Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Chemical Synthesis of Selenium-containing Peptides

Author(s): Kainat Ahmed, Ghayoor Abbas Chotana, Amir Faisal and Rahman Shah Zaib Saleem*

Volume 23, Issue 10, 2023

Published on: 27 September, 2022

Page: [1090 - 1117] Pages: 28

DOI: 10.2174/1389557522666220826140910

Price: $65

conference banner
Abstract

Selenium (Se), a semi-metallic element, has chemical properties similar to sulfur; however, it has comparatively low electronegativity as well as a large atomic radius than sulfur. These features bestow selenium-containing compounds with extraordinary reactivity, sensitivity, and potential for several applications like chemical alteration, protein engineering, chemical (semi)synthesis, etc. Organoselenium chemistry is emerging fastly, however, examples of effective incorporation of Se into the peptides are relatively scarce. Providentially, there has been a drastic interest in synthesizing and applying selenoproteins and selenium-containing peptides over the last few decades. In this minireview, the synthetic methodologies of selenium-containing peptides and a brief description of their chemistry and biological activities are summarized. These methodologies enable access to various natural and unnatural selenium-containing peptides that have been used in a range of applications, from modulating protein characteristics to structure-activity relationship (SAR) studies for applications in nutraceuticals and drug development. This review aims at the audience interested in learning about the synthesis as well as will open new dimensions for their future research by aiding in the design of biologically interesting selenium-containing peptides.

Keywords: Selenium-containing peptides, selenoproteins, selenocysteine, selenomethionine, selenoneine, dehydroalanine.

Graphical Abstract

[1]
Wessjohann, L.A.; Schneider, A.; Abbas, M.; Brandt, W. Selenium in chemistry and biochemistry in comparison to sulfur. Biol. Chem., 2007, 388(10), 997-1006.
[http://dx.doi.org/10.1515/BC.2007.138] [PMID: 17937613]
[2]
Stadtman, T.C. New biologic functions - selenium-dependent nucleic acids and proteins. Fundam. Appl. Toxicol., 1983, 3(5), 420-423.
[http://dx.doi.org/10.1016/S0272-0590(83)80015-3] [PMID: 6227514]
[3]
Witczak, Z.J.; Czernecki, S. Synthetic applications of selenium-containing sugars. Adv. Carbohydr. Chem. Biochem., 1998, 53, 143-199.
[http://dx.doi.org/10.1016/S0065-2318(08)60044-X] [PMID: 9710970]
[4]
Mangiavacchi, F.; Coelho Dias, I.F.; Di Lorenzo, I.; Grzes, P.; Palomba, M.; Rosati, O.; Bagnoli, L.; Marini, F.; Santi, C.; Lenardao, E.J.; Sancineto, L. Sweet selenium: Synthesis and properties of selenium-containing sugars and derivatives. Pharmaceuticals (Basel), 2020, 13(9), 211.
[http://dx.doi.org/10.3390/ph13090211] [PMID: 32859124]
[5]
Affeldt, R.F.; Braga, H.C.; Baldassari, L.L.; Luedtke, D.S. Synthesis of selenium-linked neoglycoconjugates and pseudodisaccharides. Tetrahedron, 2012, 68(51), 10470-10475.
[http://dx.doi.org/10.1016/j.tet.2012.08.075]
[6]
Litvinov, V.P.; Dyachenko, V.D. Selenium-containing heterocycles. Russ. Chem. Rev., 1997, 66(11), 923-951.
[http://dx.doi.org/10.1070/RC1997v066n11ABEH000323]
[7]
Parnham, M.J.; Graf, E. Pharmacology of synthetic organic selenium compounds. Prog. Drug Res., 1991, 36, 9-47.
[PMID: 1876711]
[8]
Reich, H.J.; Hondal, R.J. Why nature chose selenium. ACS Chem. Biol., 2016, 11(4), 821-841.
[http://dx.doi.org/10.1021/acschembio.6b00031] [PMID: 26949981]
[9]
Hondal, R.J.; Marino, S.M.; Gladyshev, V.N. Selenocysteine in thiol/disulfide-like exchange reactions. Antioxid. Redox Signal., 2013, 18(13), 1675-1689.
[http://dx.doi.org/10.1089/ars.2012.5013] [PMID: 23121622]
[10]
Arnér, E.S. Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine? Exp. Cell Res., 2010, 316(8), 1296-1303.
[http://dx.doi.org/10.1016/j.yexcr.2010.02.032] [PMID: 20206159]
[11]
Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev., 2014, 94(3), 739-777.
[http://dx.doi.org/10.1152/physrev.00039.2013] [PMID: 24987004]
[12]
Walter, R.; Chan, W.Y. Syntheses and pharmacological properties of selenium isologs of oxytocin and deamino-oxytocin. J. Am. Chem. Soc., 1967, 89(15), 3892-3898.
[http://dx.doi.org/10.1021/ja00991a037] [PMID: 6068786]
[13]
Walter, R.; Du Vigneaud, V. 6-Hemi-L-selenocystine-oxytocin and 1-deamino-6-hemi-L-selenocystine-oxytocin, highly potent isologs of oxytocin and 1-deamino-oxytocin. J. Am. Chem. Soc., 1965, 87(18), 4192-4193.
[http://dx.doi.org/10.1021/ja01096a036] [PMID: 5845279]
[14]
Walter, R.; du Vigneaud, V. 1-deamino-1, 6-l-selenocystine-oxytocin, a highly potent isolog of 1-deamino-oxytocin1. J. Am. Chem. Soc., 1966, 88(6), 1331-1332.
[http://dx.doi.org/10.1021/ja00958a053]
[15]
Frank, W. Syntheses of selenium-containing peptides. 3. Diseleno-oxytocin. Hoppe Seylers Z. Physiol. Chem., 1964, 339(1), 222-229.
[http://dx.doi.org/10.1515/bchm2.1964.339.1.222] [PMID: 5829230]
[16]
Hartrodt, B.; Neubert, K.; Bierwolf, B.; Blech, W.; Jakubke, H-D. Synthese von [3, 14-L-selenocystein, 8-D-tryptophan] somatostatin. Tetrahedron Lett., 1980, 21(25), 2393-2396.
[http://dx.doi.org/10.1016/S0040-4039(00)93158-7]
[17]
Koide, T.; Itoh, H.; Otaka, A.; Furuya, M.; Kitajima, Y.; Fujii, N. Syntheses and biological activities of selenium analogs of alpha-rat atrial natriuretic peptide. Chem. Pharm. Bull. (Tokyo), 1993, 41(9), 1596-1600.
[http://dx.doi.org/10.1248/cpb.41.1596] [PMID: 8221974]
[18]
Besse, D.; Budisa, N.; Karnbrock, W.; Minks, C.; Musiol, H-J.; Pegoraro, S.; Siedler, F.; Weyher, E.; Moroder, L. Chalcogen-analogs of amino acids. Their use in X-ray crystallographic and folding studies of peptides and proteins. Biol. Chem., 1997, 378(3-4), 211-218.
[PMID: 9165073]
[19]
Pegoraro, S.; Fiori, S.; Rudolph-Böhner, S.; Watanabe, T.X.; Moroder, L. Isomorphous replacement of cystine with selenocystine in endothelin: Oxidative refolding, biological and conformational properties of [Sec3,Sec11,Nle7]-endothelin-1. J. Mol. Biol., 1998, 284(3), 779-792.
[http://dx.doi.org/10.1006/jmbi.1998.2189] [PMID: 9826515]
[20]
Fiori, S.; Pegoraro, S.; Rudolph-Böhner, S.; Cramer, J.; Moroder, L. Synthesis and conformational analysis of apamin analogues with natural and non-natural cystine/selenocystine connectivities. Biopolymers, 2000, 53(7), 550-564.
[http://dx.doi.org/10.1002/(SICI)1097-0282(200006)53:7<550::AID-BIP3>3.0.CO;2-O] [PMID: 10766951]
[21]
Rajarathnam, K.; Sykes, B.D.; Dewald, B.; Baggiolini, M.; Clark-Lewis, I. Disulfide bridges in interleukin-8 probed using non-natural disulfide analogues: Dissociation of roles in structure from function. Biochemistry, 1999, 38(24), 7653-7658.
[http://dx.doi.org/10.1021/bi990033v] [PMID: 10387004]
[22]
Quaderer, R.; Sewing, A.; Hilvert, D. Selenocysteine-mediated native chemical ligation. Helv. Chim. Acta, 2001, 84(5), 1197-1206.
[http://dx.doi.org/10.1002/1522-2675(20010516)84:5<1197:AIDHLCA1197>3.0.CO;2-#]
[23]
Hondal, R.J.; Nilsson, B.L.; Raines, R.T. Selenocysteine in native chemical ligation and expressed protein ligation. J. Am. Chem. Soc., 2001, 123(21), 5140-5141.
[http://dx.doi.org/10.1021/ja005885t] [PMID: 11457362]
[24]
Metanis, N.; Keinan, E.; Dawson, P.E. Synthetic seleno-glutaredoxin 3 analogues are highly reducing oxidoreductases with enhanced catalytic efficiency. J. Am. Chem. Soc., 2006, 128(51), 16684-16691.
[http://dx.doi.org/10.1021/ja0661414] [PMID: 17177418]
[25]
Armishaw, C.J.; Daly, N.L.; Nevin, S.T.; Adams, D.J.; Craik, D.J.; Alewood, P.F. Alpha-selenoconotoxins, a new class of potent alpha7 neuronal nicotinic receptor antagonists. J. Biol. Chem., 2006, 281(20), 14136-14143.
[http://dx.doi.org/10.1074/jbc.M512419200] [PMID: 16500898]
[26]
Hargittai, B.; Solé, N.A.; Groebe, D.R.; Abramson, S.N.; Barany, G. Chemical syntheses and biological activities of lactam analogues of alpha-conotoxin SI. J. Med. Chem., 2000, 43(25), 4787-4792.
[http://dx.doi.org/10.1021/jm990635c] [PMID: 11123987]
[27]
Bondebjerg, J.; Grunnet, M.; Jespersen, T.; Meldal, M. Solid-phase synthesis and biological activity of a thioether analogue of conotoxin G1. ChemBioChem, 2003, 4(2-3), 186-194.
[http://dx.doi.org/10.1002/cbic.200390030] [PMID: 12616632]
[28]
Huber, R.E.; Criddle, R.S. Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs. Arch. Biochem. Biophys., 1967, 122(1), 164-173.
[http://dx.doi.org/10.1016/0003-9861(67)90136-1] [PMID: 6076213]
[29]
Zhong, L.; Arnér, E.S.; Holmgren, A. Structure and mechanism of mammalian thioredoxin reductase: The active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc. Natl. Acad. Sci. USA, 2000, 97(11), 5854-5859.
[http://dx.doi.org/10.1073/pnas.100114897] [PMID: 10801974]
[30]
Nygard, B. Polarographic investigations of organic selenium compounds. 3. polarography of selenocystine-selenocysteine. Ark. Kemi, 1967, 27(4-5), 341.
[31]
Muttenthaler, M.; Alewood, P.F. Selenocystine peptides–synthesis, folding and applications. In: Berndt, C.; Holmgren, A.; Eds. Oxidative Folding of Peptides and Proteins; The Royal Society of Chemistry: Cambridge, 2008, pp. 396-418.
[http://dx.doi.org/10.1039/9781847559265-00396]
[32]
Epp, O.; Ladenstein, R.; Wendel, A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur. J. Biochem., 1983, 133(1), 51-69.
[http://dx.doi.org/10.1111/j.1432-1033.1983.tb07429.x] [PMID: 6852035]
[33]
Luo, G.M.; Ren, X.J.; Liu, J.Q.; Mu, Y.; Shen, J.C. Towards more efficient glutathione peroxidase mimics: Substrate recognition and catalytic group assembly. Curr. Med. Chem., 2003, 10(13), 1151-1183.
[http://dx.doi.org/10.2174/0929867033457502] [PMID: 12678808]
[34]
Syed, R.; Wu, Z.P.; Hogle, J.M.; Hilvert, D. Crystal structure of selenosubtilisin at 2.0-A resolution. Biochemistry, 1993, 32(24), 6157-6164.
[http://dx.doi.org/10.1021/bi00075a007] [PMID: 8512925]
[35]
Ahmed, K.; Ashraf, D.; Chotana, G.A.; Faisal, A.; Khan, K.M.; Saleem, R.S.Z. Selenium-containing peptides and their biological applications. Curr. Med. Chem., 2022, 29.
[http://dx.doi.org/10.2174/0929867329666220214104010] [PMID: 35156568]
[36]
Muttenthaler, M.; Alewood, P.F. Selenopeptide chemistry. J. Pept. Sci., 2008, 14(12), 1223-1239.
[http://dx.doi.org/10.1002/psc.1075] [PMID: 18951416]
[37]
Zhang, X.; He, H.; Xiang, J.; Yin, H.; Hou, T. Selenium-containing proteins/peptides from plants: A review on the structures and functions. J. Agric. Food Chem., 2020, 68(51), 15061-15073.
[http://dx.doi.org/10.1021/acs.jafc.0c05594] [PMID: 33315396]
[38]
Johansson, L.; Gafvelin, G.; Arnér, E.S. Selenocysteine in proteins—properties and biotechnological use. Biochimica et Biophysica Acta (BBA), 2005, 1726(1), 1-13.
[http://dx.doi.org/10.1016/j.bbagen.2005.05.010]
[39]
Pedrero, Z.; Madrid, Y. Novel approaches for selenium speciation in foodstuffs and biological specimens: A review. Anal. Chim. Acta, 2009, 634(2), 135-152.
[http://dx.doi.org/10.1016/j.aca.2008.12.026] [PMID: 19185112]
[40]
Stadtman, T.C. Biosynthesis and function of selenocysteine-containing enzymes. J. Biol. Chem., 1991, 266(25), 16257-16260.
[http://dx.doi.org/10.1016/S0021-9258(18)55285-6] [PMID: 1832153]
[41]
Zinoni, F.; Birkmann, A.; Stadtman, T.C.; Böck, A. Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc. Natl. Acad. Sci. USA, 1986, 83(13), 4650-4654.
[http://dx.doi.org/10.1073/pnas.83.13.4650] [PMID: 2941757]
[42]
Chambers, I.; Frampton, J.; Goldfarb, P.; Affara, N.; McBain, W.; Harrison, P.R. The structure of the mouse glutathione peroxidase gene: The selenocysteine in the active site is encoded by the ‘termination’ codon, TGA. EMBO J., 1986, 5(6), 1221-1227.
[http://dx.doi.org/10.1002/j.1460-2075.1986.tb04350.x] [PMID: 3015592]
[43]
Flohe, L.; Günzler, W.A.; Schock, H.H. Glutathione peroxidase: A selenoenzyme. FEBS Lett., 1973, 32(1), 132-134.
[http://dx.doi.org/10.1016/0014-5793(73)80755-0] [PMID: 4736708]
[44]
Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 1973, 179(4073), 588-590.
[http://dx.doi.org/10.1126/science.179.4073.588] [PMID: 4686466]
[45]
Conrad, M.; Schneider, M.; Seiler, A.; Bornkamm, G.W. Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals. Biol. Chem., 2007, 388(10), 1019-1025.
[http://dx.doi.org/10.1515/BC.2007.130] [PMID: 17937615]
[46]
Tamura, T.; Stadtman, T.C. A new selenoprotein from human lung adenocarcinoma cells: Purification, properties, and thioredoxin reductase activity. Proc. Natl. Acad. Sci. USA, 1996, 93(3), 1006-1011.
[http://dx.doi.org/10.1073/pnas.93.3.1006] [PMID: 8577704]
[47]
Behne, D.; Kyriakopoulos, A.; Meinhold, H.; Köhrle, J. Identification of type I iodothyronine 5-deiodinase as a selenoenzyme. Biochem. Biophys. Res. Commun., 1990, 173(3), 1143-1149.
[http://dx.doi.org/10.1016/S0006-291X(05)80905-2] [PMID: 2268318]
[48]
Arnold, A.P.; Tan, K.S.; Rabenstein, D.L. Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 23. Complexation of methylmercury by selenohydryl-containing amino acids and related molecules. Inorg. Chem., 1986, 25(14), 2433-2437.
[http://dx.doi.org/10.1021/ic00234a030]
[49]
Byun, B.J.; Kang, Y.K. Conformational preferences and pK(a) value of selenocysteine residue. Biopolymers, 2011, 95(5), 345-353.
[http://dx.doi.org/10.1002/bip.21581] [PMID: 21213257]
[50]
Boles, J.O.; Tolleson, W.H.; Schmidt, J.C.; Dunlap, R.B.; Odom, J.D. Selenomethionyl dihydrofolate reductase from Escherichia coli. Comparative biochemistry and 77Se nuclear magnetic resonance spectroscopy. J. Biol. Chem., 1992, 267(31), 22217-22223.
[http://dx.doi.org/10.1016/S0021-9258(18)41657-2] [PMID: 1429574]
[51]
Gettins, P.; Crews, B.C. 77Se NMR characterization of 77Se-labeled ovine erythrocyte glutathione peroxidase. J. Biol. Chem., 1991, 266(8), 4804-4809.
[http://dx.doi.org/10.1016/S0021-9258(19)67720-3] [PMID: 2002027]
[52]
Stocking, E.M.; Schwarz, J.N.; Senn, H.; Salzmann, M.; Silks, L.A. Synthesis of L-selenocystine, L-[77 Se] selenocystine and L-tellurocystine. J. Chem. Soc., Perkin Trans. 1, 1997, (16), 2443-2448.
[http://dx.doi.org/10.1039/a600180g]
[53]
Duddeck, H. Selenium-77 nuclear magnetic resonance spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc., 1995, 27(1-3), 1-323.
[http://dx.doi.org/10.1016/0079-6565(94)00005-F]
[54]
Sanchez, J-F.; Hoh, F.; Strub, M-P.; Aumelas, A.; Dumas, C. Structure of the cathelicidin motif of protegrin-3 precursor: Structural insights into the activation mechanism of an antimicrobial protein. Structure, 2002, 10(10), 1363-1370.
[http://dx.doi.org/10.1016/S0969-2126(02)00859-6] [PMID: 12377122]
[55]
Strub, M.P.; Hoh, F.; Sanchez, J.F.; Strub, J.M.; Böck, A.; Aumelas, A.; Dumas, C. Selenomethionine and selenocysteine double labeling strategy for crystallographic phasing. Structure, 2003, 11(11), 1359-1367.
[http://dx.doi.org/10.1016/j.str.2003.09.014] [PMID: 14604526]
[56]
Sanchez, J.F.; Hoh, F.; Strub, M.P.; Strub, J.M.; Van Dorsselaer, A.; Lehrer, R.; Ganz, T.; Chavanieu, A.; Calas, B.; Dumas, C.; Aumelas, A. Expression, purification, crystallization and preliminary X-ray analysis of the cathelicidin motif of the protegrin-3 precursor. Acta Crystallogr. D Biol. Crystallogr., 2001, 57(Pt 11), 1677-1679.
[http://dx.doi.org/10.1107/S0907444901012598] [PMID: 11679742]
[57]
Johansson, L.; Chen, C.; Thorell, J.O.; Fredriksson, A.; Stone-Elander, S.; Gafvelin, G.; Arnér, E.S. Exploiting the 21st amino acid-purifying and labeling proteins by selenolate targeting. Nat. Methods, 2004, 1(1), 61-66.
[http://dx.doi.org/10.1038/nmeth707] [PMID: 15782154]
[58]
Fassbender, M.; de Villiers, D.; Nortier, M.; van der Walt, N. The natBr(p,x) (73,75)Se nuclear processes: A convenient route for the production of radioselenium tracers relevant to amino acid labelling. Appl. Radiat. Isot., 2001, 54(6), 905-913.
[http://dx.doi.org/10.1016/S0969-8043(00)00359-6] [PMID: 11300403]
[59]
Bergmann, R.; Brust, P.; Kampf, G.; Coenen, H.H.; Stöcklin, G. Evaluation of radioselenium labeled selenomethionine, a potential tracer for brain protein synthesis by PET. Nucl. Med. Biol., 1995, 22(4), 475-481.
[http://dx.doi.org/10.1016/0969-8051(94)00123-2] [PMID: 7550024]
[60]
Okeley, N.M.; Zhu, Y.; van Der Donk, W.A. Facile chemoselective synthesis of dehydroalanine-containing peptides. Org. Lett., 2000, 2(23), 3603-3606.
[http://dx.doi.org/10.1021/ol006485d] [PMID: 11073655]
[61]
Levengood, M.R.; van der Donk, W.A. Dehydroalanine-containing peptides: Preparation from phenylselenocysteine and utility in convergent ligation strategies. Nat. Protoc., 2006, 1(6), 3001-3010.
[http://dx.doi.org/10.1038/nprot.2006.470] [PMID: 17406561]
[62]
Quaderer, R.; Hilvert, D. Selenocysteine-mediated backbone cyclization of unprotected peptides followed by alkylation, oxidative elimination or reduction of the selenol. Chem. Commun. (Camb.), 2002, (22), 2620-2621.
[http://dx.doi.org/10.1039/b208288h] [PMID: 12510266]
[63]
Moroder, L.; Musiol, H.J.; Götz, M.; Renner, C. Synthesis of single- and multiple-stranded cystine-rich peptides. Biopolymers, 2005, 80(2-3), 85-97.
[http://dx.doi.org/10.1002/bip.20174] [PMID: 15612050]
[64]
Boschi-Muller, S.; Muller, S.; Van Dorsselaer, A.; Böck, A.; Branlant, G. Substituting selenocysteine for active site cysteine 149 of phosphorylating glyceraldehyde 3-phosphate dehydrogenase reveals a peroxidase activity. FEBS Lett., 1998, 439(3), 241-245.
[http://dx.doi.org/10.1016/S0014-5793(98)01377-5] [PMID: 9845330]
[65]
Fredga, A. Synthesis of α, α-diaminodiseleniumdihydroacrylic acid. Svensk Kemisk Tidskrift, 1936, 48, 160-165.
[66]
Tanaka, H.; Soda, K. Selenocysteine. Methods Enzymol., 1987, 143, 240-243.
[http://dx.doi.org/10.1016/0076-6879(87)43045-0] [PMID: 2958675]
[67]
Gieselman, M.D.; Zhu, Y.; Zhou, H.; Galonic, D.; van der Donk, W.A. Selenocysteine derivatives for chemoselective ligations. ChemBioChem, 2002, 3(8), 709-716.
[http://dx.doi.org/10.1002/1439-7633(20020802)3:8<709:AID-CBIC709>3.0.CO;2-8] [PMID: 12203969]
[68]
Gieselman, M.D.; Xie, L.; van Der Donk, W.A. Synthesis of a selenocysteine-containing peptide by native chemical ligation. Org. Lett., 2001, 3(9), 1331-1334.
[http://dx.doi.org/10.1021/ol015712o] [PMID: 11348227]
[69]
Synthetic study on selenocystine-contaning peptides. Chem. Pharm. Bull. (Tokyo), 1993, 41(3), 502-506.
[PMID: 8477500]
[70]
Chocat, P.; Esaki, N.; Tanaka, H.; Soda, K. Synthesis of L-selenodjenkolate and its degradation with methionine gamma-lyase. Anal. Biochem., 1985, 148(2), 485-489.
[http://dx.doi.org/10.1016/0003-2697(85)90256-8] [PMID: 4061824]
[71]
Oikawa, T.; Esaki, N.; Tanaka, H.; Soda, K. Metalloselenonein, the selenium analogue of metallothionein: Synthesis and characterization of its complex with copper ions. Proc. Natl. Acad. Sci. USA, 1991, 88(8), 3057-3059.
[http://dx.doi.org/10.1073/pnas.88.8.3057] [PMID: 1826562]
[72]
Theodoropoulos, D.; Schwartz, I.L.; Walter, R. Synthesis of selenium-containing peptides. Biochemistry, 1967, 6(12), 3927-3932.
[http://dx.doi.org/10.1021/bi00864a039] [PMID: 6076637]
[73]
Roy, J.; Gordon, W.; Schwartz, I.L.; Walter, R. Optically active selenium-containing amino acids. The synthesis of L-selenocystine and L-selenolanthionine. J. Org. Chem., 1970, 35(2), 510-513.
[http://dx.doi.org/10.1021/jo00827a052] [PMID: 5412141]
[74]
Hashimoto, K.; Sakai, M.; Okuno, T; Shirahama, H. β-Phenylselenoalanine as a dehydroalanine precursor-efficient synthesis of alternariolide (AM-toxin I). Chem. Commun. (Camb.), 1996, (10), 1139-1140.
[http://dx.doi.org/10.1039/CC9960001139]
[75]
Sakai, M.; Hashimoto, K.; Shirahama, H. Synthesis of optically pure β-phenylselenoalanine through serine-β-lactone: a useful precursor of dehydroalanine. Heterocycles, 1997, 1(44), 319-324.
[76]
Siebum, A.H.; Woo, W.S.; Raap, J.; Lugtenburg, J. Access to any site‐directed isotopomer of methionine, selenomethionine, cysteine, and selenocysteine- use of simple, efficient modular synthetic reaction schemes for isotope incorporation. Eur. J. Org. Chem., 2004, 2004(13), 2905-2913.
[http://dx.doi.org/10.1002/ejoc.200400063]
[77]
Tian, F.; Yu, Z.; Lu, S. Efficient reductive selenation of aromatic aldehydes to symmetrical diselenides with Se/CO/H(2)O under atmospheric pressure. J. Org. Chem., 2004, 69(13), 4520-4523.
[http://dx.doi.org/10.1021/jo049733i] [PMID: 15202911]
[78]
Nicolaou, K.C.; Estrada, A.A.; Zak, M.; Lee, S.H.; Safina, B.S. A mild and selective method for the hydrolysis of esters with trimethyltin hydroxide. Angew. Chem. Int. Ed., 2005, 44(9), 1378-1382.
[http://dx.doi.org/10.1002/anie.200462207] [PMID: 15674985]
[79]
Reddy, K.M.; Mugesh, G. Application of dehydroalanine as a building block for the synthesis of selenocysteine-containing peptides. RSC Adv., 2018, 9(1), 34-43.
[http://dx.doi.org/10.1039/C8RA09880H] [PMID: 35521604]
[80]
Leinfelder, W.; Zehelein, E.; Mandrand-Berthelot, M.A.; Böck, A. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature, 1988, 331(6158), 723-725.
[http://dx.doi.org/10.1038/331723a0] [PMID: 2963963]
[81]
Masters, P.M. In vivo decomposition of phosphoserine and serine in noncollagenous protein from human dentin. Calcif. Tissue Int., 1985, 37(3), 236-241.
[http://dx.doi.org/10.1007/BF02554869] [PMID: 3926273]
[82]
Knerr, P.J.; van der Donk, W.A. Discovery, biosynthesis, and engineering of lantipeptides. Annu. Rev. Biochem., 2012, 81(1), 479-505.
[http://dx.doi.org/10.1146/annurev-biochem-060110-113521] [PMID: 22404629]
[83]
Palioura, S.; Sherrer, R.L.; Steitz, T.A.; Söll, D.; Simonovic, M. The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation. Science, 2009, 325(5938), 321-325.
[http://dx.doi.org/10.1126/science.1173755] [PMID: 19608919]
[84]
Thapa, P.; Zhang, R.Y.; Menon, V.; Bingham, J.P. Native chemical ligation: A boon to peptide chemistry. Molecules, 2014, 19(9), 14461-14483.
[http://dx.doi.org/10.3390/molecules190914461] [PMID: 25221869]
[85]
Markey, L.; Giordani, S.; Scanlan, E.M. Native chemical ligation,thiol-ene click: A methodology for the synthesis of functionalized peptides. J. Org. Chem., 2013, 78(9), 4270-4277.
[http://dx.doi.org/10.1021/jo4001542] [PMID: 23565861]
[86]
Chalker, J.M.; Bernardes, G.J.; Lin, Y.A.; Davis, B.G. Chemical modification of proteins at cysteine: Opportunities in chemistry and biology. Chem. Asian J., 2009, 4(5), 630-640.
[http://dx.doi.org/10.1002/asia.200800427] [PMID: 19235822]
[87]
Lin, Y.A.; Boutureira, O.; Lercher, L.; Bhushan, B.; Paton, R.S.; Davis, B.G. Rapid cross-metathesis for reversible protein modifications via chemical access to Se-allyl-selenocysteine in proteins. J. Am. Chem. Soc., 2013, 135(33), 12156-12159.
[http://dx.doi.org/10.1021/ja403191g] [PMID: 23889088]
[88]
Yang, A.; Ha, S.; Ahn, J.; Kim, R.; Kim, S.; Lee, Y.; Kim, J.; Söll, D.; Lee, H.Y.; Park, H.S. A chemical biology route to site-specific authentic protein modifications. Science, 2016, 354(6312), 623-626.
[http://dx.doi.org/10.1126/science.aah4428] [PMID: 27708052]
[89]
Wright, T.H.; Bower, B.J.; Chalker, J.M.; Bernardes, G.J.; Wiewiora, R.; Ng, W.L.; Raj, R.; Faulkner, S.; Vallée, M.R.; Phanumartwiwath, A.; Coleman, O.D.; Thézénas, M.L.; Khan, M.; Galan, S.R.; Lercher, L.; Schombs, M.W.; Gerstberger, S.; Palm-Espling, M.E.; Baldwin, A.J.; Kessler, B.M.; Claridge, T.D.; Mohammed, S.; Davis, B.G. Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity. Science, 2016, 354(6312), aag1465.
[http://dx.doi.org/10.1126/science.aag1465] [PMID: 27708059]
[90]
Nathani, R.; Moody, P.; Smith, M.E.; Fitzmaurice, R.J.; Caddick, S. Bioconjugation of green fluorescent protein via an unexpectedly stable cyclic sulfonium intermediate. ChemBioChem, 2012, 13(9), 1283-1285.
[http://dx.doi.org/10.1002/cbic.201200231] [PMID: 22639110]
[91]
Hondal, R.J. Incorporation of selenocysteine into proteins using peptide ligation. Protein Pept. Lett., 2005, 12(8), 757-764.
[http://dx.doi.org/10.2174/0929866054864319] [PMID: 16305545]
[92]
Flögel, O.; Casi, G.; Hilvert, D.; Seebach, D. Preparation of the β3‐homoselenocysteine derivatives fmoc‐β3hSec (PMB)‐OH and Boc‐β3hSec (PMB)‐OH for solution and solid‐phase‐peptide synthesis and selenoligation. Helv. Chim. Acta, 2007, 90(9), 1651-1666.
[http://dx.doi.org/10.1002/hlca.200790171]
[93]
Tamura, T.; Oikawa, T.; Ohtaka, A.; Fujii, N.; Esaki, N.; Soda, K. Synthesis and characterization of the selenium analog of glutathione disulfide. Anal. Biochem., 1993, 208(1), 151-154.
[http://dx.doi.org/10.1006/abio.1993.1021] [PMID: 8434784]
[94]
Yoshida, S.; Kumakura, F.; Komatsu, I.; Arai, K.; Onuma, Y.; Hojo, H.; Singh, B.G.; Priyadarsini, K.I.; Iwaoka, M. Antioxidative glutathione peroxidase activity of selenoglutathione. Angew. Chem. Int. Ed. Engl., 2011, 50(9), 2125-2128.
[http://dx.doi.org/10.1002/anie.201006939] [PMID: 21344566]
[95]
Crich, D.; Krishnamurthy, V.; Hutton, T.K. Allylic selenosulfide rearrangement: A method for chemical ligation to cysteine and other thiols. J. Am. Chem. Soc., 2006, 128(8), 2544-2545.
[http://dx.doi.org/10.1021/ja057521c] [PMID: 16492032]
[96]
Plano, D.; Baquedano, Y.; Moreno-Mateos, D.; Font, M.; Jiménez-Ruiz, A.; Palop, J.A.; Sanmartín, C. Selenocyanates and diselenides: A new class of potent antileishmanial agents. Eur. J. Med. Chem., 2011, 46(8), 3315-3323.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.054] [PMID: 21571403]
[97]
Dery, S.; Reddy, P.S.; Dery, L.; Mousa, R.; Dardashti, R.N.; Metanis, N. Insights into the deselenization of selenocysteine into alanine and serine. Chem. Sci. (Camb.), 2015, 6(11), 6207-6212.
[http://dx.doi.org/10.1039/C5SC02528A] [PMID: 30090236]
[98]
Malins, L.R.; Mitchell, N.J.; McGowan, S.; Payne, R.J. Oxidative deselenization of selenocysteine: Applications for programmed ligation at serine. Angew. Chem. Int. Ed. Engl., 2015, 54(43), 12716-12721.
[http://dx.doi.org/10.1002/anie.201504639] [PMID: 26384718]
[99]
Casi, G.; Hilvert, D. Reinvestigation of a selenopeptide with purportedly high glutathione peroxidase activity. J. Biol. Chem., 2007, 282(42), 30518-30522.
[http://dx.doi.org/10.1074/jbc.M705528200] [PMID: 17724019]
[100]
Shimodaira, S.; Takei, T.; Hojo, H.; Iwaoka, M. Synthesis of selenocysteine-containing cyclic peptides via tandem N-to-S acyl migration and intramolecular selenocysteine-mediated native chemical ligation. Chem. Commun. (Camb.), 2018, 54(83), 11737-11740.
[http://dx.doi.org/10.1039/C8CC06805D] [PMID: 30276373]
[101]
Rezai, T.; Yu, B.; Millhauser, G.L.; Jacobson, M.P.; Lokey, R.S. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J. Am. Chem. Soc., 2006, 128(8), 2510-2511.
[http://dx.doi.org/10.1021/ja0563455] [PMID: 16492015]
[102]
Boll, E.; Ebran, J.P.; Drobecq, H.; El-Mahdi, O.; Raibaut, L.; Ollivier, N.; Melnyk, O. Access to large cyclic peptides by a one-pot two-peptide segment ligation/cyclization process. Org. Lett., 2015, 17(1), 130-133.
[http://dx.doi.org/10.1021/ol503359w] [PMID: 25506740]
[103]
Terrier, V.P.; Delmas, A.F.; Aucagne, V. Efficient synthesis of cysteine-rich cyclic peptides through intramolecular native chemical ligation of N-Hnb-Cys peptide crypto-thioesters. Org. Biomol. Chem., 2017, 15(2), 316-319.
[http://dx.doi.org/10.1039/C6OB02546C] [PMID: 27910979]
[104]
Mitchell, N.J.; Malins, L.R.; Liu, X.; Thompson, R.E.; Chan, B.; Radom, L.; Payne, R.J. Rapid additive-free selenocystine-selenoester peptide ligation. J. Am. Chem. Soc., 2015, 137(44), 14011-14014.
[http://dx.doi.org/10.1021/jacs.5b07237] [PMID: 26487084]
[105]
Wang, X.; Sanchez, J.; Stone, M.J.; Payne, R.J. Sulfation of the human cytomegalovirus protein UL22A enhances binding to the chemokine RANTES. Angew. Chem. Int. Ed. Engl., 2017, 56(29), 8490-8494.
[http://dx.doi.org/10.1002/anie.201703059] [PMID: 28488292]
[106]
Mitchell, N.J.; Sayers, J.; Kulkarni, S.S.; Clayton, D.; Goldys, A.M.; Ripoll-Rozada, J.; Pereira, P.J.B.; Chan, B.; Radom, L.; Payne, R.J. Accelerated protein synthesis via one-pot ligation-deselenization chemistry. Chem, 2017, 2(5), 703-715.
[http://dx.doi.org/10.1016/j.chempr.2017.04.003]
[107]
Rezai, T.; Bock, J.E.; Zhou, M.V.; Kalyanaraman, C.; Lokey, R.S.; Jacobson, M.P. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: Successful in silico prediction of the relative permeabilities of cyclic peptides. J. Am. Chem. Soc., 2006, 128(43), 14073-14080.
[http://dx.doi.org/10.1021/ja063076p] [PMID: 17061890]
[108]
Driggers, E.M.; Hale, S.P.; Lee, J.; Terrett, N.K. The exploration of macrocycles for drug discovery - an underexploited structural class. Nat. Rev. Drug Discov., 2008, 7(7), 608-624.
[http://dx.doi.org/10.1038/nrd2590] [PMID: 18591981]
[109]
Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963, 85(14), 2149-2154.
[http://dx.doi.org/10.1021/ja00897a025]
[110]
Amblard, M.; Fehrentz, J.A.; Martinez, J.; Subra, G. Methods and protocols of modern solid phase peptide synthesis. Mol. Biotechnol., 2006, 33(3), 239-254.
[http://dx.doi.org/10.1385/MB:33:3:239] [PMID: 16946453]
[111]
Müller, P.; Müller-Dolezal, H.; Stoltz, R.; Söll, H.; Wünsch, E. Houben-Weyl Methods of Organic Chemistry Vol. XV/2: Synthesis of Peptides (including the Chemistry of Protection Groups) II; Georg Thieme Verlag, , 2014.
[112]
Zhang, X. Allium Organoselenium Chemistry and Synthesis and Photochemistry of 1, 2-Dithiins; PhD Dissertation. State University of New York at Albany, 1997.
[113]
Moroder, L.; Besse, D.; Musiol, H.J.; Rudolph-Böhner, S.; Siedler, F. Oxidative folding of cystine-rich peptides vs. regioselective cysteine pairing strategies. Biopolymers, 1996, 40(2), 207-234.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1996)40:2<207:AID-BIP2>3.0.CO;2-#] [PMID: 8785364]
[114]
Kamber, B.; Hartmann, A.; Eisler, K.; Riniker, B.; Rink, H.; Sieber, P.; Rittel, W. The synthesis of cystine peptides by iodine oxidation of S‐trityl‐cysteine and S‐acetamidomethyl‐cysteine peptides. Helv. Chim. Acta, 1980, 63(4), 899-915.
[http://dx.doi.org/10.1002/hlca.19800630418]
[115]
Besse, D.; Siedler, F.; Diercks, T.; Kessler, H.; Moroder, L. The redox potential of selenocystine in unconstrained cyclic peptides. Angew. Chem. Int. Ed. Engl., 1997, 36(8), 883-885.
[http://dx.doi.org/10.1002/anie.199708831]
[116]
Shin, Y.; Winans, K.A.; Backes, B.J.; Kent, S.B.; Ellman, J.A.; Bertozzi, C.R. Fmoc-based synthesis of peptide-αthioesters: Application to the total chemical synthesis of a glycoprotein by native chemical ligation. J. Am. Chem. Soc., 1999, 121(50), 11684-11689.
[http://dx.doi.org/10.1021/ja992881j]
[117]
Gokula, R.P.; Mahato, J.; Singh, H.B.; Chowdhury, A. Self-assembly of penta-selenopeptides into amyloid fibrils. Chem. Commun. (Camb.), 2018, 54(83), 11697-11700.
[http://dx.doi.org/10.1039/C8CC06528D] [PMID: 30255865]
[118]
Harris, K.M.; Flemer, S., Jr.; Hondal, R.J. Studies on deprotection of cysteine and selenocysteine side-chain protecting groups. J. Pept. Sci., 2007, 13(2), 81-93.
[http://dx.doi.org/10.1002/psc.795] [PMID: 17031870]
[119]
Ste Marie, E.J.; Ruggles, E.L.; Hondal, R.J. Removal of the 5-nitro-2-pyridine-sulfenyl protecting group from selenocysteine and cysteine by ascorbolysis. J. Pept. Sci., 2016, 22(9), 571-576.
[http://dx.doi.org/10.1002/psc.2908] [PMID: 27480992]
[120]
Reddy, P.S.; Dery, S.; Metanis, N. Chemical synthesis of proteins with non-strategically placed cysteines using selenazolidine and selective deselenization. Angew. Chem. Int. Ed. Engl., 2016, 55(3), 992-995.
[http://dx.doi.org/10.1002/anie.201509378] [PMID: 26636774]
[121]
Whedon, S.D.; Markandeya, N.; Rana, A.S.J.B.; Senger, N.A.; Weller, C.E. Tureček, F.; Strieter, E.R.; Chatterjee, C. Selenocysteine as a latent bioorthogonal electrophilic probe for deubiquitylating enzymes. J. Am. Chem. Soc., 2016, 138(42), 13774-13777.
[http://dx.doi.org/10.1021/jacs.6b05688] [PMID: 27723317]
[122]
Dery, L.; Reddy, P.S.; Dery, S.; Mousa, R.; Ktorza, O.; Talhami, A.; Metanis, N. Accessing human selenoproteins through chemical protein synthesis. Chem. Sci. (Camb.), 2017, 8(3), 1922-1926.
[http://dx.doi.org/10.1039/C6SC04123J] [PMID: 28451306]
[123]
Gokula, R.P.; Patel, K.; Maurya, S.K.; Singh, H.B. Facile synthesis of stable selenocystine peptides and their solution state NMR studies. Org. Biomol. Chem., 2019, 17(37), 8533-8536.
[http://dx.doi.org/10.1039/C9OB01910C] [PMID: 31517367]
[124]
Aravindhan, S.; Singh, H.B.; Zeller, M.; Butcher, R.J. Synthesis of selenopeptides: An alternative way of incorporating selenocystine. Amino Acids, 2019, 51(4), 661-667.
[http://dx.doi.org/10.1007/s00726-019-02698-2] [PMID: 30798465]
[125]
Yamashita, K.; Inoue, K.; Kinoshita, K.; Ueda, Y.; Murao, H. Processes for producing β-halogeno-α-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof. U.S. Patent 6372941B1, April 16, 2002.
[126]
Arnér, E.S.; Sarioglu, H.; Lottspeich, F.; Holmgren, A.; Böck, A. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes. J. Mol. Biol., 1999, 292(5), 1003-1016.
[http://dx.doi.org/10.1006/jmbi.1999.3085] [PMID: 10512699]
[127]
Mukai, T.; Englert, M.; Tripp, H.J.; Miller, C.; Ivanova, N.N.; Rubin, E.M.; Kyrpides, N.C.; Söll, D. Facile recoding of selenocysteine in nature. Angew. Chem. Int. Ed. Engl., 2016, 55(17), 5337-5341.
[http://dx.doi.org/10.1002/anie.201511657] [PMID: 26991476]
[128]
Frank, W. Syntheses of selenium-containing peptides. II. Preparation of Se-analogous oxidated glutathionee (Se-Se-glutathion). Hoppe Seylers Z. Physiol. Chem., 1964, 339(1), 214-221.
[http://dx.doi.org/10.1515/bchm2.1964.339.1.214] [PMID: 5829229]
[129]
Beld, J.; Woycechowsky, K.J.; Hilvert, D. Selenoglutathione: Efficient oxidative protein folding by a diselenide. Biochemistry, 2007, 46(18), 5382-5390.
[http://dx.doi.org/10.1021/bi700124p] [PMID: 17419591]
[130]
Schroll, A.L.; Hondal, R.J. Further development of new deprotection chemistry for cysteine and selenocysteine side chain protecting groups. In: Valle, S.D.; Escher, E.; Lubell, W.D.; Eds. Peptides for Youth; Springer: New York, , 2009; pp. pp. 135-136.
[http://dx.doi.org/10.1007/978-0-387-73657-0_60]
[131]
Flemer, S., Jr; Lacey, B.M.; Hondal, R.J. Synthesis of peptide substrates for mammalian thioredoxin reductase. J. Pept. Sci., 2008, 14(5), 637-647.
[132]
Poerschke, R.L.; Franklin, M.R.; Moos, P.J. Modulation of redox status in human lung cell lines by organoselenocompounds: Selenazolidines, selenomethionine, and methylseleninic acid. Toxicol. In Vitro, 2008, 22(7), 1761-1767.
[http://dx.doi.org/10.1016/j.tiv.2008.08.003] [PMID: 18768157]
[133]
Franklin, M.R.; Moos, P.J.; El-Sayed, W.M.; Aboul-Fadl, T.; Roberts, J.C. Pre- and post-initiation chemoprevention activity of 2-alkyl/aryl selenazolidine-4(R)-carboxylic acids against tobacco-derived nitrosamine (NNK)-induced lung tumors in the A/J mouse. Chem. Biol. Interact., 2007, 168(3), 211-220.
[http://dx.doi.org/10.1016/j.cbi.2007.04.012] [PMID: 17543294]
[134]
Nagasawa, H.T.; Goon, D.J.; Zera, R.T.; Yuzon, D.L. Prodrugs of L-cysteine as liver-protective agents. 2(RS)-Methylthiazolidine-4(R)-carboxylic acid, a latent cysteine. J. Med. Chem., 1982, 25(5), 489-491.
[http://dx.doi.org/10.1021/jm00347a001] [PMID: 7086831]
[135]
Roberts, J.C.; Nagasawa, H.T.; Zera, R.T.; Fricke, R.F.; Goon, D.J. Prodrugs of L-cysteine as protective agents against acetaminophen-induced hepatotoxicity. 2-(Polyhydroxyalkyl)- and 2-(polyacetoxyalkyl)thiazolidine-4(R)-carboxylic acids. J. Med. Chem., 1987, 30(10), 1891-1896.
[http://dx.doi.org/10.1021/jm00393a034] [PMID: 3656363]
[136]
Xie, Y.; Short, M.D.; Cassidy, P.B.; Roberts, J.C. Selenazolidines as novel organoselenium delivery agents. Bioorg. Med. Chem. Lett., 2001, 11(22), 2911-2915.
[http://dx.doi.org/10.1016/S0960-894X(01)00590-X] [PMID: 11677125]
[137]
El-Sayed, W.M.; Aboul-Fadl, T.; Lamb, J.G.; Roberts, J.C.; Franklin, M.R. Acute effects of novel selenazolidines on murine chemoprotective enzymes. Chem. Biol. Interact., 2006, 162(1), 31-42.
[http://dx.doi.org/10.1016/j.cbi.2006.05.002] [PMID: 16765927]
[138]
Cordeau, E.; Cantel, S.; Gagne, D.; Lebrun, A.; Martinez, J.; Subra, G.; Enjalbal, C. Selenazolidine: A selenium containing proline surrogate in peptide science. Org. Biomol. Chem., 2016, 14(34), 8101-8108.
[http://dx.doi.org/10.1039/C6OB01450J] [PMID: 27506250]
[139]
Short, M.D.; Xie, Y.; Li, L.; Cassidy, P.B.; Roberts, J.C. Characteristics of selenazolidine prodrugs of selenocysteine: Toxicity and glutathione peroxidase induction in V79 cells. J. Med. Chem., 2003, 46(15), 3308-3313.
[http://dx.doi.org/10.1021/jm020496q] [PMID: 12852761]
[140]
Jubilut, G.N.; Cilli, E.M.; Tominaga, M.; Miranda, A.; Okada, Y.; Nakaie, C.R. Evaluation of the trifluoromethanosulfonic acid/trifluoroacetic acid/thioanisole cleavage procedure for application in solid-phase peptide synthesis. Chem. Pharm. Bull. (Tokyo), 2001, 49(9), 1089-1092.
[http://dx.doi.org/10.1248/cpb.49.1089] [PMID: 11558592]
[141]
Olson, O.; Novacek, E.; Whitehead, E.; Palmer, I. Investigations on selenium in wheat. Phytochemistry, 1970, 9(6), 1181-1188.
[http://dx.doi.org/10.1016/S0031-9422(00)85306-6]
[142]
Chen, J.; Linder, K.E.; Cagnolini, A.; Metcalfe, E.; Raju, N.; Tweedle, M.F.; Swenson, R.E. Synthesis, stabilization and formulation of [177Lu]Lu-AMBA, a systemic radiotherapeutic agent for gastrin releasing peptide receptor positive tumors. Appl. Radiat. Isot., 2008, 66(4), 497-505.
[http://dx.doi.org/10.1016/j.apradiso.2007.11.007] [PMID: 18178448]
[143]
Lantry, L.E.; Cappelletti, E.; Maddalena, M.E.; Fox, J.S.; Feng, W.; Chen, J.; Thomas, R.; Eaton, S.M.; Bogdan, N.J.; Arunachalam, T.; Reubi, J.C.; Raju, N.; Metcalfe, E.C.; Lattuada, L.; Linder, K.E.; Swenson, R.E.; Tweedle, M.F.; Nunn, A.D. 177Lu-AMBA: Synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J. Nucl. Med., 2006, 47(7), 1144-1152.
[PMID: 16818949]
[144]
Kochansky, J.P.; Tschursin, E.; Lusby, W.R.; Lacroix, D.; Wolf, W.R. Synthesis of a selenomethionine peptide and a preliminary study of transport into Escherichia coli monitored by high-performance liquid chromatography. Int. J. Pept. Protein Res., 1995, 45(1), 17-25.
[http://dx.doi.org/10.1111/j.1399-3011.1995.tb01563.x] [PMID: 7775005]
[145]
Amso, Z.; Miller, C.H.; O’Toole, R.; Sarojini, V. Design, synthesis and analysis of anti-tuberculosis peptides. J. Pept. Sci., 2012, 18(1), S33.
[146]
Yamashita, Y.; Yamashita, M. Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J. Biol. Chem., 2010, 285(24), 18134-18138.
[http://dx.doi.org/10.1074/jbc.C110.106377] [PMID: 20388714]
[147]
Yamashita, Y.; Yabu, T.; Yamashita, M. Discovery of the strong antioxidant selenoneine in tuna and selenium redox metabolism. World J. Biol. Chem., 2010, 1(5), 144-150.
[http://dx.doi.org/10.4331/wjbc.v1.i5.144] [PMID: 21540999]
[148]
Yamashita, Y.; Amlund, H.; Suzuki, T.; Hara, T.; Hossain, M.A.; Yabu, T.; Touhata, K.; Yamashita, M. Selenoneine, total selenium, and total mercury content in the muscle of fishes. Fish. Sci., 2011, 77(4), 679-686.
[http://dx.doi.org/10.1007/s12562-011-0360-9]
[149]
Suzuki, T.; Hongo, T.; Ohba, T.; Kobayashi, K.; Imai, H.; Ishida, H.; Suzuki, H. The relation of dietary selenium to erythrocyte and plasma selenium concentrations in Japanese college women. Nutr. Res., 1989, 9(8), 839-848.
[http://dx.doi.org/10.1016/S0271-5317(89)80029-6]
[150]
Imai, H.; Suzuki, T.; Kashiwazaki, H.; Takemoto, T.-I.; Izumi, T.; Moji, K. Dietary habit and selenium concentrations in erythrocyte and serum in a group of middle-aged and elderly Japanese. Nutr. Res., 1990, 10(11), 1205-1214.
[http://dx.doi.org/10.1016/S0271-5317(05)80159-9]
[151]
Fairweather-Tait, S.J.; Collings, R.; Hurst, R. Selenium bioavailability: Current knowledge and future research requirements. Am. J. Clin. Nutr., 2010, 91(5), 1484S-1491S.
[http://dx.doi.org/10.3945/ajcn.2010.28674J] [PMID: 20200264]
[152]
Fox, T.E.; Atherton, C.; Dainty, J.R.; Lewis, D.J.; Langford, N.J.; Baxter, M.J.; Crews, H.M.; Fairweather-Tait, S.J. Absorption of selenium from wheat, garlic, and cod intrinsically labeled with Se-77 and Se-82 stable isotopes. Int. J. Vitam. Nutr. Res., 2005, 75(3), 179-186.
[http://dx.doi.org/10.1024/0300-9831.75.3.179] [PMID: 16028633]
[153]
Rayman, M.P.; Infante, H.G.; Sargent, M. Food-chain selenium and human health: Spotlight on speciation. Br. J. Nutr., 2008, 100(2), 238-253.
[http://dx.doi.org/10.1017/S0007114508922522] [PMID: 18346307]
[154]
Turrini, N.G.; Kroepfl, N.; Jensen, K.B.; Reiter, T.C.; Francesconi, K.A.; Schwerdtle, T.; Kroutil, W.; Kuehnelt, D. Biosynthesis and isolation of selenoneine from genetically modified fission yeast. Metallomics, 2018, 10(10), 1532-1538.
[http://dx.doi.org/10.1039/C8MT00200B] [PMID: 30246828]
[155]
Ripka, A.S.; Rich, D.H. Peptidomimetic design. Curr. Opin. Chem. Biol., 1998, 2(4), 441-452.
[http://dx.doi.org/10.1016/S1367-5931(98)80119-1] [PMID: 9736916]
[156]
Braga, A.L.; Vargas, F.; Sehnem, J.A.; Braga, R.C. Efficient synthesis of chiral β-seleno amides via ring-opening reaction of 2-oxazolines and their application in the palladium-catalyzed asymmetric allylic alkylation. J. Org. Chem., 2005, 70(22), 9021-9024.
[http://dx.doi.org/10.1021/jo051451a] [PMID: 16238343]
[157]
Braga, A.L.; Galetto, F.Z.; Taube, P.S.; Paixão, M.W.; Silveira, C.C.; Singh, D.; Vargas, F. Mild and efficient one-pot synthesis of chiral β-chalcogen amides via 2-oxazoline ring-opening reaction mediated by indium metal. J. Organomet. Chem., 2008, 693(24), 3563-3566.
[http://dx.doi.org/10.1016/j.jorganchem.2008.08.031]
[158]
Braga, A.L.; Lüdtke, D.S.; Paixão, M.W.; Alberto, E.E.; Stefani, H.A.; Juliano, L. Straightforward Synthesis of Non-Natural Selenium Containing Amino Acid Derivatives and Peptides; Wiley Online Library: Hoboken, New Jersey, 2005.
[http://dx.doi.org/10.1002/ejoc.200500530]
[159]
Braga, A.L.; Paixão, M.W.; Lüdtke, D.S.; Silveira, C.C.; Rodrigues, O.E. Synthesis of new chiral aliphatic amino diselenides and their application as catalysts for the enantioselective addition of diethylzinc to aldehydes. Org. Lett., 2003, 5(15), 2635-2638.
[http://dx.doi.org/10.1021/ol034773e] [PMID: 12868877]
[160]
McKennon, M.J.; Meyers, A.; Drauz, K.; Schwarm, M. A convenient reduction of amino acids and their derivatives. J. Org. Chem., 1993, 58(13), 3568-3571.
[http://dx.doi.org/10.1021/jo00065a020]
[161]
Braga, A.L.; Sehnem, J.A.; Luedtke, D.S.; Zeni, G.; Silveira, C.C.; Marchi, M.I. New simple chiral phosphine oxazolidine ligands: Easy synthesis and application in the palladium-catalyzed asymmetric allylic alkylation. Synlett, 2005, 2005(08), 1331-1333.
[http://dx.doi.org/10.1055/s-2005-868475]
[162]
Braga, A.L.; Vargas, F.; Silveira, C.C.; de Andrade, L.H. Synthesis of new chiral imidazolidine disulfides derived from L-cystine and their application in the enantioselective addition of diethylzinc to aldehydes. Tetrahedron Lett., 2002, 43(13), 2335-2337.
[http://dx.doi.org/10.1016/S0040-4039(02)00300-3]
[163]
Liu, K.; Zhao, Y.; Chen, F.; Fang, Y. Purification and identification of Se-containing antioxidative peptides from enzymatic hydrolysates of Se-enriched brown rice protein. Food Chem., 2015, 187, 424-430.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.086] [PMID: 25977046]
[164]
Guo, D.; Zhang, Y.; Zhao, J.; He, H.; Hou, T. Selenium-biofortified corn peptides: Attenuating concanavalin A-Induced liver injury and structure characterization. J. Trace Elem. Med. Biol., 2019, 51, 57-64.
[http://dx.doi.org/10.1016/j.jtemb.2018.09.010] [PMID: 30466939]
[165]
Zhu, C.; Ling, Q.; Cai, Z.; Wang, Y.; Zhang, Y.; Hoffmann, P.R.; Zheng, W.; Zhou, T.; Huang, Z. Selenium-containing phycocyanin from Se-enriched spirulina platensis reduces inflammation in dextran sulfate sodium-induced colitis by inhibiting NF-κB activation. J. Agric. Food Chem., 2016, 64(24), 5060-5070.
[http://dx.doi.org/10.1021/acs.jafc.6b01308] [PMID: 27223481]
[166]
Fang, Y.; Xu, Z.; Shi, Y.; Pei, F.; Yang, W.; Ma, N.; Kimatu, B.M.; Liu, K.; Qiu, W.; Hu, Q. Protection mechanism of Se-containing protein hydrolysates from Se-enriched rice on Pb2+-induced apoptosis in PC12 and RAW264.7 cells. Food Chem., 2017, 219, 391-398.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.131] [PMID: 27765242]
[167]
Liu, W.; Hou, T.; Shi, W.; Guo, D.; He, H. Hepatoprotective effects of selenium-biofortified soybean peptides on liver fibrosis induced by tetrachloromethane. J. Funct. Foods, 2018, 50, 183-191.
[http://dx.doi.org/10.1016/j.jff.2018.09.034]
[168]
Tie, M.; Li, B.; Zhuang, X.; Han, J.; Liu, L.; Hu, Y.; Li, H. Selenium speciation in soybean by high performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (HPLC–ESI–MS/MS). Microchem. J., 2015, 123, 70-75.
[http://dx.doi.org/10.1016/j.microc.2015.05.017]
[169]
Fang, Y.; Pan, X.; Zhao, E.; Shi, Y.; Shen, X.; Wu, J.; Pei, F.; Hu, Q.; Qiu, W. Isolation and identification of immunomodulatory selenium-containing peptides from selenium-enriched rice protein hydrolysates. Food Chem., 2019, 275, 696-702.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.115] [PMID: 30724251]
[170]
Liu, K.; Du, R.; Chen, F. Antioxidant activities of Se-MPS: A selenopeptide identified from selenized brown rice protein hydrolysates. Lebensm. Wiss. Technol., 2019, 111, 555-560.
[http://dx.doi.org/10.1016/j.lwt.2019.05.076]
[171]
Giusti, P.; Schaumlöffel, D.; Encinar, J.R.; Szpunar, J. Interfacing reversed-phase nanoHPLC with ICP-MS and on-line isotope dilution analysis for the accurate quantification of selenium-containing peptides in protein tryptic digests. J. Anal. At. Spectrom., 2005, 20(10), 1101-1107.
[http://dx.doi.org/10.1039/b506620d]
[172]
Flemer, S., Jr. A comprehensive one-pot synthesis of protected cysteine and selenocysteine SPPS derivatives. Protein Pept. Lett., 2014, 21(12), 1257-1264.
[http://dx.doi.org/10.2174/0929866521666140526094224] [PMID: 24856290]
[173]
Flemer, S., Jr. Fmoc-Sec(Xan)-OH: Synthesis and utility of Fmoc selenocysteine SPPS derivatives with acid-labile sidechain protection. J. Pept. Sci., 2015, 21(1), 53-59.
[http://dx.doi.org/10.1002/psc.2723] [PMID: 25504629]
[174]
Müller, S.; Senn, H.; Gsell, B.; Vetter, W.; Baron, C.; Böck, A. The formation of diselenide bridges in proteins by incorporation of selenocysteine residues: Biosynthesis and characterization of (Se)2-thioredoxin. Biochemistry, 1994, 33(11), 3404-3412.
[http://dx.doi.org/10.1021/bi00177a034] [PMID: 8136378]
[175]
Besse, D.; Moroder, L. Synthesis of selenocysteine peptides and their oxidation to diselenide‐bridged compounds. J. Pept. Sci., 1997, 3(6), 442-453.
[176]
Stirling, C.J. Leaving groups and nucleofugality in elimination and other organic reactions. Acc. Chem. Res., 1979, 12(6), 198-203.
[http://dx.doi.org/10.1021/ar50138a002]
[177]
Flemer, S., Jr Selenol protecting groups in organic chemistry: Special emphasis on selenocysteine Se-protection in solid phase peptide synthesis. Molecules, 2011, 16(4), 3232-3251.
[http://dx.doi.org/10.3390/molecules16043232] [PMID: 21512438]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy