Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Neurorestoratology: New Advances in Clinical Therapy

Author(s): Hongyun Huang*, Hari Shanker Sharma, Lin Chen and Di Chen

Volume 22, Issue 7, 2023

Published on: 26 September, 2022

Page: [1031 - 1038] Pages: 8

DOI: 10.2174/1871527321666220827093805

open access plus

Abstract

Neurorestorative treatments have been able to improve the quality of life for patients suffering from neurological diseases and damages since the concept of Neurorestoratology was proposed. The discipline of Neurorestoratology focuses on restoring impaired neurological functions and/or structures through varying neurorestorative mechanisms including neurostimulation or neuromodulation, neuroprotection, neuroplasticity, neuroreplacement, loop reconstruction, remyelination, immunoregulation, angiogenesis or revascularization, neuroregeneration or neurogenesis and others. The neurorestorative strategies of Neurorestoratology include all therapeutic methods which can restore dysfunctions for patients with neurological diseases and improve their quality of life. Neurorestoratology is different from regenerative medicine in the nervous system, which mainly focuses on the neuroregeneration. It also is different from Neurorehabilitation. Neurorestoratology and Neurorehabilitation share some functional recovering mechanisms, such as neuroplasticity, especially in the early phase of neurological diseases; but generally Neurorehabilitation mainly focuses on recovering neurological functions through making the best use of residual neurological functions, replacing lost neurological functions in the largest degree, and preventing and treating varying complications. Recently, there have been more advances in restoring damaged nerves by cell therapy, neurostimulation/neuromodulation and braincomputer interface (BCI), neurorestorative surgery, neurorestorative pharmaceutics, and other clinic strategies. Simultaneously related therapeutic guidelines and standards are set up in succession. Based on those advances, clinicians should consider injured and degenerated nervous disorders or diseases in the central nervous system as treatable or neurorestorative disorders. Extending and encouraging further neurorestorative explorations and achieving better clinical efficacy with stronger evidence regarding neurorestoratology will shed new light and discover superior benefits for patients with neurological disorders.

Keywords: Cell therapy, neurostimulation/neuromodulation, brain-computer interface (BCI), neurorestorative surgery, neurorestorative pharmaceutics, neurorestoratology.

[1]
Huang H, Chen L. Commentary: Neurorestoratology: A concept and emerging discipline in the treatment of neurological disorders. CNS Neurol Disord Drug Targets 2016; 15(5): 522-5.
[http://dx.doi.org/10.2174/1871527315999160502125205] [PMID: 27174670]
[2]
International Association of Neurorestoratology. Beijing Declaration of International Association of Neurorestoratology (IANR). Cell Transplant 2009; 18(4): 487.
[http://dx.doi.org/10.3727/096368909788809866] [PMID: 28841332]
[3]
Huang H, Raisman G, Sanberg PR, Sharma H, Chen L. Olfactory Ensheathing Cell in Neurorestoratology. New York: Nova Biomedical 2015.
[4]
Huang H, Chen L, Mao G, Sharma H. Clinical neurorestorative cell therapies: Developmental process, current state, and future prospective. J Neurorestoratology 2020; 8: 61-82.
[http://dx.doi.org/10.26599/JNR.2020.9040009]
[5]
Shi N, Wang L, Chen Y, et al. Steady-State Visual Evoked Potential (SSVEP)-based Brain-Computer Interface (BCI) of Chinese speller for a patient with amyotrophic lateral sclerosis: A case report. J Neurorestoratology 2020; 8: 40-52.
[http://dx.doi.org/10.26599/JNR.2020.9040003]
[6]
Huang H, Young W, Skaper S, et al. Clinical neurorestorative therapeutic guidelines for spinal cord injury (IANR/CANR version 2019). J Orthop Translat 2019; 20: 14-24.
[http://dx.doi.org/10.1016/j.jot.2019.10.006] [PMID: 31908929]
[7]
Huang H, Young W, Chen L, et al. Clinical cell therapy guidelines for neurorestoration (IANR/CANR 2017). Cell Transplant 2018; 27(2): 310-24.
[http://dx.doi.org/10.1177/0963689717746999] [PMID: 29637817]
[8]
Chen L, Huang H. Special issue on guidelines and standards in Neurorestoratology. J Neurorestoratology 2020; 8: 195-6.
[http://dx.doi.org/10.26599/JNR.2020.9040027]
[9]
Li Y, He J, Yang B, et al. Clinical diagnosis guidelines and neurorestorative treatment for chronic disorders of consciousness (2021 China version). J Neurorestoratology 2021; 9: 50-9.
[http://dx.doi.org/10.26599/JNR.2021.9040006]
[10]
Huang H, Xi H, Chen L, Zhang F, Liu Y. Long-term outcome of olfactory ensheathing cell therapy for patients with complete chronic spinal cord injury. Cell Transplant 2012; 21 (Suppl. 1): S23-31.
[http://dx.doi.org/10.3727/096368912X633734] [PMID: 22507677]
[11]
Tabakow P, Raisman G, Fortuna W, et al. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant 2014; 23(12): 1631-55.
[http://dx.doi.org/10.3727/096368914X685131] [PMID: 25338642]
[12]
Kondziolka D, Steinberg GK, Wechsler L, et al. Neurotransplantation for patients with subcortical motor stroke: A phase 2 randomized trial. J Neurosurg 2005; 103(1): 38-45.
[http://dx.doi.org/10.3171/jns.2005.103.1.0038] [PMID: 16121971]
[13]
Prasad K, Sharma A, Garg A, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: A multicentric, randomized trial. Stroke 2014; 45(12): 3618-24.
[http://dx.doi.org/10.1161/STROKEAHA.114.007028] [PMID: 25378424]
[14]
Hess DC, Wechsler LR, Clark WM, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2017; 16(5): 360-8.
[http://dx.doi.org/10.1016/S1474-4422(17)30046-7] [PMID: 28320635]
[15]
Fang J, Guo Y, Tan S, et al. Autologous endothelial progenitor cells transplantation for acute ischemic stroke: A 4-year follow-up study. Stem Cells Transl Med 2019; 8(1): 14-21.
[http://dx.doi.org/10.1002/sctm.18-0012] [PMID: 30156755]
[16]
Savitz SI, Yavagal D, Rappard G, et al. A phase 2 randomized, sham-controlled trial of internal carotid artery infusion of autologous bone marrow derived ALD-401 cells in patients with recent stable ischemic stroke (RECOVER-Stroke). Circulation 2019; 139(2): 192-205.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030659] [PMID: 30586746]
[17]
SanBio Co. Ltd. SanBio and sumitomo dainippon pharma announce topline results from a phase 2b study in the U.S. evaluating SB623, a regenerative cell medicine for the treatment of patients with chronic stroke. Available from: https://www.dspharma.com/ir/news/pdf/ene20190129.1.pdf
[18]
Steinberg GK, Kondziolka D, Wechsler LR, et al. Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke: A phase 1/2a study. Stroke 2016; 47(7): 1817-24.
[http://dx.doi.org/10.1161/STROKEAHA.116.012995] [PMID: 27256670]
[19]
Steinberg GK, Kondziolka D, Wechsler LR, et al. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): A phase 1/2a study. J Neurosurg 2018; 1: 1-11.
[http://dx.doi.org/10.3171/2017.10.JNS17971] [PMID: 30497166]
[20]
Jaillard A, Hommel M, Moisan A, et al. Autologous mesenchymal stem cells improve motor recovery in subacute ischemic stroke: A randomized clinical trial. Transl Stroke Res 2020; 11(5): 910-23.
[http://dx.doi.org/10.1007/s12975-020-00787-z] [PMID: 32462427]
[21]
Chung JW, Chang WH, Bang OY, et al. Efficacy and safety of intravenous mesenchymal stem cells for ischemic stroke. Neurology 2021; 96(7): e1012-23.
[http://dx.doi.org/10.1212/WNL.0000000000011440] [PMID: 33472925]
[22]
Law ZK, Tan HJ, Chin SP, et al. The effects of intravenous infusion of autologous mesenchymal stromal cells in patients with subacute middle cerebral artery infarct: A phase 2 randomized controlled trial on safety, tolerability and efficacy. Cytotherapy 2021; 23(9): 833-40.
[http://dx.doi.org/10.1016/j.jcyt.2021.03.005] [PMID: 33992536]
[23]
Park KI, Lee YH, Rah WJ, et al. Effect of intravenous infusion of G-CSF-mobilized peripheral blood mononuclear cells on upper extremity function in cerebral palsy children. Ann Rehabil Med 2017; 41(1): 113-20.
[http://dx.doi.org/10.5535/arm.2017.41.1.113] [PMID: 28289643]
[24]
Sun JM, Song AW, Case LE, et al. Effect of autologous cord blood infusion on motor function and brain connectivity in young children with cerebral palsy: A randomized, placebo-controlled trial. Stem Cells Transl Med 2017; 6(12): 2071-8.
[http://dx.doi.org/10.1002/sctm.17-0102] [PMID: 29080265]
[25]
Oh SK, Choi KH, Yoo JY, Kim DY, Kim SJ, Jeon SR. A phase III clinical trial showing limited efficacy of autologous mesenchymal stem cell therapy for spinal cord injury. Neurosurgery 2016; 78(3): 436-47.
[http://dx.doi.org/10.1227/NEU.0000000000001056] [PMID: 26891377]
[26]
Levi AD, Anderson KD, Okonkwo DO, et al. Clinical outcomes from a multi-center study of human neural stem cell transplantation in chronic cervical spinal cord injury. J Neurotrauma 2019; 36(6): 891-902.
[http://dx.doi.org/10.1089/neu.2018.5843] [PMID: 30180779]
[27]
Lublin FD, Bowen JD, Huddlestone J, et al. Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: A randomized, placebo-controlled, multiple-dose study. Mult Scler Relat Disord 2014; 3(6): 696-704.
[http://dx.doi.org/10.1016/j.msard.2014.08.002] [PMID: 25891548]
[28]
Berry JD, Cudkowicz ME, Windebank AJ, et al. NurOwn, phase 2, randomized, clinical trial in patients with ALS: Safety, clinical, and biomarker results. Neurology 2019; 93(24): e2294-305.
[http://dx.doi.org/10.1212/WNL.0000000000008620] [PMID: 31740545]
[29]
Kawabori M, Weintraub AH, Imai H, et al. Cell therapy for chronic TBI: Interim analysis of the randomized controlled STEMTRA trial. Neurology 2021; 96(8): e1202-14.
[http://dx.doi.org/10.1212/WNL.0000000000011450] [PMID: 33397772]
[30]
Wang Y, Guo X, Liu J, et al. Olfactory ensheathing cells in chronic ischemic stroke: A phase 2, double-blind, randomized, controlled trial. J Neurorestoratology 2020; 8: 182-93.
[http://dx.doi.org/10.26599/JNR.2020.9040019]
[31]
Min K, Suh MR, Cho KH, et al. Potentiation of cord blood cell therapy with erythropoietin for children with CP: A 2 × 2 factorial randomized placebo-controlled trial. Stem Cell Res Ther 2020; 11(1): 509.
[http://dx.doi.org/10.1186/s13287-020-02020-y] [PMID: 33246489]
[32]
Petrou P, Kassis I, Levin N, et al. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain 2020; 143(12): 3574-88.
[http://dx.doi.org/10.1093/brain/awaa333] [PMID: 33253391]
[33]
Petrou P, Kassis I, Ginzberg A, et al. Long-term clinical and immunological effects of repeated mesenchymal stem cell injections in patients with progressive forms of multiple sclerosis. Front Neurol 2021; 12: 639315.
[http://dx.doi.org/10.3389/fneur.2021.639315] [PMID: 34135843]
[34]
Shah-Basak PP, Sivaratnam G, Teti S, et al. High definition transcranial direct current stimulation modulates abnormal neurophysiological activity in post-stroke aphasia. Sci Rep 2020; 10(1): 19625.
[http://dx.doi.org/10.1038/s41598-020-76533-0] [PMID: 33184382]
[35]
Campanella W, Pedrini R, Vestito L, Marinelli L, Trompetto C, Mori L. Transcranial direct current stimulation in the treatment of subacute post-stroke thalamic aphasia. Eur J Case Rep Intern Med 2020; 7(11): 001794.
[http://dx.doi.org/10.12890/2020_001794] [PMID: 33194851]
[36]
Ihara AS, Miyazaki A, Izawa Y, Takayama M, Hanayama K, Tanemura J. Enhancement of facilitation training for aphasia by transcranial direct current stimulation. Front Hum Neurosci 2020; 14: 573459.
[http://dx.doi.org/10.3389/fnhum.2020.573459] [PMID: 33024429]
[37]
Sebastian R, Kim JH, Brenowitz R, et al. Cerebellar neuromodulation improves Naming in post-stroke aphasia. Brain Commun 2020; 2(2): fcaa179.
[http://dx.doi.org/10.1093/braincomms/fcaa179]
[38]
Unal G, Ficek B, Webster K, et al. Impact of brain atrophy on tDCS and HD-tDCS current flow: A modeling study in three variants of primary progressive aphasia. Neurol Sci 2020; 41(7): 1781-9.
[http://dx.doi.org/10.1007/s10072-019-04229-z] [PMID: 32040791]
[39]
Garcia S, Hampstead BM. HD-tDCS as a neurorehabilitation technique for a case of post-anoxic leukoencephalopathy. Neuropsychol Rehabil 2020; •••: 1-21.
[http://dx.doi.org/10.1080/09602011.2020.1845749] [PMID: 33208043]
[40]
Zhang R, Zhang L, Guo Y, et al. Effects of high-definition transcranial direct-current stimulation on resting-state functional connectivity in patients with disorders of consciousness. Front Hum Neurosci 2020; 14: 560586.
[http://dx.doi.org/10.3389/fnhum.2020.560586] [PMID: 33100996]
[41]
Wang X, Guo Y, Zhang Y, et al. Combined behavioral and mismatch negativity evidence for the effects of long-lasting high-definition tDCS in disorders of consciousness: A pilot study. Front Neurosci 2020; 14: 381.
[http://dx.doi.org/10.3389/fnins.2020.00381] [PMID: 32410950]
[42]
Qiao Y, Hu Q, Xuan R, et al. High-definition transcranial direct current stimulation facilitates emotional face processing in individuals with high autistic traits: A sham-controlled study. Neurosci Lett 2020; 738: 135396.
[http://dx.doi.org/10.1016/j.neulet.2020.135396] [PMID: 32961273]
[43]
Thimmashetty VH, Parlikar R, Selvaraj S, et al. Target specific effects of direct current stimulation in schizo-obsessive disorder: A case report. Brain Stimul 2020; 13(3): 858-60.
[http://dx.doi.org/10.1016/j.brs.2020.03.001] [PMID: 32289717]
[44]
Khaleghi A, Pirzad Jahromi G, Zarafshan H, Mostafavi SA, Mohammadi MR. Effects of transcranial direct current stimulation of prefrontal cortex on risk-taking behavior. Psychiatry Clin Neurosci 2020; 74(9): 455-65.
[http://dx.doi.org/10.1111/pcn.13025] [PMID: 32415800]
[45]
Li F, Ball S, Zhang X, Smith A. Focal stimulation of the temporoparietal junction improves rationality in prosocial decision-making. Sci Rep 2020; 10(1): 20275.
[http://dx.doi.org/10.1038/s41598-020-76956-9] [PMID: 33219290]
[46]
Ma Y, Yin K, Zhuang W, et al. Effects of combining high-definition transcranial direct current stimulation with short-foot exercise on chronic ankle instability: A pilot randomized and double-blinded study. Brain Sci 2020; 10(10): 749.
[http://dx.doi.org/10.3390/brainsci10100749] [PMID: 33080863]
[47]
Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 2013; 381(9866): 557-64.
[48]
Ortiz-Catalan M, Mastinu E, Sassu P, Aszmann O, Brånemark R. Self-contained neuromusculoskeletal arm prostheses. N Engl J Med 2020; 382(18): 1732-8.
[http://dx.doi.org/10.1056/NEJMoa1917537] [PMID: 32348644]
[49]
Ganzer PD, Colachis SC IV, Schwemmer MA, et al. Restoring the sense of touch using a sensorimotor demultiplexing neural interface. Cell 2020; 181(4): 763-773.e12.
[http://dx.doi.org/10.1016/j.cell.2020.03.054] [PMID: 32330415]
[50]
Bockbrader M, Annetta N, Friedenberg D, et al. Clinically significant gains in skillful grasp coordination by an individual with tetraplegia using an implanted brain-computer interface with forearm transcutaneous muscle stimulation. Arch Phys Med Rehabil 2019; 100(7): 1201-17.
[http://dx.doi.org/10.1016/j.apmr.2018.07.445] [PMID: 30902630]
[51]
Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV. High-performance brain-to-text communication via handwriting. Nature 2021; 593(7858): 249-54.
[http://dx.doi.org/10.1038/s41586-021-03506-2] [PMID: 33981047]
[52]
Minassian K, Jilge B, Rattay F, et al. Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: Electromyographic study of compound muscle action potentials. Spinal Cord 2004; 42(7): 401-16.
[http://dx.doi.org/10.1038/sj.sc.3101615] [PMID: 15124000]
[53]
Harkema S, Gerasimenko Y, Hodes J, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: A case study. Lancet 2011; 377(9781): 1938-47.
[http://dx.doi.org/10.1016/S0140-6736(11)60547-3] [PMID: 21601270]
[54]
Angeli CA, Boakye M, Morton RA, et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N Engl J Med 2018; 379(13): 1244-50.
[http://dx.doi.org/10.1056/NEJMoa1803588] [PMID: 30247091]
[55]
Gill ML, Grahn PJ, Calvert JS, et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med 2018; 24(11): 1677-82.
[http://dx.doi.org/10.1038/s41591-018-0175-7] [PMID: 30250140]
[56]
Ibrahim E, Aballa TC, Brackett NL, Lynne CM. Electroejaculation in men with spinal cord injury: A step-by-step video demonstration. Fertil Steril 2021; 115(5): 1344-6.
[http://dx.doi.org/10.1016/j.fertnstert.2021.01.012] [PMID: 33712290]
[57]
Carlsson CA, Sundin T. Reconstruction of efferent pathways to the urinary bladder in a paraplegic child. Rev Surg 1967; 24(1): 73-6.
[PMID: 5341446]
[58]
Zheng MX, Hua XY, Feng JT, et al. Trial of contralateral seventh cervical nerve transfer for spastic arm paralysis. N Engl J Med 2018; 378(1): 22-34.
[http://dx.doi.org/10.1056/NEJMoa1615208] [PMID: 29262271]
[59]
Taarnhøj P. Decompression of the trigeminal root and the posterior part of the ganglion as treatment in trigeminal neuralgia; preliminary communication. J Neurosurg 1952; 9(3): 288-90.
[http://dx.doi.org/10.3171/jns.1952.9.3.0288] [PMID: 14939059]
[60]
Love JG. Decompression of the Gasserian ganglion and its posterior root; a new treatment for trigeminal neuralgia; preliminary report. Proc Staff Meet Mayo Clin 1952; 27(14): 257-8.
[PMID: 14941870]
[61]
Gardner WJ. Concerning the mechanism of trigeminal neuralgia and hemifacial spasm. J Neurosurg 1962; 19: 947-58.
[http://dx.doi.org/10.3171/jns.1962.19.11.0947] [PMID: 13946557]
[62]
Dellon AL. Treatment of symptomatic diabetic neuropathy by surgical decompression of multiple peripheral nerves. Plast Reconstr Surg 1992; 89(4): 689-97.
[http://dx.doi.org/10.1097/00006534-199204000-00018] [PMID: 1546082]
[63]
Badhiwala JH, Wilson JR, Witiw CD, et al. The influence of timing of surgical decompression for acute spinal cord injury: A pooled analysis of individual patient data. Lancet Neurol 2021; 20(2): 117-26.
[http://dx.doi.org/10.1016/S1474-4422(20)30406-3] [PMID: 33357514]
[64]
Yasargil MG, Yonekawa Y. Results of microsurgical extra-intracranial arterial bypass in the treatment of cerebral ischemia. Neurosurgery 1977; 1(1): 22-4.
[http://dx.doi.org/10.1227/00006123-197707000-00005] [PMID: 615948]
[65]
Zang J, Qin S. The analysis report of surgical treatment of limb deformity and disability: 35075 cases. Genij Ortopedii 2021; 27: 331-6.
[http://dx.doi.org/10.18019/1028-4427-2021-27-3-331-336]
[66]
Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019; 50(12): e344-418.
[http://dx.doi.org/10.1161/STR.0000000000000211] [PMID: 31662037]
[67]
Jensen HB, Ravnborg M, Dalgas U, Stenager E. 4-Aminopyridine for symptomatic treatment of multiple sclerosis: A systematic review. Ther Adv Neurol Disord 2014; 7(2): 97-113.
[http://dx.doi.org/10.1177/1756285613512712] [PMID: 24587826]
[68]
Oskarsson B, Gendron TF, Staff NP. Amyotrophic lateral sclerosis: An update for 2018. Mayo Clin Proc 2018; 93(11): 1617-28.
[http://dx.doi.org/10.1016/j.mayocp.2018.04.007] [PMID: 30401437]
[69]
Pascual-Morena C, Cavero-Redondo I, Álvarez-Bueno C, Mesas AE, Pozuelo-Carrascosa D, Martínez-Vizcaíno V. Restorative treatments of dystrophin expression in Duchenne muscular dystrophy: A systematic review. Ann Clin Transl Neurol 2020; 7(9): 1738-52.
[http://dx.doi.org/10.1002/acn3.51149] [PMID: 33325654]
[70]
Tyślerowicz M, Kiedrzyńska W, Adamkiewicz B, Jost WH, Sławek J. Cervical dystonia - improving the effectiveness of botulinum toxin therapy. Neurol Neurochir Pol 2020; 54(3): 232-42.
[http://dx.doi.org/10.5603/PJNNS.a2020.0021] [PMID: 32285434]
[71]
Oh SJ. Amifampridine for the treatment of Lambert-Eaton myasthenic syndrome. Expert Rev Clin Immunol 2019; 15(10): 991-1007.
[http://dx.doi.org/10.1080/1744666X.2020.1670061] [PMID: 31533480]
[72]
Ko CC, Tu TH, Wu JC, et al. Functional improvement in chronic human spinal cord injury: Four years after acidic fibroblast growth factor. Sci Rep 2018; 8(1): 12691.
[http://dx.doi.org/10.1038/s41598-018-31083-4] [PMID: 30139947]
[73]
Koda M, Hanaoka H, Fujii Y, et al. Randomized trial of granulocyte colony-stimulating factor for spinal cord injury. Brain 2021; 144(3): 789-99.
[http://dx.doi.org/10.1093/brain/awaa466] [PMID: 33764445]
[74]
Howard JF Jr, Bril V, Burns TM, et al. Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology 2019; 92(23): e2661-73.
[http://dx.doi.org/10.1212/WNL.0000000000007600] [PMID: 31118245]
[75]
Shevela E, Davydova M, Starostina N, Yankovskaya A, Ostanin A, Chernykh E. Intranasal delivery of M2 macrophage-derived soluble products reduces neuropsychological deficit in patients with cerebrovascular disease: A pilot study. J Neurorestoratology 2019; 7(2): 89-100.
[http://dx.doi.org/10.26599/JNR.2019.9040010]
[76]
Hajjar I, Okafor M, McDaniel D, et al. Effects of candesartan vs. lisinopril on neurocognitive function in older adults with executive mild cognitive impairment. JAMA Netw Open 2020; 3(8): e2012252.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.12252] [PMID: 32761160]
[77]
Knopman DS, Jones DT, Greicius MD. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement 2021; 17(4): 696-701.
[http://dx.doi.org/10.1002/alz.12213] [PMID: 33135381]
[78]
Mullard A. Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating. Nat Rev Drug Discov 2021; 20(1): 3-5.
[http://dx.doi.org/10.1038/d41573-020-00217-7] [PMID: 33303932]
[79]
Villar-Martínez MD, Moreno-Ajona D, Goadsby PJ. Eptinezumab for the preventive treatment of migraine. Pain Manag (Lond) 2021; 11(2): 113-21.
[http://dx.doi.org/10.2217/pmt-2020-0075] [PMID: 33280422]
[80]
Graf J, Albrecht P, Goebels N, Aktas O, Hartung HP. Ocrelizumab for treatment of multiple sclerosis. Nervenarzt 2020; 91(8): 722-34.
[http://dx.doi.org/10.1007/s00115-020-00937-6] [PMID: 32524163]
[81]
Xiao S, Chan P, Wang T, et al. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimers Res Ther 2021; 13(1): 62.
[http://dx.doi.org/10.1186/s13195-021-00795-7] [PMID: 33731209]
[82]
Alexander GC, Karlawish J. The problem of aducanumab for the treatment of Alzheimer disease. Ann Intern Med 2021; 174(9): 1303-4.
[http://dx.doi.org/10.7326/M21-2603] [PMID: 34138642]
[83]
Mullard A. FDA approval for Biogen’s aducanumab sparks Alzheimer disease firestorm. Nat Rev Drug Discov 2021; 20(7): 496.
[http://dx.doi.org/10.1038/d41573-021-00099-3] [PMID: 34112945]
[84]
Mercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med 2018; 378(7): 625-35.
[http://dx.doi.org/10.1056/NEJMoa1710504] [PMID: 29443664]
[85]
Eckstein O, McAtee CL, Greenberg J, et al. Rituximab therapy for patients with Langerhans cell histiocytosis-associated neurologic dysfunction. Pediatr Hematol Oncol 2018; 35(7-8): 427-33.
[http://dx.doi.org/10.1080/08880018.2018.1555297] [PMID: 30596314]
[86]
Kucher K, Johns D, Maier D, et al. First-in-man intrathecal application of neurite growth-promoting anti-nogo-A antibodies in acute spinal cord injury. Neurorehabil Neural Repair 2018; 32(6-7): 578-89.
[http://dx.doi.org/10.1177/1545968318776371] [PMID: 29869587]
[87]
Christine CW, Bankiewicz KS, Van Laar AD, et al. Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson’s disease. Ann Neurol 2019; 85(5): 704-14.
[http://dx.doi.org/10.1002/ana.25450] [PMID: 30802998]
[88]
Heiss JD, Lungu C, Hammoud DA, et al. Trial of magnetic resonance-guided putaminal gene therapy for advanced Parkinson’s disease. Mov Disord 2019; 34(7): 1073-8.
[http://dx.doi.org/10.1002/mds.27724] [PMID: 31145831]
[89]
Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, et al. Phase 1–2a IONIS-HTTRx Study Site Teams. Targeting huntingtin expression in patients with Huntington’s disease. N Engl J Med 2019; 380(24): 2307-16.
[http://dx.doi.org/10.1056/NEJMoa1900907] [PMID: 31059641]
[90]
Kim J, Hu C, Moufawad El Achkar C, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N Engl J Med 2019; 381(17): 1644-52.
[http://dx.doi.org/10.1056/NEJMoa1813279] [PMID: 31597037]
[91]
Gollie JM, Guccione AA, Keyser RE, Chin LMK, Panza GS, Herrick JE. Walking endurance, muscle oxygen extraction, and perceived fatigability after overground locomotor training in incomplete spinal cord injury: A pilot study. J Spinal Cord Med 2020; 1-9.
[PMID: 32795157]
[92]
Argetsinger LC, Singh G, Bickel SG, Calvery ML, Behrman AL. Spinal cord injury in infancy: Activity-based therapy impact on health, function, and quality of life in chronic injury. Spinal Cord Ser Cases 2020; 6(1): 13.
[http://dx.doi.org/10.1038/s41394-020-0261-1] [PMID: 32157078]
[93]
Behrman AL, Argetsinger LC, Roberts MT, et al. Activity-based therapy targeting neuromuscular capacity after pediatric-onset spinal cord injury. Top Spinal Cord Inj Rehabil 2019; 25(2): 132-49.
[http://dx.doi.org/10.1310/sci2502-132] [PMID: 31068745]
[94]
de Farias JM, Dos Santos Tramontin N, Pereira EV, et al. Physical exercise training improves judgment and problem-solving and modulates serum biomarkers in patients with alzheimer’s disease. Mol Neurobiol 2021; 58(9): 4217-25.
[http://dx.doi.org/10.1007/s12035-021-02411-z] [PMID: 33963521]
[95]
Najar J, Östling S, Gudmundsson P, et al. Cognitive and physical activity and dementia: A 44-year longitudinal population study of women. Neurology 2019; 92(12): e1322-30.
[http://dx.doi.org/10.1212/WNL.0000000000007021] [PMID: 30787164]
[96]
Duan YX, Zhang ZQ, Luo XJ, Yin J, Xia Y. Randomized controlled trial of internal heat-type acupuncture needle therapy in the treatment of post-stroke shoulder pain. Zhen Ci Yan Jiu 2019; 44(3): 205-10.
[PMID: 30945504]
[97]
Duan YX, Zhang ZQ, Luo XJ, Yin J, Xia Y. Short-term and long-term therapeutic effects of internal heat-type acupuncture needle therapy combined with acupoint injection of O3 for post-stroke shoulder pain. Zhen Ci Yan Jiu 2019; 44(1): 51-6.
[PMID: 30773863]

© 2024 Bentham Science Publishers | Privacy Policy