Generic placeholder image

Reviews on Recent Clinical Trials

Editor-in-Chief

ISSN (Print): 1574-8871
ISSN (Online): 1876-1038

Review Article

Invasive Mechanical Ventilation in Traumatic Brain Injured Patients with Acute Respiratory Failure

Author(s): Fabrizio Racca, Cristina Geraci, Luca Cremascoli, Domenico Ruvolo, Fabio Piccolella, Tatsiana Romenskaya, Yaroslava Longhitano, Ermelinda Martuscelli, Angela Saviano, Gabriele Savioli and Christian Zanza*

Volume 18, Issue 1, 2023

Published on: 08 November, 2022

Page: [3 - 11] Pages: 9

DOI: 10.2174/1574887117666220826164723

Price: $65

Abstract

Patients with severe traumatic brain injury (TBI) need to be admitted to intensive care (ICU) because they require invasive mechanical ventilation (IMV) due to reduced consciousness resulting in loss of protective airway reflexes, reduced ability to cough and altered breathing control. In addition, these patients can be complicated by pneumonia and acute distress syndrome (ARDS). IMV allows these patients to be sedated, decreasing intracranial pressure and ensuring an adequate oxygen delivery and tight control of arterial carbon dioxide tension. However, IMV can also cause dangerous effects on the brain due to its interaction with intrathoracic and intracranial compartments. Moreover, when TBI is complicated by ARDS, the setting of mechanical ventilation can be very difficult as ventilator goals are often different and in conflict with each other. Consequently, close brain and respiratory monitoring is essential to reduce morbidity and mortality in mechanically ventilated patients with severe TBI and ARDS. Recently, recommendations for the setting of mechanical ventilation in patients with acute brain injury (ABI) were issued by the European Society of Intensive Care Medicine (ESICM). However, there is insufficient evidence regarding ventilation strategies for patients with ARDS associated with ABI. The purpose of this paper is to analyze in detail respiratory strategies and targets in patients with TBI associated with ARDS.

Keywords: mechanical ventilation, traumatic brain injury, acute respiratory distress syndrome, positive end expiratory pressure, ABI, patients.

[1]
Menon DK, Schwab K, Wright DW, Maas AI. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil 2010; 91(11): 1637-40.
[http://dx.doi.org/10.1016/j.apmr.2010.05.017] [PMID: 21044706]
[2]
Robba C, Poole D, McNett M, et al. Mechanical ventilation in patients with acute brain injury: Recommendations of the european society of intensive care medicine consensus. Intensive Care Med 2020; 46(12): 2397-410.
[http://dx.doi.org/10.1007/s00134-020-06283-0]
[3]
Stevens RD, Lazaridis C, Chalela JA. The role of mechanical ventilation in acute brain injury. Neurol Clin 2008; 26(2): 543-63.
[http://dx.doi.org/10.1016/j.ncl.2008.03.014] [PMID: 18514826]
[4]
Della Torre V, Badenes R, Corradi F, et al. Acute respiratory distress syndrome in traumatic brain injury: how do we manage it? J Thorac Dis 2017; 9(12): 5368-81.
[5]
Borsellino B, Schultz MJ, Gama de Abreu M, Robba C, Bilotta F. Mechanical ventilation in neurocritical care patients: A systematic literature review. Expert Rev Respir Med 2016; 10(10): 1123-32.
[http://dx.doi.org/10.1080/17476348.2017.1235976] [PMID: 27635737]
[6]
Racca F, Vianello A, Mongini T, et al. Practical approach to respiratory emergencies in neurological diseases. Neurol Sci 2020; 41(3): 497-508.
[http://dx.doi.org/10.1007/s10072-019-04163-0] [PMID: 31792719]
[7]
Bratton SL, Davis RL. Acute lung injury in isolated traumatic brain injury. Neurosurgery 1997; 40(4): 707-12.
[http://dx.doi.org/10.1097/00006123-199704000-00009] [PMID: 9092843]
[8]
Holland MC, Mackersie RC, Morabito D, et al. The development of acute lung injury is associated with worse neurologic outcome in patients with severe traumatic brain injury. J Trauma 2003; 55(1): 106-11.
[http://dx.doi.org/10.1097/01.TA.0000071620.27375.BE] [PMID: 12855888]
[9]
Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000; 342(18): 1334-49.
[http://dx.doi.org/10.1056/NEJM200005043421806] [PMID: 10793167]
[10]
Del Sorbo L, Goligher EC, McAuley DF, et al. Mechanical ventilation in adults with acute respiratory distress syndrome. Ann Am Thorac Soc 2017; 14 (Suppl. 4): S261-70.
[http://dx.doi.org/10.1513/AnnalsATS.201704-345OT] [PMID: 28985479]
[11]
Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: The berlin definition. JAMA 2012; 307(23): 2526-33.
[PMID: 22797452]
[12]
Mascia L, Zavala E, Bosma K, et al. High tidal volume is associated with the development of acute lung injury after severe brain injury: An international observational study. Crit Care Med 2007; 35(8): 1815-20.
[http://dx.doi.org/10.1097/01.CCM.0000275269.77467.DF] [PMID: 17568331]
[13]
Pelosi P, Rocco PR. The lung and the brain: A dangerous cross-talk. Crit Care 2011; 15(3): 168.
[http://dx.doi.org/10.1186/cc10259] [PMID: 21722336]
[14]
Heuer JF, Pelosi P, Hermann P, et al. Acute effects of intracranial hypertension and ARDS on pulmonary and neuronal damage: A randomized experimental study in pigs. Intensive Care Med 2011; 37(7): 1182-91.
[http://dx.doi.org/10.1007/s00134-011-2232-2] [PMID: 21544692]
[15]
Frisvold SK, Robba C, Guérin C. What respiratory targets should be recommended in patients with brain injury and respiratory failure? Intensive Care Med 2019; 45(5): 683-6.
[http://dx.doi.org/10.1007/s00134-019-05556-7] [PMID: 30778650]
[16]
Nyquist P, Stevens RD, Mirski MA. Neurologic injury and mechanical ventilation. Neurocrit Care 2008; 9(3): 400-8.
[http://dx.doi.org/10.1007/s12028-008-9130-7] [PMID: 18696268]
[17]
Georgiadis D, Schwarz S, Baumgartner RW, Veltkamp R, Schwab S. Influence of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure in patients with acute stroke. Stroke 2001; 32(9): 2088-92.
[http://dx.doi.org/10.1161/hs0901.095406] [PMID: 11546901]
[18]
Caricato A, Conti G, Della Corte F, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: The role of respiratory system compliance. J Trauma 2005; 58(3): 571-6.
[http://dx.doi.org/10.1097/01.TA.0000152806.19198.DB] [PMID: 15761353]
[19]
Beuret P, Carton MJ, Nourdine K, Kaaki M, Tramoni G, Ducreux JC. Prone position as prevention of lung injury in comatose patients: A prospective, randomized, controlled study. Intensive Care Med 2002; 28(5): 564-9.
[http://dx.doi.org/10.1007/s00134-002-1266-x] [PMID: 12029403]
[20]
Roth C, Ferbert A, Deinsberger W, et al. Does prone positioning increase intracranial pressure? A retrospective analysis of patients with acute brain injury and acute respiratory failure. Neurocrit Care 2014; 21(2): 186-91.
[http://dx.doi.org/10.1007/s12028-014-0004-x] [PMID: 24985500]
[21]
Dabrowski W, Siwicka-Gieroba D, Robba C, Badenes R, Malbrain MLNG. The prone position must accommodate changes in IAP in traumatic brain injury patients. Crit Care 2021; 25(1): 132.
[http://dx.doi.org/10.1186/s13054-021-03506-8] [PMID: 33827641]
[22]
Seder DB, Riker RR, Jagoda A, Smith WS, Weingart SD. Emergency neurological life support: Airway, ventilation, and sedation. Neurocrit Care 2012; 17(S1) (Suppl. 1): S4-S20.
[http://dx.doi.org/10.1007/s12028-012-9753-6] [PMID: 22972019]
[23]
Asehnoune K, Roquilly A, Cinotti R. Respiratory management in patients with severe brain injury. Crit Care 2018; 22(1): 76.
[http://dx.doi.org/10.1186/s13054-018-1994-0] [PMID: 29558976]
[24]
Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017; 50(2): 1602426.
[http://dx.doi.org/10.1183/13993003.02426-2016] [PMID: 28860265]
[25]
Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342(18): 1301-8.
[http://dx.doi.org/10.1056/NEJM200005043421801] [PMID: 10793162]
[26]
Fan E, Del Sorbo L, Goligher EC, et al. An official american thoracic society/european society of intensive care medicine/society of critical care medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 195(9): 1253-63.
[http://dx.doi.org/10.1164/rccm.201703-0548ST] [PMID: 28459336]
[27]
Simonis FD, Serpa Neto A, Binnekade JM, et al. Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS: A randomized clinical trial. JAMA 2018; 320(18): 1872-80.
[http://dx.doi.org/10.1001/jama.2018.14280] [PMID: 30357256]
[28]
Asehnoune K, Mrozek S, Perrigault PF, et al. A multi-faceted strategy to reduce ventilation-associated mortality in brain-injured patients. The BI-VILI project: A nationwide quality improvement project. Intensive Care Med 2017; 43(7): 957-70.
[http://dx.doi.org/10.1007/s00134-017-4764-6] [PMID: 28315940]
[29]
Luo XY, He X, Zhou YM, et al. Patient-ventilator asynchrony in acute brain-injured patients: A prospective observational study. Ann Intensive Care 2020; 10(1): 144.
[http://dx.doi.org/10.1186/s13613-020-00763-8] [PMID: 33074406]
[30]
Steyerberg EW, Wiegers E, Sewalt C, et al. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: A European prospective, multicentre, longitudinal, cohort study. Lancet Neurol 2019; 18(10): 923-34.
[http://dx.doi.org/10.1016/S1474-4422(19)30232-7] [PMID: 31526754]
[31]
Jakkula P, Reinikainen M, Hästbacka J, et al. Targeting two different levels of both arterial carbon dioxide and arterial oxygen after cardiac arrest and resuscitation: A randomised pilot trial. Intensive Care Med 2018; 44(12): 2112-21.
[http://dx.doi.org/10.1007/s00134-018-5453-9] [PMID: 30430209]
[32]
Weiss CH, McSparron JI, Chatterjee RS, et al. Summary for clinicians: Mechanical ventilation in adult patients with acute respiratory distress syndrome clinical practice guideline. Ann Am Thorac Soc 2017; 14(8): 1235-8.
[http://dx.doi.org/10.1513/AnnalsATS.201704-332CME] [PMID: 28763269]
[33]
Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008; 359(20): 2095-104.
[http://dx.doi.org/10.1056/NEJMoa0708638] [PMID: 19001507]
[34]
Siobal MS, Ong H, Valdes J, Tang J. Calculation of physiologic dead space: Comparison of ventilator volumetric capnography to measurements by metabolic analyzer and volumetric CO2 monitor. Respir Care 2013; 58(7): 1143-51.
[http://dx.doi.org/10.4187/respcare.02116] [PMID: 23232740]
[35]
Tusman G, Suarez-Sipmann F, Bohm SH, Borges JB, Hedenstierna G. Capnography reflects ventilation/perfusion distribution in a model of acute lung injury. Acta Anaesthesiol Scand 2011; 55(5): 597-606.
[http://dx.doi.org/10.1111/j.1399-6576.2011.02404.x] [PMID: 21342153]
[36]
Chang WT, Nyquist PA. Strategies for the use of mechanical ventilation in the neurologic intensive care unit. Neurosurg Clin N Am 2013; 24(3): 407-16.
[http://dx.doi.org/10.1016/j.nec.2013.02.004] [PMID: 23809034]
[37]
Robba C, Bragazzi NL, Bertuccio A, et al. Effects of prone position and positive end-expiratory pressure on noninvasive estimators of ICP: A pilot study. J Neurosurg Anesthesiol 2017; 29(3): 243-50.
[http://dx.doi.org/10.1097/ANA.0000000000000295] [PMID: 26998650]
[38]
Pulitanò S, Mancino A, Pietrini D, et al. Effects of positive end expiratory pressure (PEEP) on intracranial and cerebral perfusion pressure in pediatric neurosurgical patients. J Neurosurg Anesthesiol 2013; 25(3): 330-4.
[http://dx.doi.org/10.1097/ANA.0b013e31828bac4d] [PMID: 23519374]
[39]
Jones PA, Andrews PJ, Midgley S, et al. Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol 1994; 6(1): 4-14.
[http://dx.doi.org/10.1097/00008506-199401000-00001] [PMID: 8298263]
[40]
Wald SL, Shackford SR, Fenwick J. The effect of secondary insults on mortality and long-term disability after severe head injury in a rural region without a trauma system. J Trauma 1993; 34(3): 377-81.
[http://dx.doi.org/10.1097/00005373-199303000-00012] [PMID: 8483178]
[41]
McHugh GS, Engel DC, Butcher I, et al. Prognostic value of secondary insults in traumatic brain injury: Results from the IMPACT study. J Neurotrauma 2007; 24(2): 287-93.
[http://dx.doi.org/10.1089/neu.2006.0031] [PMID: 17375993]
[42]
Carney N, Totten AM, O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition Neurosurgery. 2017; 80: p. (1)6-15.
[http://dx.doi.org/10.1227/NEU.0000000000001432] [PMID: 27654000]
[43]
Dellazizzo L, Demers SP, Charbonney E, et al. Minimal PaO2 threshold after traumatic brain injury and clinical utility of a novel brain oxygenation ratio. J Neurosurg 2018; 1-9.
[PMID: 30485198]
[44]
Okonkwo DO, Shutter LA, Moore C, et al. Brain oxygen optimization in severe traumatic brain injury Phase-II: A Phase II randomized trial. Crit Care Med 2017; 45(11): 1907-14.
[http://dx.doi.org/10.1097/CCM.0000000000002619] [PMID: 29028696]
[45]
Tiruvoipati R, Pilcher D, Botha J, Buscher H, Simister R, Bailey M. Association of hypercapnia and hypercapnic acidosis with clinical outcomes in mechanically ventilated patients with cerebral injury. JAMA Neurol 2018; 75(7): 818-26.
[http://dx.doi.org/10.1001/jamaneurol.2018.0123] [PMID: 29554187]
[46]
Young N, Rhodes JK, Mascia L, Andrews PJ. Ventilatory strategies for patients with acute brain injury. Curr Opin Crit Care 2010; 16(1): 45-52.
[http://dx.doi.org/10.1097/MCC.0b013e32833546fa] [PMID: 19996967]
[47]
Tejerina E, Pelosi P, Muriel A, et al. Association between ventilatory settings and development of acute respiratory distress syndrome in mechanically ventilated patients due to brain injury. J Crit Care 2017; 38: 341-5.
[http://dx.doi.org/10.1016/j.jcrc.2016.11.010] [PMID: 27914908]
[48]
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372(8): 747-55.
[http://dx.doi.org/10.1056/NEJMsa1410639] [PMID: 25693014]
[49]
Aoyama H, Pettenuzzo T, Aoyama K, Pinto R, Englesakis M, Fan E. Association of driving pressure with mortality among ventilated patients with acute respiratory distress syndrome: A systematic review and meta-analysis. Crit Care Med 2018; 46(2): 300-6.
[http://dx.doi.org/10.1097/CCM.0000000000002838] [PMID: 29135500]
[50]
Bernon P, Mrozek S, Dupont G, Dailler F, Lukaszewicz AC, Balança B. Can prone positioning be a safe procedure in patients with acute brain injury and moderate-to-severe acute respiratory distress syndrome? Crit Care 2021; 25(1): 30.
[http://dx.doi.org/10.1186/s13054-020-03454-9] [PMID: 33461575]
[51]
Chiumello D, Marino A, Cigada I, Menga F, Brioni M, Piva IR. Accuracy of the pressure-volume curve method compared to quantitative lung CT scan to assess the recruitable lung in patients with acute respiratory failure. Crit Care 2012; 16(S1) (Suppl. 1): 104.
[http://dx.doi.org/10.1186/cc10711]
[52]
Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 2006; 354(17): 1775-86.
[http://dx.doi.org/10.1056/NEJMoa052052] [PMID: 16641394]
[53]
Chen L, Del Sorbo L, Grieco DL, et al. Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. A clinical trial. Am J Respir Crit Care Med 2020; 201(2): 178-87.
[http://dx.doi.org/10.1164/rccm.201902-0334OC] [PMID: 31577153]
[54]
Grasso S, Terragni P, Mascia L, et al. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 2004; 32(4): 1018-27.
[http://dx.doi.org/10.1097/01.CCM.0000120059.94009.AD] [PMID: 15071395]
[55]
Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010; 363(12): 1107-16.
[http://dx.doi.org/10.1056/NEJMoa1005372] [PMID: 20843245]
[56]
Huang DT, Angus DC, Moss M, et al. Design and rationale of the reevaluation of systemic early neuromuscular blockade trial for acute respiratory distress syndrome. Ann Am Thorac Soc 2017; 14(1): 124-33.
[http://dx.doi.org/10.1513/AnnalsATS.201608-629OT] [PMID: 27779896]
[57]
Moss M, Huang DT, Brower RG, et al. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med 2019; 380(21): 1997-2008.
[http://dx.doi.org/10.1056/NEJMoa1901686] [PMID: 31112383]
[58]
Bein T, Scherer MN, Philipp A, Weber F, Woertgen C. Pumpless extracorporeal lung assist (pECLA) in patients with acute respiratory distress syndrome and severe brain injury. J Trauma 2005; 58(6): 1294-7.
[http://dx.doi.org/10.1097/01.TA.0000173275.06947.5C] [PMID: 15995487]
[59]
Muellenbach RM, Kredel M, Kunze E, et al. Prolonged heparin-free extracorporeal membrane oxygenation in multiple injured acute respiratory distress syndrome patients with traumatic brain injury. J Trauma Acute Care Surg 2012; 72(5): 1444-7.
[http://dx.doi.org/10.1097/TA.0b013e31824d68e3] [PMID: 22673280]
[60]
Robba C, Ortu A, Bilotta F, et al. Extracorporeal membrane oxygenation for adult respiratory distress syndrome in trauma patients: A case series and systematic literature review. J Trauma Acute Care Surg 2017; 82(1): 165-73.
[http://dx.doi.org/10.1097/TA.0000000000001276] [PMID: 27779577]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy