Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Research Article

Biosynthesis of Silver Nanoparticles at Various pH Values and their Applications in Capturing Irradiation Solar Energy

Author(s): Vinos Mushir Faris, Azeez Abdullah Barzinjy* and Samir Mustafa Hamad

Volume 18, Issue 1, 2024

Published on: 15 September, 2022

Page: [54 - 71] Pages: 18

DOI: 10.2174/1872210516666220826143110

Price: $65

Abstract

Background: Metallic nanoparticles (NPs), in general, are able, due to the high surface area per unit volume, to absorb the maximum incoming light flux through the vicinity of plasmonic structures and then provide local heating. Thus, silver (Ag) NPs have been used to generate heat and increase the temperature of water from solar radiation energy. The optimal plasmonic heating generation can be obtained as soon as the wavelength of the light source is close to the plasmonic resonance wavelength of Ag NPs.

Objective: Ag NPs have been fabricated through a straightforward, cheap, as well as environmentally friendly approach. In this study, Salix babylonica L., weeping willow leaf extract has been utilized as a reducing, capping, and stabilizing agent, without using any other toxic materials. The importance of this study lies in the generation of hot electrons, which can be obtained by collecting the solar spectrum near the infrared and infrared regions, which cannot be obtained by conventional photocatalytic devices.

Methods: Numerous characterization techniques such as; UV-Vis, FT-IR spectroscopy, X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis were used to study the optical, chemical, structural, morphological, properties of the Ag NPs.

Results: The impact of pH on the properties of Ag NPs and their performance to generate heat during solar irradiation have been investigated intensively. This study showed that the synthesized Ag NPs with pH value 12 is the optimum condition and can increase the temperature of water dramatically.

Conclusion: An evaluation of the current patents displays that the field of green synthesis Ag NPs utilizing plant extracts is a vital field and produces rather stable, safe and effective Ag NPs. The novelty of this patent is that Ag NPs can be synthesized from a one-pot reaction without using any exterior stabilizing and reducing agent, which is not conceivable by means of the existing processes. This study, also, is rare and distinctive, and it demonstrates that even a slight quantity of the Ag NPs is significantly raising the temperature of water effectively.

Keywords: silver nanoparticles, biosynthesis method, Salix babylonica L., weeping willow, solar irradiation energy, photothermal conversion.

Graphical Abstract

[1]
Karkare M. Nanotechnology: Fundamentals and applications. IK International Pvt Ltd. 2010.
[2]
Song JY, Kim BS. Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng 2008; 25(4): 808-11.
[http://dx.doi.org/10.1007/s11814-008-0133-z]
[3]
Zhang Z, Shi H, Wu Q, Bu X, Yang Y, Zhang J. Hierarchical structure based on Au nanoparticles and porous CeO2 nanorods: Enhanced activity for catalytic applications. Mater Lett 2019; 242: 20-3.
[http://dx.doi.org/10.1016/j.matlet.2019.01.097]
[4]
Mao C, Yin K, Yang C, et al. Fe-based MOFs@Pd@COFs with spatial confinement effect and electron transfer synergy of highly dispersed Pd nanoparticles for Suzuki-Miyaura coupling reaction. J Colloid Interface Sci 2022; 608(Pt 1): 809-19.
[http://dx.doi.org/10.1016/j.jcis.2021.10.055] [PMID: 34785458]
[5]
Bankar A, Joshi B, Kumar AR, Zinjarde S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2010; 368(1-3): 58-63.
[http://dx.doi.org/10.1016/j.colsurfa.2010.07.024]
[6]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[7]
Xie Y, Kocaefe D, Chen C, Kocaefe Y. Review of research on template methods in preparation of nanomaterials. J Nanomater 2016; 2016: 2302595.
[http://dx.doi.org/10.1155/2016/2302595]
[8]
Tsuji T, Iryo K, Watanabe N, Tsuji M. Preparation of silver nanoparticles by laser ablation in solution: Influence of laser wavelength on particle size. Appl Surf Sci 2002; 202(1-2): 80-5.
[http://dx.doi.org/10.1016/S0169-4332(02)00936-4]
[9]
Rao CNR, Biswas K. Characterization of nanomaterials by physical methods. Annu Rev Anal Chem 2009; 2(1): 435-62.
[http://dx.doi.org/10.1146/annurev-anchem-060908-155236] [PMID: 20636070]
[10]
Plăiașu AG, Modan EM. Advantages and disadvantages of chemical methods in the elaboration of nanomaterials. The annals oF “Dunarea DE Jos” University of Galati fascicle IX Metall. Mater Sci 2020; 43(1): 53-60.
[http://dx.doi.org/10.35219/mms.2020.1.08]
[11]
Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Maaza M. Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arab J Chem 2020; 13(1): 606-19.
[http://dx.doi.org/10.1016/j.arabjc.2017.07.004]
[12]
Saravanan A, Kumar PS, Karishma S, et al. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 2021; 264(Pt 2): 128580.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128580] [PMID: 33059285]
[13]
Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine 2010; 6(2): 257-62.
[http://dx.doi.org/10.1016/j.nano.2009.07.002] [PMID: 19616126]
[14]
Ovais M, Khalil AT, Raza A, et al. Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles. Appl Microbiol Biotechnol 2018; 102(10): 4393-408.
[http://dx.doi.org/10.1007/s00253-018-8928-2] [PMID: 29594356]
[15]
Amin S, Solangi AR, Hassan D, Hussain N, Ahmed J, Baksh H. Recent trends in development of nanomaterials based green analytical methods for environmental remediation. Curr Anal Chem 2021; 17(4): 438-48.
[http://dx.doi.org/10.2174/1573411016666200319100707]
[16]
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem 2011; 13(10): 2638-50.
[http://dx.doi.org/10.1039/c1gc15386b]
[17]
Vijayaraghavan K, Ashokkumar T. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 2017; 5(5): 4866-83.
[http://dx.doi.org/10.1016/j.jece.2017.09.026]
[18]
Shamaila S, Sajjad AKL, Ryma N-A, et al. Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl Mater Today 2016; 5: 150-99.
[http://dx.doi.org/10.1016/j.apmt.2016.09.009]
[19]
Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E 2010; 42(5): 1417-24.
[http://dx.doi.org/10.1016/j.physe.2009.11.081]
[20]
Asmathunisha N, Kathiresan K. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B Biointerfaces 2013; 103: 283-7.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.030] [PMID: 23202242]
[21]
Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 2009; 32(1): 79-84.
[http://dx.doi.org/10.1007/s00449-008-0224-6] [PMID: 18438688]
[22]
Burger JR, Brown JH, Day JW Jr, Flanagan TP, Roy ED. The central role of energy in the urban transition: Global challenges for sustainability. BioPhysl Econ Resour Qual 2019; 4(1): 5.
[http://dx.doi.org/10.1007/s41247-019-0053-z]
[23]
Honcharuk I, Babyna O. Dominant trends of innovation and investment activities in the development of alternative energy sources. East Euro Sci J 2020; 2(54): 6-12.
[24]
Kannan N, Vakeesan D. Solar energy for future world: A review. Renew Sustain Energy Rev 2016; 62: 1092-105.
[http://dx.doi.org/10.1016/j.rser.2016.05.022]
[25]
Wei W, Wang H, Wang C, Luo H. Advanced nanomaterials and nanotechnologies for solar energy. Int J Photoenergy 2019; 2019: 1-2.
[http://dx.doi.org/10.1155/2019/8437964]
[26]
Kamat PV. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J Phys Chem C 2007; 111(7): 2834-60.
[http://dx.doi.org/10.1021/jp066952u]
[27]
Sharma V, Verma D, Okram GS. Influence of surfactant, particle size and dispersion medium on surface plasmon resonance of silver nanoparticles. J Phys Condens Matter 2020; 32(14): 145302.
[http://dx.doi.org/10.1088/1361-648X/ab601a] [PMID: 31816610]
[28]
Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007; 58(1): 267-97.
[http://dx.doi.org/10.1146/annurev.physchem.58.032806.104607] [PMID: 17067281]
[29]
Román CL, Hess O, Lischner J. Single plasmon hot carrier generation in metallic nanoparticles. Commun Phys 2019; 2(1): 47.
[http://dx.doi.org/10.1038/s42005-019-0148-2]
[30]
Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA. Gold nanoparticle ensembles as heaters and actuators: Melting and collective plasmon resonances. Nanoscale Res Lett 2006; 1(1): 84-90.
[http://dx.doi.org/10.1007/s11671-006-9015-7]
[31]
Xia Y, Halas NJ. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 2005; 30(5): 338-48.
[http://dx.doi.org/10.1557/mrs2005.96]
[32]
Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ. Nanoengineering of optical resonances. Chem Phys Lett 1998; 288(2-4): 243-7.
[http://dx.doi.org/10.1016/S0009-2614(98)00277-2]
[33]
Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 2008; 108(2): 462-93.
[http://dx.doi.org/10.1021/cr068107d] [PMID: 18229953]
[34]
Magnozzi M, Ferrera M, Mattera L, Canepa M, Bisio F. Plasmonics of Au nanoparticles in a hot thermodynamic bath. Nanoscale 2019; 11(3): 1140-6.
[http://dx.doi.org/10.1039/C8NR09038F] [PMID: 30574968]
[35]
Tong L, Wei H, Zhang S, Xu H. Recent advances in plasmonic sensors. Sensors 2014; 14(5): 7959-73.
[http://dx.doi.org/10.3390/s140507959] [PMID: 24803189]
[36]
Liang Z, Sun J, Jiang Y, Jiang L, Chen X. Plasmonic enhanced optoelectronic devices. Plasmonics 2014; 9(4): 859-66.
[http://dx.doi.org/10.1007/s11468-014-9682-7]
[37]
Haes AJ, Van Duyne RP. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 2002; 124(35): 10596-604.
[http://dx.doi.org/10.1021/ja020393x] [PMID: 12197762]
[38]
Talabani RF, Hamad SM, Barzinjy AA, Demir U. Biosynthesis of silver nanoparticles and their applications in harvesting sunlight for solar thermal generation. Nanomaterials 2021; 11(9): 2421.
[http://dx.doi.org/10.3390/nano11092421] [PMID: 34578737]
[39]
Joseph A, Sreekumar S, Kumar CSS, Thomas S. Optimisation of thermo-optical properties of SiO2/Ag-CuO nanofluid for direct absorption solar collectors. J Mol Liq 2019; 296: 111986.
[http://dx.doi.org/10.1016/j.molliq.2019.111986]
[40]
Ishii S, Sugavaneshwar RP, Nagao T. Titanium nitride nanoparticles as plasmonic solar heat transducers. J Phys Chem C 2016; 120(4): 2343-8.
[http://dx.doi.org/10.1021/acs.jpcc.5b09604]
[41]
Amjad M, Raza G, Xin Y, et al. Volumetric solar heating and steam generation via gold nanofluids. Appl Energy 2017; 206: 393-400.
[http://dx.doi.org/10.1016/j.apenergy.2017.08.144]
[42]
Ramalingam RJ, Al Lohedan H. Method of preparing biogenic silver nanoparticles. US Patent 1082832861, 2020.
[43]
Almiman FS. Method of synthesizing silver nanoparticles using mint extract. US Patent 10500645B1, 2019.
[44]
Alhajri HM. Synthesis of olive leaf extract silver nanoparticles. US Patent 10702550, 2020.
[45]
Alsalhi MS, Devanesan S. Synthesis of silver nanoparticles from Abelmoschus esculentus extract. US Patent 100591601, 2018.
[46]
Chinnadurai V, Al-Numair KS, Alsaif MA. Biomimetic synthesis of antihyperglycemic silver nanoparticles. US Patent 9907817, 2018.
[47]
Alsalhi MS, Alfuraydi AA, Devanesan S. Synthesis of silver nanoparticles from Pimpinella anisum seeds. US Patent 9144544, 2015.
[48]
Khalil MI, Khalil IMI. Green method for coating a substrate with silver nanoparticles. US Patent 20180237370 A1, 2019.
[49]
Aldalbahi AK. Synthesis of metal oxide nanoparticles using Kalanchoe blossfeldiana extract. US Patent 10703641 B1, 2020.
[50]
Mohamed HHA, Hammami IM, Moustafa TEY. Green synthesis of noble metal/transition metal oxide nanocomposite. US Patent 91186493 B1, 2021.
[51]
Awad MAG. Method of synthesizing nanoparticles and a nanoparticle- polymer composite using a plant extract. US Patent 9491947 B1, 2016.
[52]
Mutlu-Durak H, Yildiz KB. Seed treatment with biostimulants extracted from weeping willow (Salix babylonica) enhances early maize growth. Plants 2021; 10(7): 1449.
[http://dx.doi.org/10.3390/plants10071449] [PMID: 34371652]
[53]
Yu XZ, Trapp S, Zhou PH, Chen L. Effect of temperature on the uptake and metabolism of cyanide by weeping willows. Int J Phytoremediation 2007; 9(3): 243-55.
[http://dx.doi.org/10.1080/15226510701376141] [PMID: 18246771]
[54]
Zuorro A, Iannone A, Natali S, Lavecchia R. Green synthesis of silver nanoparticles using bilberry and red currant waste extracts. Processes 2019; 7(4): 193.
[http://dx.doi.org/10.3390/pr7040193]
[55]
Ramnani SP, Biswal J, Sabharwal S. Synthesis of silver nanoparticles supported on silica aerogel using gamma radiolysis. Radiat Phys Chem 2007; 76(8-9): 1290-4.
[http://dx.doi.org/10.1016/j.radphyschem.2007.02.074]
[56]
Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA. Surface plasmon resonance in gold nanoparticles: A review. J Phys Condens Matter 2017; 29(20): 203002.
[http://dx.doi.org/10.1088/1361-648X/aa60f3] [PMID: 28426435]
[57]
Lee SW, Chang SH, Lai YS, et al. Effect of temperature on the growth of silver nanoparticles using plasmon-mediated method under the irradiation of green LEDs. Materials 2014; 7(12): 7781-98.
[http://dx.doi.org/10.3390/ma7127781] [PMID: 28788275]
[58]
González-Alamilla EN, Gonzalez-Cortazar M, Valladares-Carranza B, et al. Chemical constituents of Salix babylonica L. and their antibacterial activity against gram-positive and gram-negative animal bacteria. Molecules 2019; 24(16): 2992.
[http://dx.doi.org/10.3390/molecules24162992] [PMID: 31426583]
[59]
Ovais M, Khalil AT, Raza A, et al. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine 2016; 11(23): 3157-77.
[http://dx.doi.org/10.2217/nnm-2016-0279] [PMID: 27809668]
[60]
Wahab GA, Sallam A, Elgaml A, Lahloub MF. Antioxidant and antimicrobial activities of Salix babylonica extracts. World J Pharm Sci 2018; 6(4): 1-6.
[61]
Rasheed T, Nabeel F, Bilal M, Iqbal HMN. Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes. Biocatal Agric Biotechnol 2019; 19: 101154.
[http://dx.doi.org/10.1016/j.bcab.2019.101154]
[62]
Isaac R, Sakthivel G, Murthy C. Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract. J Nanotechnol 2013; 2013: 906592.
[http://dx.doi.org/10.1155/2013/906592]
[63]
Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 2010; 3(2): 138-43.
[http://dx.doi.org/10.1166/asl.2010.1099]
[64]
Niraimathi KL, Sudha V, Lavanya R, Brindha P. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf B Biointerfaces 2013; 102: 288-91.
[http://dx.doi.org/10.1016/j.colsurfb.2012.08.041] [PMID: 23006568]
[65]
Umadevi M, Shalini S, Bindhu MR. Synthesis of silver nanoparticle using D. carota extract. Adv Nat Sci Nanosci Nanotechnol 2012; 3(2): 025008.
[http://dx.doi.org/10.1088/2043-6262/3/2/025008]
[66]
Nakamura T, Magara H, Herbani Y, Sato S. Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution. Appl Phys, A Mater Sci Process 2011; 104(4): 1021-4.
[http://dx.doi.org/10.1007/s00339-011-6499-5]
[67]
Yallappa S, Manjanna J, Peethambar SK, Rajeshwara AN, Satyanarayan ND. Green synthesis of silver nanoparticles using Acacia farnesiana (Sweet Acacia) seed extract under microwave irradiation and their biological assessment. J Cluster Sci 2013; 24(4): 1081-92.
[http://dx.doi.org/10.1007/s10876-013-0599-7]
[68]
Ashraf JM, Ansari MA, Khan HM, Alzohairy MA, Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci Rep 2016; 6(1): 20414.
[http://dx.doi.org/10.1038/srep20414] [PMID: 26829907]
[69]
Devaraj P, Kumari P, Aarti C, Renganathan A. Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. J Nanotechnol 2013; 2013: 598328.
[http://dx.doi.org/10.1155/2013/598328]
[70]
Hamedi S, Ghaseminezhad SM, Shojaosadati SA, Shokrollahzadeh S. Comparative study on silver nanoparticles properties produced by green methods. Iran J Biotechnol 2012; 10(3): 1-7.
[71]
Fu M, Li Q, Sun D, et al. Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chin J Chem Eng 2006; 14(1): 114-7.
[http://dx.doi.org/10.1016/S1004-9541(06)60046-3]
[72]
Rahman A, Kumar S, Bafana A, Dahoumane S, Jeffryes C. Biosynthetic conversion of Ag+ to highly stable Ag0 nanoparticles by wild type and cell wall deficient strains of Chlamydomonas reinhardtii. Molecules 2018; 24(1): 98.
[http://dx.doi.org/10.3390/molecules24010098]
[73]
Sharifi-Rad M, Pohl P, Epifano F. Phytofabrication of silver nanoparticles (AgNPs) with pharmaceutical capabilities using Otostegia persica (Burm.) Boiss. leaf extract. Nanomaterials 2021; 11(4): 1045.
[http://dx.doi.org/10.3390/nano11041045] [PMID: 33921810]
[74]
Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV. Synthesis and properties of silver nanoparticles: Advances and prospects. Russ Chem Rev 2008; 77(3): 233-57.
[http://dx.doi.org/10.1070/RC2008v077n03ABEH003751]
[75]
Kuntyi ОІ, Kytsya АR, Mertsalo IP, et al. Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid Polym Sci 2019; 297(5): 689-95.
[http://dx.doi.org/10.1007/s00396-019-04488-4]
[76]
Samiee S, Goharshadi EK. Effects of different precursors on size and optical properties of ceria nanoparticles prepared by microwave-assisted method. Mater Res Bull 2012; 47(4): 1089-95.
[http://dx.doi.org/10.1016/j.materresbull.2011.12.058]
[77]
Sarina S, Waclawik ER, Zhu H. Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem 2013; 15(7): 1814-33.
[http://dx.doi.org/10.1039/c3gc40450a]
[78]
Aziz A. Structural, morphological and optical investigations of silver nanoparticles synthesized by sol-gel auto-combustion method. Dig J Nanomater Biostruct 2018; 13(3)
[79]
Das AJ, Kumar R, Goutam SP. Sunlight irradiation induced synthesis of silver nanoparticles using glycolipid bio-surfactant and exploring the antibacterial activity. J Bioeng Biomed Sci 2016; 6(5)
[http://dx.doi.org/10.4172/2155-9538.1000208]
[80]
Mistry H, Thakor R, Patil C, Trivedi J, Bariya H. Biogenically proficient synthesis and characterization of silver nanoparticles employing marine procured fungi Aspergillus brunneoviolaceus along with their antibacterial and antioxidative potency. Biotechnol Lett 2021; 43(1): 307-16.
[http://dx.doi.org/10.1007/s10529-020-03008-7] [PMID: 32944816]
[81]
Rastogi L, Arunachalam J. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater Chem Phys 2011; 129(1-2): 558-63.
[http://dx.doi.org/10.1016/j.matchemphys.2011.04.068]
[82]
Hamouda RA, Hussein MH, Abo-elmagd RA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep 2019; 9(1): 13071.
[http://dx.doi.org/10.1038/s41598-019-49444-y] [PMID: 31506473]
[83]
Prakasham RS, Buddana SK, Yannam SK, Guntuku GS. Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol 2012; 22(5): 614-21.
[http://dx.doi.org/10.4014/jmb.1107.07013] [PMID: 22561854]
[84]
Jemal K, Sandeep B, Pola S. Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles. J Nanomater 2017; 2017: 4213275.
[http://dx.doi.org/10.1155/2017/4213275]
[85]
Gharibshahi L, Saion E, Gharibshahi E, Shaari A, Matori K. Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials 2017; 10(4): 402.
[http://dx.doi.org/10.3390/ma10040402] [PMID: 28772762]
[86]
Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res Pharm Sci 2014; 9(6): 385-406.
[PMID: 26339255]
[87]
Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Radiat Res Appl Sci 2016; 9(3): 217-27.
[http://dx.doi.org/10.1016/j.jrras.2015.10.002]
[88]
Alsharif SM, Salem SS, Abdel-Rahman MA, et al. Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa. Heliyon 2020; 6(5): e03943.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03943] [PMID: 32518846]
[89]
Salem SS. EL-Belely EF, Niedbała G, et al. Bactericidal and in vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials 2020; 10(10): 2082.
[http://dx.doi.org/10.3390/nano10102082] [PMID: 33096854]
[90]
Aref MS, Salem SS. Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatal Agric Biotechnol 2020; 27: 101689.
[http://dx.doi.org/10.1016/j.bcab.2020.101689]
[91]
Bakhtiari-Sardari A, Mashreghi M, Eshghi H, Behnam-Rasouli F, Lashani E, Shahnavaz B. Comparative evaluation of silver nanoparticles biosynthesis by two cold-tolerant Streptomyces strains and their biological activities. Biotechnol Lett 2020; 42(10): 1985-99.
[http://dx.doi.org/10.1007/s10529-020-02921-1] [PMID: 32462288]
[92]
Halamoda-Kenzaoui B, Ceridono M, Urbán P, et al. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation. J Nanobiotechnology 2017; 15(1): 48.
[http://dx.doi.org/10.1186/s12951-017-0281-6] [PMID: 28651541]
[93]
Vijayalakshmi R, Rajendran V. Synthesis and characterization of nano-TiO2 via different methods. Arch Appl Sci Res 2012; 4(2): 1183-90.
[94]
Tran QH, Le A-T. Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci. Nanosci Nanotechnol 2013; 4(3): 033001.
[http://dx.doi.org/10.1088/2043-6262/4/3/033001]
[95]
Ferraria AM, Carapeto AP, Botelho do Rego AM. X-ray photoelectron spectroscopy: Silver salts revisited. Vacuum 2012; 86(12): 1988-91.
[http://dx.doi.org/10.1016/j.vacuum.2012.05.031]
[96]
Bouafia A, Laouini SE, Ahmed ASA, et al. The recent progress on silver nanoparticles: Synthesis and electronic applications. Nanomaterials 2021; 11(9): 2318.
[http://dx.doi.org/10.3390/nano11092318] [PMID: 34578634]
[97]
Raza M, Kanwal Z, Rauf A, Sabri A, Riaz S, Naseem S. Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 2016; 6(4): 74.
[http://dx.doi.org/10.3390/nano6040074] [PMID: 28335201]
[98]
Ahani M, Khatibzadeh M. Optimisation of significant parameters through response surface methodology in the synthesis of silver nano-particles by chemical reduction method. Micro Nano Lett 2017; 12(9): 705-10.
[http://dx.doi.org/10.1049/mnl.2017.0118]
[99]
Kanipandian N, Kannan S, Ramesh R, Subramanian P, Thirumurugan R. Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Mater Res Bull 2014; 49: 494-502.
[http://dx.doi.org/10.1016/j.materresbull.2013.09.016]
[100]
Baig N, Kammakakam I, Falath W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Adv 2021; 2(6): 1821-71.
[http://dx.doi.org/10.1039/D0MA00807A]
[101]
Panoiu NC, Sha WEI, Lei DY, Li G-C. Nonlinear optics in plasmonic nanostructures. J Opt 2018; 20(8): 083001.
[http://dx.doi.org/10.1088/2040-8986/aac8ed]
[102]
Boriskina SV, Ghasemi H, Chen G. Plasmonic materials for energy: From physics to applications. Mater Today 2013; 16(10): 375-86.
[http://dx.doi.org/10.1016/j.mattod.2013.09.003]
[103]
Nasr O, Lin Y-Y, Chou Y-S, et al. Surface-enhanced Raman scattering of CoTiO3@Ag nanofibers for high-performance sensing applications. Appl Surf Sci 2022; 573: 151509.
[http://dx.doi.org/10.1016/j.apsusc.2021.151509]
[104]
Kumar V, O’Donnell SC, Sang DL, Maggard PA, Wang G. Harnessing plasmon-induced hot carriers at the interfaces with ferroelectrics. Front Chem 2019; 7: 299.
[http://dx.doi.org/10.3389/fchem.2019.00299] [PMID: 31139615]
[105]
de Aberasturi DJ, Serrano-Montes AB, Liz-Marzán LM. Modern applications of plasmonic nanoparticles: From energy to health. Adv Opt Mater 2015; 3(5): 602-17.
[http://dx.doi.org/10.1002/adom.201500053]
[106]
Okonkwo EC, Wole-Osho I, Almanassra IW, Abdullatif YM, Al-Ansari T. An updated review of nanofluids in various heat transfer devices. J Therm Anal Calorim 2021; 145(6): 2817-72.
[http://dx.doi.org/10.1007/s10973-020-09760-2]
[107]
Xiong Q, Ayani M, Barzinjy AA, Dara RN, Shafee A, Nguyen-Thoi T. Modeling of heat transfer augmentation due to complex-shaped turbulator using nanofluid. Physica A 2020; 540: 122465.
[http://dx.doi.org/10.1016/j.physa.2019.122465]
[108]
Lin Y, Xu H, Shan X, et al. Solar steam generation based on the photothermal effect: From designs to applications, and beyond. J Mater Chem A Mater Energy Sustain 2019; 7(33): 19203-27.
[http://dx.doi.org/10.1039/C9TA05935K]
[109]
Liang J, Liu H, Yu J, Zhou L, Zhu J. Plasmon-enhanced solar vapor generation. Nanophotonics 2019; 8(5): 771-86.
[http://dx.doi.org/10.1515/nanoph-2019-0039]
[110]
Elzey S, Grassian VH. Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanopart Res 2010; 12(5): 1945-58.
[http://dx.doi.org/10.1007/s11051-009-9783-y]
[111]
Beicker CLL, Amjad M, Bandarra FEP, Wen D. Experimental study of photothermal conversion using gold/water and MWCNT/water nanofluids. Sol Energy Mater Sol Cells 2018; 188: 51-65.
[http://dx.doi.org/10.1016/j.solmat.2018.08.013]
[112]
He Q, Wang S, Zeng S, Zheng Z. Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems. Energy Convers Manage 2013; 73: 150-7.
[http://dx.doi.org/10.1016/j.enconman.2013.04.019]
[113]
Campos C, Vasco D, Angulo C, Burdiles PA, Cardemil J, Palza H. About the relevance of particle shape and graphene oxide on the behavior of direct absorption solar collectors using metal based nanofluids under different radiation intensities. Energy Convers Manage 2019; 181: 247-57.
[http://dx.doi.org/10.1016/j.enconman.2018.12.007]
[114]
Zhang Y, Wang J, Qiu J, et al. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity. Appl Energy 2019; 237: 83-90.
[http://dx.doi.org/10.1016/j.apenergy.2018.12.075]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy