Research Article

MicroRNA-16 Represses TGF-β1-induced Epithelial-to-Mesenchymal Transition in Human Lung Adenocarcinoma Cell Line

Author(s): Subbiah Rajasekaran*, Sehal Mishra and Deepa Gandhi

Volume 11, Issue 3, 2022

Published on: 06 October, 2022

Page: [206 - 215] Pages: 10

DOI: 10.2174/2211536611666220826124058

Price: $65

Abstract

Background: The transforming growth factor-beta1 (TGF-β1)-induced epithelial-tomesenchymal transition (EMT) has a crucial effect on the progression and metastasis of lung cancer cells.

Objective: The purpose of this study was to investigate whether microRNA (miR)-16 can suppress TGF-β1-induced EMT and proliferation in human lung adenocarcinoma cell line (A549).

Methods: Quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expression of miR-16. The hallmarks of EMT were assessed by RT-qPCR, Western blotting, and cell proliferation assay. A bioinformatics tool was used to identify the putative target of miR-16. The activation of TGF-β1/Smad3 signaling was analysed using Western blotting.

Results: Our results showed that miR-16 expression was significantly down-regulated by TGF-β1 in A549 cells. Moreover, agomir of miR-16 suppressed TGF-β1-induced EMT and cell proliferation. Computational algorithms predicted that the 3’-untranslated regions (3’-UTRs) of Smad3 are direct targets of miR-16. In addition, miR-16 mimic was found to inhibit the TGF-β1-induced activation of the TGF-β1/Smad3 pathway, suggesting that miR-16 may function partly through regulating Smad3.

Conclusion: Our results demonstrated that overexpression of miR-16 suppressed the expression and activation of Smad3, and ultimately inhibited TGF-β1-induced EMT and proliferation in A549 cells. The present findings support further investigation of the anti-cancer effect of miR-16 in animal models of lung cancer to validate the therapeutic potential.

Keywords: Adenocarcinoma, A549 cell line, Cell proliferation, EMT, miR-16, TGF-β1.

Graphical Abstract

[1]
Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008; 83(5): 584-94.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[2]
Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 2019; 13: 961.
[http://dx.doi.org/10.3332/ecancer.2019.961] [PMID: 31537986]
[3]
Lung Cancer Survival Rates | 5-Year Survival Rates for Lung Cancer.. https://www.cancer.org/cancer/lung-cancer/detection-diagnosis-staging/survival-rates.html(Accessed on 8 Nov 2021).
[4]
Liu Q, Zhang H, Jiang X, Qian C, Liu Z, Luo D. Factors involved in cancer metastasis: A better understanding to “seed and soil” hypothesis. Mol Cancer 2017; 16(1): 176.
[http://dx.doi.org/10.1186/s12943-017-0742-4] [PMID: 29197379]
[5]
Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in cancer: A historical overview. Transl Oncol 2020; 13(6): 100773.
[http://dx.doi.org/10.1016/j.tranon.2020.100773] [PMID: 32334405]
[6]
Pattarayan D, Sivanantham A, Krishnaswami V, et al. Tannic acid attenuates TGF-β1-induced epithelial-to-mesenchymal transition by effec-tively intervening TGF-β signaling in lung epithelial cells. J Cell Physiol 2018; 233(3): 2513-25.
[http://dx.doi.org/10.1002/jcp.26127] [PMID: 28771711]
[7]
Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity 2019; 50(4): 924-40.
[http://dx.doi.org/10.1016/j.immuni.2019.03.024] [PMID: 30995507]
[8]
Rajasekaran S, Rajaguru P, Sudhakar Gandhi PS. MicroRNAs as potential targets for progressive pulmonary fibrosis. Front Pharmacol 2015; 6: 254.
[http://dx.doi.org/10.3389/fphar.2015.00254] [PMID: 26594173]
[9]
Rajasekaran S, Pattarayan D, Rajaguru P, Sudhakar Gandhi PS, Thimmulappa RK. MicroRNA regulation of acute lung injury and acute res-piratory distress syndrome. J Cell Physiol 2016; 231(10): 2097-106.
[http://dx.doi.org/10.1002/jcp.25316] [PMID: 26790856]
[10]
Pattarayan D, Thimmulappa RK, Ravikumar V, Rajasekaran S. Diagnostic potential of extracellular microRNA in respiratory diseases. Clin Rev Allergy Immunol 2018; 54(3): 480-92.
[http://dx.doi.org/10.1007/s12016-016-8589-9] [PMID: 27677501]
[11]
Deng Q, Hu H, Yu X, et al. Tissue-specific microRNA expression alters cancer susceptibility conferred by a TP53 noncoding variant. Nat Commun 2019; 10(1): 5061.
[http://dx.doi.org/10.1038/s41467-019-13002-x] [PMID: 31699989]
[12]
Kong W, Yang H, He L, et al. MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 2008; 28(22): 6773-84.
[http://dx.doi.org/10.1128/MCB.00941-08] [PMID: 18794355]
[13]
Wang Y, Li W, Zang X, et al. MicroRNA-204-5p regulates epithelial-to-mesenchymal transition during human posterior capsule opacifica-tion by targeting SMAD4. Invest Ophthalmol Vis Sci 2013; 54(1): 323-32.
[http://dx.doi.org/10.1167/iovs.12-10904] [PMID: 23221074]
[14]
Pao SI, Lin LT, Chen YH, Chen CL, Chen JT. Repression of Smad4 by microRNA-1285 moderates TGF-β-induced epithelial-mesenchymal transition in proliferative vitreoretinopathy. PLoS One 2021; 16(8): e0254873.
[http://dx.doi.org/10.1371/journal.pone.0254873] [PMID: 34383767]
[15]
Zeng Y, Zhu J, Shen D, et al. Repression of Smad4 by miR 205 moderates TGF-β-induced epithelial-mesenchymal transition in A549 cell lines. Int J Oncol 2016; 49(2): 700-8.
[http://dx.doi.org/10.3892/ijo.2016.3547] [PMID: 27279345]
[16]
Wang Q, Li X, Zhu Y, Yang P. MicroRNA-16 suppresses epithelial-mesenchymal transition related gene expression in human glioma. Mol Med Rep 2014; 10(6): 3310-4.
[http://dx.doi.org/10.3892/mmr.2014.2583] [PMID: 25242314]
[17]
Dwivedi SKD, Mustafi SB, Mangala LS, et al. Therapeutic evaluation of microRNA-15a and microRNA-16 in ovarian cancer. Oncotarget 2016; 7(12): 15093-104.
[http://dx.doi.org/10.18632/oncotarget.7618] [PMID: 26918603]
[18]
Zhang H, Li Z. MicroRNA-16 via twist1 inhibits EMT induced by PM2.5 exposure in human hepatocellular carcinoma. Open Med (Wars) 2019; 14(1): 673-82.
[http://dx.doi.org/10.1515/med-2019-0078] [PMID: 31572802]
[19]
Wang H, Zhang Y, Wu Q, Wang YB, Wang W. MiR-16 mimics inhibit TGF-β1-induced epithelial-to-mesenchymal transition via activation of autophagy in non-small cell lung carcinoma cells. Oncol Rep 2018; 39(1): 247-54.
[http://dx.doi.org/10.3892/or.2016.4815] [PMID: 29138833]
[20]
Milovanovic IS, Stjepanovic M, Mitrovic D. Distribution patterns of the metastases of the lung carcinoma in relation to histological type of the primary tumor: An autopsy study. Ann Thorac Med 2017; 12(3): 191-8.
[http://dx.doi.org/10.4103/atm.ATM_276_16] [PMID: 28808491]
[21]
Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev 2006; 25(3): 435-57.
[http://dx.doi.org/10.1007/s10555-006-9006-2] [PMID: 16951986]
[22]
Lian GY, Wang QM, Mak TSK, Huang XR, Yu XQ, Lan HY. Inhibition of tumor invasion and metastasis by targeting TGF-β-Smad-MMP2 pathway with Asiatic acid and Naringenin. Mol Ther Oncolytics 2021; 20: 277-89.
[http://dx.doi.org/10.1016/j.omto.2021.01.006] [PMID: 33614911]
[23]
Li L, Qi L, Liang Z, et al. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int J Mol Med 2015; 36(1): 113-22.
[http://dx.doi.org/10.3892/ijmm.2015.2222] [PMID: 26005723]
[24]
Pang MF, Georgoudaki AM, Lambut L, et al. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphat-ic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene 2016; 35(6): 748-60.
[http://dx.doi.org/10.1038/onc.2015.133] [PMID: 25961925]
[25]
Lu Z, Li Y, Che Y, et al. The TGFβ-induced lncRNA TBILA promotes non-small cell lung cancer progression in vitro and in vivo via cis-regulating HGAL and activating S100A7/JAB1 signaling. Cancer Lett 2018; 432: 156-68.
[http://dx.doi.org/10.1016/j.canlet.2018.06.013] [PMID: 29908210]
[26]
Cheng B, Ding F, Huang CY, Xiao H, Fei FY, Li J. Role of miR-16-5p in the proliferation and metastasis of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 2019; 23(1): 137-45.
[http://dx.doi.org/10.26355/eurrev_201901_16757] [PMID: 30657555]
[27]
Millet C, Zhang YE. Roles of Smad3 in TGF-β signaling during carcinogenesis. Crit Rev Eukaryot Gene Expr 2007; 17(4): 281-93.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v17.i4.30] [PMID: 17725494]
[28]
Zhang H, Yang K, Ren T, Huang Y, Tang X, Guo W. miR-16-5p inhibits chordoma cell proliferation, invasion and metastasis by targeting Smad3. Cell Death Dis 2018; 9(6): 680.
[http://dx.doi.org/10.1038/s41419-018-0738-z] [PMID: 29880900]
[29]
Tijsen AJ, van der Made I, van den Hoogenhof MM, et al. The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovasc Res 2014; 104(1): 61-71.
[http://dx.doi.org/10.1093/cvr/cvu184] [PMID: 25103110]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy