://dx.doi.org/10.1007/s10620-011-1761-4] [PMID: 21633832]
[111]
Cytokine gene polymorphisms in gastric diseases NCT00197470, 2005.
[112]
Francavilla, R.; Lionetti, E.; Castellaneta, S.P.; Magistà, A.M.; Maurogiovanni, G.; Bucci, N.; De Canio, A.; Indrio, F.; Cavallo, L.; Ierardi, E.; Miniello, V.L. Inhibition of Helicobacter pylori infection in humans by Lactobacillus reuteri ATCC 55730 and effect on eradication therapy: A pilot study. Helicobacter, 2008, 13(2), 127-134.
[http://dx.doi.org/10.1111/j.1523-5378.2008.00593.x] [PMID: 18321302]
[113]
Chai, J.; Jamal, M.M. Esophageal malignancy: A growing concern. World J. Gastroenterol., 2012, 18(45), 6521-6526.
[http://dx.doi.org/10.3748/wjg.v18.i45.6521] [PMID: 23236223]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy