Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Mini-Review Article

Laccases as Gold Standard Enzymes for Biotechnology

Author(s): Anubhab Laha, Anchita Prasad, Kalash Baj, Nidhi Shukla, Pooran Singh Solanki, Rajib Bandopadhyay, Sivaramaiah Nallapeta, Krishna Mohan Medicherla*, Prashanth Suravajhala* and Vinod Kumar Nigam*

Volume 11, Issue 3, 2022

Published on: 10 October, 2022

Page: [174 - 188] Pages: 15

DOI: 10.2174/2211550111666220826102014

Price: $65

Abstract

Background: Laccases are among the oldest known multi-copper enzymes from a diverse array of species, including bacteria and fungi, and are of great importance in different industries like beverage, biosensors, textile, paper, and pulp. From the aspect of origin, interestingly, bacterial laccase is of two kinds, namely, 3-domain conventional laccase and 2-domain small laccase. This enzyme is capable of degrading synthetic textile azo dyes, xenobiotic polycyclic aromatic hydrocarbons, biogenic amines etc. Over the last few years, research on laccase has steadily increased based on biosensors and the understanding of known unknowns.

Objective: In this extensive review, we focus on classification, structural differences based on assorted origins, and applications that will help to know the unknown factors about this strenuous enzyme.

Conclusion: To better understand the origin-function relationship, hypothetical proteins of selected bacterial laccase are reviewed.

Keywords: Laccases, copper enzymes, bioinformatics, functional genomics, protein interactions

Graphical Abstract

[1]
Hakulinen N, Rouvinen J. Three-dimensional structures of laccases. Cell Mol Life Sci 2015; 72(5): 857-68.
[http://dx.doi.org/10.1007/s00018-014-1827-5] [PMID: 25586561]
[2]
Daronch NA, Kelbert M, Pereira CS, de Araújo PHH, de Oliveira D. Elucidating the choice for a precise matrix for laccase immobilization: A review. Chem Eng J 2020; 397: 125506.
[http://dx.doi.org/10.1016/j.cej.2020.125506]
[3]
Chandra R, Chowdhary P. Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 2015; 17(2): 326-42.
[http://dx.doi.org/10.1039/C4EM00627E] [PMID: 25590782]
[4]
Rezaie R, Rezaei S, Jafari N, Forootanfar H, Khoshayand MR, Faramarzi MA. Delignification and detoxification of peanut shell bio-waste using an extremely halophilic laccase from an Aquisalibacillus elongatus isolate. Extremophiles 2017; 21(6): 993-1004.
[http://dx.doi.org/10.1007/s00792-017-0958-7] [PMID: 28871494]
[5]
Patel N, Shahane S, Shivam Majumdar R, Mishra U. Mode of action, properties, production, and application of laccase: A review. Recent Pat Biotechnol 2019; 13(1): 19-32.
[http://dx.doi.org/10.2174/1872208312666180821161015] [PMID: 30147019]
[6]
Janusz G, Pawlik A, Świderska-Burek U, et al. Laccase properties, physiological functions, and evolution. Int J Mol Sci 2020; 21(3): 966.
[http://dx.doi.org/10.3390/ijms21030966] [PMID: 32024019]
[7]
Wang TN, Zhao M. A simple strategy for extracellular production of CotA laccase in Escherichia coli and decolorization of simulated textile effluent by recombinant laccase. Appl Microbiol Biotechnol 2017; 101(2): 685-96.
[http://dx.doi.org/10.1007/s00253-016-7897-6] [PMID: 27738721]
[8]
Zhang Z, Liu J, Fan J, Wang Z, Li L. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal Chim Acta 2018; 1009: 65-72.
[http://dx.doi.org/10.1016/j.aca.2018.01.008] [PMID: 29422133]
[9]
Zhang Y, Lin DF, Hao J, Zhao ZH, Zhang YJ. The crucial role of bacterial laccases in the bioremediation of petroleum hydrocarbons. World J Microbiol Biotechnol 2020; 36(8): 116.
[http://dx.doi.org/10.1007/s11274-020-02888-1] [PMID: 32661601]
[10]
Chauhan PS, Goradia B, Saxena A. Bacterial laccase: Recent update on production, properties and industrial applications. 3 Biotech 2017; 7(5): 323.
[http://dx.doi.org/10.1007/s13205-017-0955-7] [PMID: 28955620]
[11]
Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol Lett 1993; 108(2): 205-10.
[http://dx.doi.org/10.1111/j.1574-6968.1993.tb06100.x]
[12]
Singh G, Bhalla A, Capalash N, Sharma P. Characterization of immobilized laccase from γ-proteobacterium JB: Approach towards the development of biosensor for the detection of phenolic compounds. Indian J Sci Technol 2010; 3(1): 48-53.
[http://dx.doi.org/10.17485/ijst/2010/v3i1.8]
[13]
Muthukumarasamy NP, Jackson B, Joseph Raj A, Sevanan M. Production of extracellular laccase from Bacillus subtilis MTCC 2414 using agroresidues as a potential substrate. Biochem Res Int 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/765190] [PMID: 26451255]
[14]
Neifar M, Chouchane H, Mahjoubi M, Jaouani A, Cherif A. Pseudomonas extremorientalis BU118: A new salt-tolerant laccasesecreting bacterium with biotechnological potential in textile azo dye decolourization. 3 Biotech 2016; 6(1): 107.
[http://dx.doi.org/10.1007/s13205-016-0425-7] [PMID: 28330177]
[15]
Rezaei S, Shahverdi AR, Faramarzi MA. Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresour Technol 2017; 230: 67-75.
[http://dx.doi.org/10.1016/j.biortech.2017.01.036] [PMID: 28161622]
[16]
Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A brief history of colour, the environmental impact of synthetic dyes and removal by using Laccases. Molecules 2021; 26(13): 3813.
[http://dx.doi.org/10.3390/molecules26133813] [PMID: 34206669]
[17]
Arregui L, Ayala M, Gómez-Gil X, et al. Laccases: Structure, function, and potential application in water bioremediation. Microb Cell Fact 2019; 18(1): 200.
[http://dx.doi.org/10.1186/s12934-019-1248-0] [PMID: 31727078]
[18]
Sondhi S, Sharma P, Saini S, Puri N, Gupta N. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4. PLoS One 2014; 9(5): e96951.
[http://dx.doi.org/10.1371/journal.pone.0096951] [PMID: 24871763]
[19]
Martins LO, Durão P, Brissos V, Lindley PF. Laccases of prokaryotic origin: Enzymes at the interface of protein science and protein technology. Cell Mol Life Sci 2015; 72(5): 911-22.
[http://dx.doi.org/10.1007/s00018-014-1822-x] [PMID: 25572294]
[20]
Arias ME, Arenas M, Rodríguez J, Soliveri J, Ball AS, Hernández M. Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol 2003; 69(4): 1953-8.
[http://dx.doi.org/10.1128/AEM.69.4.1953-1958.2003] [PMID: 12676669]
[21]
Suzuki T, Endo K, Ito M, Tsujibo H, Miyamoto K, Inamori Y. A thermostable laccase from Streptomyces lavendulae REN-7: Purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem 2003; 67(10): 2167-75.
[http://dx.doi.org/10.1271/bbb.67.2167] [PMID: 14586105]
[22]
Tonin F, Rosini E, Piubelli L, Sanchez-Amat A, Pollegioni L. Different recombinant forms of polyphenol oxidase A, a laccase from Marinomonas mediterranea. Protein Expr Purif 2016; 123: 60-9.
[http://dx.doi.org/10.1016/j.pep.2016.03.011] [PMID: 27050199]
[23]
Uthandi S, Saad B, Humbard MA, Maupin-Furlow JA. LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microbiol 2010; 76(3): 733-43.
[http://dx.doi.org/10.1128/AEM.01757-09] [PMID: 19966030]
[24]
Enguita FJ, Martins LO, Henriques AO, Carrondo MA. Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem 2003; 278(21): 19416-25.
[http://dx.doi.org/10.1074/jbc.M301251200] [PMID: 12637519]
[25]
Hullo MF, Moszer I, Danchin A, Martin-Verstraete I. CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol 2001; 183(18): 5426-30.
[http://dx.doi.org/10.1128/JB.183.18.5426-5430.2001] [PMID: 11514528]
[26]
Ruijssenaars HJ, Hartmans S. A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Appl Microbiol Biotechnol 2004; 65(2): 177-82.
[http://dx.doi.org/10.1007/s00253-004-1571-0] [PMID: 15293032]
[27]
Kim C, Lorenz WW, Hoopes JT, Dean JFD. Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J Bacteriol 2001; 183(16): 4866-75.
[http://dx.doi.org/10.1128/JB.183.16.4866-4875.2001] [PMID: 11466290]
[28]
Takami H, Takaki Y, Uchiyama I. Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res 2002; 30(18): 3927-35.
[http://dx.doi.org/10.1093/nar/gkf526] [PMID: 12235376]
[29]
Isono Y, Hoshino M. Laccase-like activity of nucleoside oxidase in the presence of nucleosides. Agric Biol Chem 1989; 53(8): 2197-203.
[30]
Brouwers GJ, de Vrind JPM, Corstjens PLAM, Cornelis P, Baysse C, de Vrind-de Jong EW. cumA, a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 1999; 65(4): 1762-8.
[http://dx.doi.org/10.1128/AEM.65.4.1762-1768.1999] [PMID: 10103278]
[31]
Francis CA, Tebo BM. cumA multicopper oxidase genes from diverse Mn(II)-oxidizing and non-Mn(II)-oxidizing Pseudomonas strains. Appl Environ Microbiol 2001; 67(9): 4272-8.
[http://dx.doi.org/10.1128/AEM.67.9.4272-4278.2001] [PMID: 11526033]
[32]
Cha JS, Cooksey DA. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci USA 1991; 88(20): 8915-9.
[http://dx.doi.org/10.1073/pnas.88.20.8915] [PMID: 1924351]
[33]
Fitz-Gibbon ST, Ladner H, Kim UJ, Stetter KO, Simon MI, Miller JH. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci USA 2002; 99(2): 984-9.
[http://dx.doi.org/10.1073/pnas.241636498] [PMID: 11792869]
[34]
Miyazaki K. A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 2005; 9(6): 415-25.
[http://dx.doi.org/10.1007/s00792-005-0458-z] [PMID: 15999224]
[35]
Lee YA, Hendson M, Panopoulos NJ, Schroth MN. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. Juglandis: Homology with small blue copper proteins and multicopper oxidase. J Bacteriol 1994; 176(1): 173-88.
[http://dx.doi.org/10.1128/jb.176.1.173-188.1994] [PMID: 8282694]
[36]
Agrawal K, Verma P. Multicopper oxidase laccases with distinguished spectral properties: A new outlook. Heliyon 2020; 6(5): e03972.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03972] [PMID: 32435715]
[37]
Chourasia PK, Bharati SL, Singh SK. Comparative studies on the blue and yellow laccases. Res Plant Sci 2013; 1(2): 32-7.
[38]
Leontievsky AA, Myasoedova NM, Baskunov BP, et al. Reactions of blue and yellow fungal laccases with lignin model compounds. Biochemistry (Mosc) 1999; 64(10): 1150-6.
[PMID: 10561562]
[39]
Pozdniakova NN, Turkovskaia OV, Iudina EN, Rodakiewicz-Nowak Y. Yellow laccase from the fungus Pleurotus ostreatus D1: Purification and characterization. Prikl Biokhim Mikrobiol 2006; 42(1): 63-9.
[PMID: 16521579]
[40]
Lawton TJ, Sayavedra-Soto LA, Arp DJ, Rosenzweig AC. Crystal structure of a two-domain multicopper oxidase: Implications for the evolution of multicopper blue proteins. J Biol Chem 2009; 284(15): 10174-80.
[http://dx.doi.org/10.1074/jbc.M900179200] [PMID: 19224923]
[41]
Munteanu FD, Lindgren A, Emnéus J, et al. Bioelectrochemical monitoring of phenols and aromatic amines in flow injection using novel plant peroxidases. Anal Chem 1998; 70(13): 2596-600.
[http://dx.doi.org/10.1021/ac980022s] [PMID: 9666727]
[42]
Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. Laccases: A never-ending story. Cell Mol Life Sci 2010; 67(3): 369-85.
[http://dx.doi.org/10.1007/s00018-009-0169-1] [PMID: 19844659]
[43]
Baldrian P. Fungal laccases - occurrence and properties. FEMS Microbiol Rev 2006; 30(2): 215-42.
[http://dx.doi.org/10.1111/j.1574-4976.2005.00010.x] [PMID: 16472305]
[44]
Singh G, Bhalla A, Kaur P, Capalash N, Sharma P. Laccase from prokaryotes: A new source for an old enzyme. Rev Environ Sci Biotechnol 2011; 10(4): 309-26.
[http://dx.doi.org/10.1007/s11157-011-9257-4]
[45]
Mot AC, Silaghi-Dumitrescu R. Laccases: Complex architectures for one-electron oxidations. Biochemistry (Mosc) 2012; 77(12): 1395-407.
[http://dx.doi.org/10.1134/S0006297912120085] [PMID: 23244736]
[46]
Zhang Y, Lv Z, Zhou J, et al. Application of eukaryotic and prokaryotic laccases in biosensor and biofuel cells: Recent advances and electrochemical aspects. Appl Microbiol Biotechnol 2018; 102(24): 10409-23.
[http://dx.doi.org/10.1007/s00253-018-9421-7] [PMID: 30327832]
[47]
Moya R, Saastamoinen P, Hernández M, Suurnäkki A, Arias E, Mattinen ML. Reactivity of bacterial and fungal laccases with lignin under alkaline conditions. Bioresour Technol 2011; 102(21): 10006-12.
[http://dx.doi.org/10.1016/j.biortech.2011.08.046] [PMID: 21908186]
[48]
Mate DM, Alcalde M. Laccase: A multi‐purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 2017; 10(6): 1457-67.
[http://dx.doi.org/10.1111/1751-7915.12422] [PMID: 27696775]
[49]
Guan ZB, Luo Q, Wang HR, Chen Y, Liao XR. Bacterial laccases: Promising biological green tools for industrial applications. Cell Mol Life Sci 2018; 75(19): 3569-92.
[http://dx.doi.org/10.1007/s00018-018-2883-z] [PMID: 30046841]
[50]
Brander S, Mikkelsen JD, Kepp KP. Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii. PLoS One 2014; 9(6): e99402.
[http://dx.doi.org/10.1371/journal.pone.0099402] [PMID: 24915287]
[51]
Trubitsina LI, Tishchenko SV, Gabdulkhakov AG, Lisov AV, Zakharova MV, Leontievsky AA. Structural and functional characterization of two-domain laccase from Streptomyces viridochromogenes. Biochimie 2015; 112: 151-9.
[http://dx.doi.org/10.1016/j.biochi.2015.03.005] [PMID: 25778839]
[52]
Jimenez-Juarez N, Roman-Miranda R, Baeza A, Sánchez-Amat A, Vazquez-Duhalt R, Valderrama B. Alkali and halide-resistant catalysis by the multipotent oxidase from Marinomonas mediterranea. J Biotechnol 2005; 117(1): 73-82.
[http://dx.doi.org/10.1016/j.jbiotec.2005.01.002] [PMID: 15831249]
[53]
Guan ZB, Song CM, Zhang N, et al. Overexpression, characterization, and dye-decolorizing ability of a thermostable, pH-stable, and organic solvent-tolerant laccase from Bacillus pumilus W3. J Mol Catal, B Enzym 2014; 101: 1-6.
[http://dx.doi.org/10.1016/j.molcatb.2013.11.009]
[54]
Liu Y, Huang L, Guo W, et al. Cloning, expression, and characterization of a thermostable and pH-stable laccase from Klebsiella pneumoniae and its application to dye decolorization. Process Biochem 2017; 53: 125-34.
[http://dx.doi.org/10.1016/j.procbio.2016.11.015]
[55]
Luo Q, Chen Y, Xia J, et al. Functional expression enhancement of Bacillus pumilus CotA-laccase mutant WLF through site-directed mutagenesis. Enzyme Microb Technol 2018; 109: 11-9.
[http://dx.doi.org/10.1016/j.enzmictec.2017.07.013] [PMID: 29224621]
[56]
Liu H, Cheng Y, Du B, et al. Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization. PLoS One 2015; 10(3): e0119833.
[http://dx.doi.org/10.1371/journal.pone.0119833] [PMID: 25790466]
[57]
Margot J, Bennati-Granier C, Maillard J, Blánquez P, Barry DA, Holliger C. Bacterial versus fungal laccase: Potential for micropollutant degradation. AMB Express 2013; 3(1): 63.
[http://dx.doi.org/10.1186/2191-0855-3-63] [PMID: 24152339]
[58]
Blánquez A, Guillén F, Rodríguez J, Arias ME, Hernández M. The degradation of two fluoroquinolone based antimicrobials by SilA, an alkaline laccase from Streptomyces ipomoeae. World J Microbiol Biotechnol 2016; 32(3): 52.
[http://dx.doi.org/10.1007/s11274-016-2032-5] [PMID: 26886217]
[59]
Blánquez A, Rodríguez J, Brissos V, et al. Decolorization and detoxification of textile dyes using a versatile Streptomyces laccase-natural mediator system. Saudi J Biol Sci 2019; 26(5): 913-20.
[http://dx.doi.org/10.1016/j.sjbs.2018.05.020] [PMID: 31303819]
[60]
Claus H. Laccases: Structure, reactions, distribution. Micron 2004; 35(1-2): 93-6.
[http://dx.doi.org/10.1016/j.micron.2003.10.029] [PMID: 15036303]
[61]
Moţ AC, Pârvu M, Damian G, et al. A “yellow” laccase with “blue” spectroscopic features, from Sclerotinia sclerotiorum. Process Biochem 2012; 47(6): 968-75.
[http://dx.doi.org/10.1016/j.procbio.2012.03.006]
[62]
Enguita FJ, Matias PM, Martins LO, Plácido D, Henriques AO, Carrondo MA. Spore-coat laccase CotA from Bacillus subtilis: Crystallization and preliminary X-ray characterization by the MAD method. Acta Crystallogr D Biol Crystallogr 2002; 58(9): 1490-3.
[http://dx.doi.org/10.1107/S0907444902011575] [PMID: 12198312]
[63]
Komori H, Miyazaki K, Higuchi Y. X-ray structure of a two-domain type laccase: A missing link in the evolution of multi-copper proteins. FEBS Lett 2009; 583(7): 1189-95.
[http://dx.doi.org/10.1016/j.febslet.2009.03.008] [PMID: 19285076]
[64]
Machczynski MC, Vijgenboom E, Samyn B, Canters GW. Characterization of SLAC: A small laccase from Streptomyces coelicolor with unprecedented activity. Protein Sci 2004; 13(9): 2388-97.
[http://dx.doi.org/10.1110/ps.04759104] [PMID: 15295117]
[65]
Gunne M, Höppner A, Hagedoorn PL, Urlacher VB. Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus. FEBS J 2014; 281(18): 4307-18.
[http://dx.doi.org/10.1111/febs.12755] [PMID: 24548692]
[66]
Mathews SL, Smithson CE, Grunden AM. Purification and characterization of a recombinant laccase‐like multi‐copper oxidase from Paenibacillus glucanolyticusSLM 1. J Appl Microbiol 2016; 121(5): 1335-45.
[http://dx.doi.org/10.1111/jam.13241] [PMID: 27451019]
[67]
Yang J, Yang X, Lin Y, Ng TB, Lin J, Ye X. Laccase-catalyzed decolorization of malachite green: Performance optimization and degradation mechanism. PLoS One 2015; 10(5): e0127714.
[http://dx.doi.org/10.1371/journal.pone.0127714] [PMID: 26020270]
[68]
Lassouane F, Aït-Amar H, Amrani S, Rodriguez-Couto S. A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions. Bioresour Technol 2019; 271: 360-7.
[http://dx.doi.org/10.1016/j.biortech.2018.09.129] [PMID: 30293031]
[69]
Llevot A, Grau E, Carlotti S, Grelier S, Cramail H. From lignin-derived aromatic compounds to novel biobased polymers. Macromol Rapid Commun 2016; 37(1): 9-28.
[http://dx.doi.org/10.1002/marc.201500474] [PMID: 26497301]
[70]
Jones SM, Solomon EI. Electron transfer and reaction mechanism of laccases. Cell Mol Life Sci 2015; 72(5): 869-83.
[http://dx.doi.org/10.1007/s00018-014-1826-6] [PMID: 25572295]
[71]
Madhavi V, Lele SS. Laccase: Properties and applications. Bioresour 2009; 4(4): 1694-717.
[72]
Polyakov KM, Gavryushov S, Ivanova S, et al. Structural study of the X-ray-induced enzymatic reduction of molecular oxygen to water by Steccherinum murashkinskyi laccase: Insights into the reaction mechanism. Acta Crystallogr D Struct Biol 2017; 73(5): 388-401.
[http://dx.doi.org/10.1107/S2059798317003667] [PMID: 28471364]
[73]
Niladevi KN, Sheejadevi PS, Prema P. Strategies for enhancing laccase yield from Streptomyces psammoticus and its role in mediator-based decolorization of azo dyes. Appl Biochem Biotechnol 2008; 151(1): 9-19.
[http://dx.doi.org/10.1007/s12010-008-8175-6] [PMID: 18473186]
[74]
Datta S, Veena R, Samuel MS, Selvarajan E. Immobilization of laccases and applications for the detection and remediation of pollutants: A review. Environ Chem 2020; 19(1): 521-8.
[http://dx.doi.org/10.1007/s10311-020-01081-y]
[75]
Cañas AI, Camarero S. Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 2010; 28(6): 694-705.
[http://dx.doi.org/10.1016/j.biotechadv.2010.05.002] [PMID: 20471466]
[76]
Bourbonnais R, Paice MG. Oxidation of non-phenolic substrates. FEBS Lett 1990; 267(1): 99-102.
[http://dx.doi.org/10.1016/0014-5793(90)80298-W] [PMID: 2365094]
[77]
Solís-Oba M, Ugalde-Saldívar VM, González I, Viniegra-González G. An electrochemical-spectrophotometrical study of the oxidized forms of the mediator 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) produced by immobilized laccase. J Electroanal Chem (Lausanne) 2005; 579(1): 59-66.
[http://dx.doi.org/10.1016/j.jelechem.2005.01.025]
[78]
Bourbonnais R, Leech D, Paice MG. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim Biophys Acta, Gen Subj 1998; 1379(3): 381-90.
[http://dx.doi.org/10.1016/S0304-4165(97)00117-7] [PMID: 9545600]
[79]
Odaci D, Timur S, Pazarlioğlu N, Kirgöz UA, Telefoncu A. Effects of mediators on the laccase biosensor response in paracetamol detection. Biotechnol Appl Biochem 2006; 45(Pt 1): 23-8.
[PMID: 16608443]
[80]
Fabbrini M, Galli C, Gentili P. Comparing the catalytic efficiency of some mediators of laccase. J Mol Catal, B Enzym 2002; 16(5-6): 231-40.
[http://dx.doi.org/10.1016/S1381-1177(01)00067-4]
[81]
Gamelas JAF, Pontes ASN, Evtuguin DV, Xavier AM, Xavier RB, Esculcas AP. New polyoxometalate-laccase integrated system for kraft pulp delignification. Biochem Eng 2007; 33(2): 141-7.
[http://dx.doi.org/10.1016/j.bej.2006.10.014]
[82]
Shleev SV, Khan IG, Morozova OV, Mazhugo IuM, Khalunina AS, Iaropolov AI. Phenyl pyrazolones- Novel oxidoreductase redox-mediators for degradation of xenobiotics. Prikl Biokhim Mikrobiol 2004; 40(2): 165-72.
[PMID: 15125193]
[83]
Gutiérrez A, Rencoret J, Ibarra D, et al. Removal of lipophilic extractives from paper pulp by laccase and lignin-derived phenols as natural mediators. Environ Sci Technol 2007; 41(11): 4124-9.
[http://dx.doi.org/10.1021/es062723+] [PMID: 17612200]
[84]
Johannes C, Majcherczyk A. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 2000; 66(2): 524-8.
[http://dx.doi.org/10.1128/AEM.66.2.524-528.2000] [PMID: 10653713]
[85]
Maruyama T, Komatsu C, Michizoe J, Sakai S, Goto M. Laccase-mediated degradation and reduction of toxicity of the postharvest fungicide imazalil. Process Biochem 2007; 42(3): 459-61.
[http://dx.doi.org/10.1016/j.procbio.2006.09.011]
[86]
Camarero S, Ibarra D, Martínez ÁT, Romero J, Gutiérrez A, del Río JC. Paper pulp delignification using laccase and natural mediators. Enzyme Microb Technol 2007; 40(5): 1264-71.
[http://dx.doi.org/10.1016/j.enzmictec.2006.09.016]
[87]
Liu N, Shi S, Gao Y, Qin M. Fiber modification of kraft pulp with laccase in presence of methyl syringate. Enzyme Microb Technol 2009; 44(2): 89-95.
[http://dx.doi.org/10.1016/j.enzmictec.2008.10.014]
[88]
Forootanfar H, Faramarzi MA. Insights into laccase producing organisms, fermentation states, purification strategies, and biotechnological applications. Biotechnol Prog 2015; 31(6): 1443-63.
[http://dx.doi.org/10.1002/btpr.2173] [PMID: 26399693]
[89]
Sousa AC, Martins LO, Robalo MP. Laccases: Versatile biocatalysts for the synthesis of heterocyclic cores. Molecules 2021; 26(12): 3719.
[http://dx.doi.org/10.3390/molecules26123719] [PMID: 34207073]
[90]
Sarkar S, Banerjee A, Halder U, Biswas R, Bandopadhyay R. Degradation of synthetic azo dyes of textile industry: A sustainable approach using microbial enzymes. Water Conservation Science and Engineering 2017; 2(4): 121-31.
[http://dx.doi.org/10.1007/s41101-017-0031-5]
[91]
Sarkar S, Banerjee A, Chakraborty N, Soren K, Chakraborty P, Bandopadhyay R. Structural-functional analyses of textile dye degrading azoreductase, laccase and peroxidase: A comparative in silico study. Electron J Biotechnol 2020; 43: 48-54.
[http://dx.doi.org/10.1016/j.ejbt.2019.12.004]
[92]
Sarkar S, Ponce NT, Banerjee A, Bandopadhyay R, Rajendran S, Lichtfouse E. Green polymeric nanomaterials for the photocatalytic degradation of dyes: A review. Environ Chem Lett 2020; 18(5): 1569-80.
[http://dx.doi.org/10.1007/s10311-020-01021-w] [PMID: 32837482]
[93]
Sarkar S, Chakraborty P, Bandopadhyay R. Microbial Treatment for Removing Synthetic Dyes from Industrial Effluents. In: Shah M, Banerjee A, Eds. In: Combined Application of Physico-Chemical and Microbiological Processes for Industrial Effluent Treatment Plant. Singapore: Springer 2020; pp. 47-63.
[http://dx.doi.org/10.1007/978-981-15-0497-6_4]
[94]
Pant G, Garlapati D, Agrawal U, Prasuna RG, Mathimani T, Pugazhendhi A. Biological approaches practised using genetically engineered microbes for a sustainable environment: A review. J Hazard Mater 2021; 405: 124631.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124631] [PMID: 33278727]
[95]
Sondhi S, Sharma P, George N, Chauhan PS, Puri N, Gupta N. An extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4, with a potential to biobleach softwood pulp. 3 Biotech 2015; 5(2): 175-85.
[96]
Singh D, Sharma KK, Jacob S, Gakhar SK. Molecular docking of laccase protein from Bacillus safensis DSKK5 isolated from earthworm gut: A novel method to study dye decolorization potential. Water Air Soil Pollut 2014; 225(11): 2175.
[http://dx.doi.org/10.1007/s11270-014-2175-7]
[97]
Verma A, Shirkot P. Purification and characterization of thermostable laccase from thermophilic Geobacillus thermocatenulatus MS5 and its applications in removal of textile dyes. Scholars Acad J Biosci 2014; 2(8): 479-85.
[98]
Qiao W, Chu J, Ding S, Song X, Yu L. Characterization of a thermo-alkali-stable laccase from Bacillus subtilis CJP3 and its application in dyes decolorization. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 2017; 52(8): 710-7.
[http://dx.doi.org/10.1080/10934529.2017.1301747] [PMID: 28358283]
[99]
Sun J, Zheng M, Lu Z, Lu F, Zhang C. Heterologous production of a temperature and pH-stable laccase from Bacillus vallismortis fmb-103 in Escherichia coli and its application. Process Biochem 2017; 55: 77-84.
[http://dx.doi.org/10.1016/j.procbio.2017.01.030]
[100]
Afreen S, Shamsi TN, Baig MA, et al. A novel multicopper oxidase (laccase) from cyanobacteria: Purification, characterization with potential in the decolorization of anthraquinonic dye. PLoS One 2017; 12(4): e0175144.
[http://dx.doi.org/10.1371/journal.pone.0175144] [PMID: 28384218]
[101]
Kumari A, Kishor N, Guptasarma P. Characterization of a mildly alkalophilic and thermostable recombinant Thermus thermophilus laccase with applications in decolourization of dyes. Biotechnol Lett 2018; 40(2): 285-95.
[http://dx.doi.org/10.1007/s10529-017-2461-8] [PMID: 29063287]
[102]
Lu L, Wang TN, Xu TF, Wang JY, Wang CL, Zhao M. Cloning and expression of thermo-alkali-stable laccase of Bacillus licheniformis in Pichia pastoris and its characterization. Bioresour Technol 2013; 134: 81-6.
[http://dx.doi.org/10.1016/j.biortech.2013.02.015] [PMID: 23500563]
[103]
Liu W, Liu C, Liu L, et al. Simultaneous decolorization of sulfonated azo dyes and reduction of hexavalent chromium under high salt condition by a newly isolated salt-tolerant strain Bacillus circulans BWL1061. Ecotoxicol Environ Saf 2017; 141: 9-16.
[http://dx.doi.org/10.1016/j.ecoenv.2017.03.005] [PMID: 28284151]
[104]
Sarkar S, Soren K, Chakraborty P, Bandopadhyay R. Application of Enzymes in Textile Functional Finishing. In: Shahid M, Adivarekar R, Eds. In: Advances in Functional Finishing of Textiles Textile Science and Clothing Technology. Singapore: Springer 2020; pp. 115-27.
[http://dx.doi.org/10.1007/978-981-15-3669-4_5]
[105]
Fang ZM, Li TL, Chang F, et al. A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresour Technol 2012; 111: 36-41.
[http://dx.doi.org/10.1016/j.biortech.2012.01.172] [PMID: 22377476]
[106]
Lu L, Zhao M, Wang TN, et al. Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04. Bioresour Technol 2012; 115: 35-40.
[http://dx.doi.org/10.1016/j.biortech.2011.07.111] [PMID: 21868217]
[107]
Zhang C, Diao H, Lu F, Bie X, Wang Y, Lu Z. Degradation of triphenylmethane dyes using a temperature and pH stable spore laccase from a novel strain of Bacillus vallismortis. Bioresour Technol 2012; 126: 80-6.
[http://dx.doi.org/10.1016/j.biortech.2012.09.055] [PMID: 23073092]
[108]
Pereira L, Coelho AV, Viegas CA, Santos MMC, Robalo MP, Martins LO. Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol 2009; 139(1): 68-77.
[http://dx.doi.org/10.1016/j.jbiotec.2008.09.001] [PMID: 18938200]
[109]
Kalme S, Jadhav S, Jadhav M, Govindwar S. Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzyme Microb Technol 2009; 44(2): 65-71.
[http://dx.doi.org/10.1016/j.enzmictec.2008.10.005]
[110]
Nallapeta S, Nigam VK, Survajahala P, Mohan K. Screening and selection of white rot fungi for biological delignification of agricultural residues. Int J Adv Biotechnol Res 2012; 3(4): 790-6.
[111]
Asina F, Brzonova I, Voeller K, et al. Biodegradation of lignin by fungi, bacteria and laccases. Bioresour Technol 2016; 220: 414-24.
[http://dx.doi.org/10.1016/j.biortech.2016.08.016] [PMID: 27598570]
[112]
Oliva-Taravilla A, Tomás-Pejó E, Demuez M, González-Fernández C, Ballesteros M. Inhibition of cellulose enzymatic hydrolysis by laccase-derived compounds from phenols. Biotechnol Prog 2015; 31(3): 700-6.
[http://dx.doi.org/10.1002/btpr.2068] [PMID: 25740593]
[113]
Singh R, Hu J, Regner MR, et al. Enhanced delignification of steam-pretreated poplar by a bacterial laccase. Sci Rep 2017; 7(1): 42121.
[http://dx.doi.org/10.1038/srep42121] [PMID: 28169340]
[114]
Saritha M, Arora A, Singh S, Nain L. Streptomyces griseorubens mediated delignification of paddy straw for improved enzymatic saccharification yields. Bioresour Technol 2013; 135: 12-7.
[http://dx.doi.org/10.1016/j.biortech.2012.11.040] [PMID: 23265820]
[115]
Blánquez A, Ball AS, González-Pérez JA, et al. Laccase SilA from Streptomyces ipomoeae CECT 3341, a key enzyme for the degradation of lignin from agricultural residues? PLoS One 2017; 12(11): e0187649.
[http://dx.doi.org/10.1371/journal.pone.0187649] [PMID: 29112957]
[116]
Jafari N, Rezaei S, Rezaie R, Dilmaghani H, Khoshayand MR, Faramarzi MA. Improved production and characterization of a highly stable laccase from the halophilic bacterium Chromohalobacter salexigens for the efficient delignification of almond shell bio-waste. Int J Biol Macromol 2017; 105(Pt 1): 489-98.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.055] [PMID: 28709895]
[117]
Kumar S, Jain KK, Bhardwaj KN, Chakraborty S, Kuhad RC. Multiple genes in a single host: Cost-Effective Production of Bacterial Laccase (cotA), Pectate Lyase (pel), and Endoxylanase (xyl) by simultaneous expression and cloning in single vector in E. coli. PLoS One 2015; 10(12): e0144379.
[http://dx.doi.org/10.1371/journal.pone.0144379] [PMID: 26642207]
[118]
Singh G, Arya SK. Utility of laccase in pulp and paper industry: A progressive step towards the green technology. Int J Biol Macromol 2019; 134: 1070-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.168] [PMID: 31129205]
[119]
Singh G, Ahuja N, Batish M, Capalash N, Sharma P. Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from γ-proteobacterium JB: Optimization of process parameters using response surface methodology. Bioresour Technol 2008; 99(16): 7472-9.
[http://dx.doi.org/10.1016/j.biortech.2008.02.023] [PMID: 18387802]
[120]
Eugenio ME, Hrenández M, Moya R, et al. Evaluation of a new laccase produced by Streptomyces ipomoea on biobleaching and ageing of kraft pulps. Bioresour 2011; 6(3): 3231-41.
[121]
Zheng Z, Li H, Li L, Shao W. Biobleaching of wheat straw pulp with recombinant laccase from the hyperthermophilic Thermus thermophilus. Biotechnol Lett 2012; 34(3): 541-7.
[http://dx.doi.org/10.1007/s10529-011-0796-0] [PMID: 22102060]
[122]
Gupta V, Garg S, Capalash N, Gupta N, Sharma P. Production of thermo-alkali-stable laccase and xylanase by co-culturing of Bacillus sp. and B. halodurans for biobleaching of kraft pulp and deinking of waste paper. Bioprocess Biosyst Eng 2015; 38(5): 947-56.
[http://dx.doi.org/10.1007/s00449-014-1340-0] [PMID: 25533041]
[123]
Zhou W, Guan ZB, Chen Y, et al. Production of spore laccase from Bacillus pumilus W3 and its application in dye decolorization after immobilization. Water Sci Technol 2017; 76(1): 147-54.
[http://dx.doi.org/10.2166/wst.2017.192] [PMID: 28708619]
[124]
Asgher M, Noreen S, Bilal M. Enhancement of catalytic, reusability, and long-term stability features of Trametes versicolor IBL-04 laccase immobilized on different polymers. Int J Biol Macromol 2017; 95: 54-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.012] [PMID: 27825994]
[125]
Morsy SAGZ, Ahmad Tajudin A, Ali MSM, Shariff FM. Current development in decolorization of synthetic dyes by immobilized laccases. Front Microbiol 2020; 11: 572309.
[http://dx.doi.org/10.3389/fmicb.2020.572309] [PMID: 33101245]
[126]
Gaurav GK, Mehmood T, Kumar M, et al. Review on polycyclic aromatic hydrocarbons (PAHs) migration from wastewater. J Contam Hydrol 2021; 236: 103715.
[http://dx.doi.org/10.1016/j.jconhyd.2020.103715] [PMID: 33199037]
[127]
Yue Q, Yang Y, Zhao J, et al. Identification of bacterial laccase cueO mutation from the metagenome of chemical plant sludge. Bioresour Bioprocess 2017; 4(1): 48.
[http://dx.doi.org/10.1186/s40643-017-0178-0]
[128]
Menaka S, Lone TA, Lone RA. Cloning of laccase gene from a newly isolated 2, 4-dichlorophenol degrading Bacillus subtilis from dyeing industry sites. Am-Eurasian J Agric Environ Sci 2015; 1: 1602-8.
[129]
Callejón S, Sendra R, Ferrer S, Pardo I. Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine. PLoS One 2017; 12(10): e0186019.
[http://dx.doi.org/10.1371/journal.pone.0186019] [PMID: 29020076]
[130]
Ajao O, Le Hir M, Rahni M, Chadjaa H, Marinova M. Comparative biocatalytic degradation of Kraft prehydrolysate phenolic fermentation inhibitors using bacteria-derived laccase. Wood Sci Technol 2017; 51(3): 585-99.
[http://dx.doi.org/10.1007/s00226-016-0879-0]
[131]
Amidžić Klarić D, Klarić I, Mornar A, Velić N, Velić D. Assessment of bioactive phenolic compounds and antioxidant activity of blackberry wines. Foods 2020; 9(11): 1623.
[http://dx.doi.org/10.3390/foods9111623] [PMID: 33171729]
[132]
Najjar RS, Feresin RG. Protective role of polyphenols in heart failure: Molecular targets and cellular mechanisms underlying their therapeutic potential. Int J Mol Sci 2021; 22(4): 1668.
[http://dx.doi.org/10.3390/ijms22041668] [PMID: 33562294]
[133]
Di Fusco M, Tortolini C, Deriu D, Mazzei F. Laccase-based biosensor for the determination of polyphenol index in wine. Talanta 2010; 81(1-2): 235-40.
[http://dx.doi.org/10.1016/j.talanta.2009.11.063] [PMID: 20188914]
[134]
Chawla S, Rawal R, Kumar D, Pundir CS. Amperometric determination of total phenolic content in wine by laccase immobilized onto silver nanoparticles/zinc oxide nanoparticles modified gold electrode. Anal Biochem 2012; 430(1): 16-23.
[http://dx.doi.org/10.1016/j.ab.2012.07.025] [PMID: 22863983]
[135]
Vasilescu I, Eremia SAV, Kusko M, Radoi A, Vasile E, Radu GL. Molybdenum disulphide and graphene quantum dots as electrode modifiers for laccase biosensor. Biosens Bioelectron 2016; 75: 232-7.
[http://dx.doi.org/10.1016/j.bios.2015.08.051] [PMID: 26319166]
[136]
Ghindilis AL, Gavrilova VP, Yaropolov AI. Laccase-based biosensor for determination of polyphenols: Determination of catechols in tea. Biosens Bioelectron 1992; 7(2): 127-31.
[http://dx.doi.org/10.1016/0956-5663(92)90017-H] [PMID: 1637524]
[137]
Sabela MI, Gumede NJ, Singh P, Bisetty K. Evaluation of antioxidants in herbal tea with a Laccase biosensor. Int J Electrochem Sci 2012; 7(6): 4918-28.
[138]
Portaccio M, Di Tuoro D, Arduini F, et al. Laccase biosensor based on screen-printed electrode modified with thionine-carbon black nanocomposite, for Bisphenol A detection. Electrochim Acta 2013; 109: 340-7.
[http://dx.doi.org/10.1016/j.electacta.2013.07.129]
[139]
Chawla S, Rawal R, Sharma S, Pundir CS. An amperometric biosensor based on laccase immobilized onto nickel nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode for determination of phenolic content in fruit juices. Biochem Eng J 2012; 68: 76-84.
[http://dx.doi.org/10.1016/j.bej.2012.07.008]
[140]
Mayolo-Deloisa K, González-González M, Rito-Palomares M. Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications. Front Bioeng Biotechnol 2020; 8: 222.
[http://dx.doi.org/10.3389/fbioe.2020.00222] [PMID: 32266246]
[141]
Syafrudin M, Kristanti RA, Yuniarto A, et al. Pesticides in drinking water-A review. Int J Environ Res Public Health 2021; 18(2): 468.
[142]
Oliveira TMBF, Fátima Barroso M, Morais S, et al. Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification. Talanta 2013; 106: 137-43.
[http://dx.doi.org/10.1016/j.talanta.2012.12.017] [PMID: 23598106]
[143]
Oliveira TMBF, Fátima Barroso M, Morais S, et al. Laccase-Prussian blue film-graphene doped carbon paste modified electrode for carbamate pesticides quantification. Biosens Bioelectron 2013; 47: 292-9.
[http://dx.doi.org/10.1016/j.bios.2013.03.026] [PMID: 23587791]
[144]
Sekretaryova AN, Volkov AV, Zozoulenko IV, Turner APF, Vagin MY, Eriksson M. Total phenol analysis of weakly supported water using a laccase-based microband biosensor. Anal Chim Acta 2016; 907: 45-53.
[http://dx.doi.org/10.1016/j.aca.2015.12.006] [PMID: 26803001]
[145]
Upan J, Reanpang P, Chailapakul O, Jakmunee J. Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone. Talanta 2016; 146: 766-71.
[http://dx.doi.org/10.1016/j.talanta.2015.06.026] [PMID: 26695328]
[146]
Ferry Y, Leech D. Amperometric detection of catecholamine neurotransmitters using electrocatalytic substrate recycling at a laccase electrode. Electroanalysis 2005; 17(2): 113-9.
[http://dx.doi.org/10.1002/elan.200403069]
[147]
Nicolini C, Adami M, Sartore M, et al. Prototypes of newly conceived inorganic and biological sensors for health and environmental applications. Sensors (Basel) 2012; 12(12): 17112-27.
[http://dx.doi.org/10.3390/s121217112] [PMID: 23235450]
[148]
Ferapontova EE. Electrochemical analysis of dopamine: Perspectives of specific in vivo detection. Electrochim Acta 2017; 245: 664-71.
[http://dx.doi.org/10.1016/j.electacta.2017.05.183]
[149]
Wang K, Liu P, Ye Y, Li J, Zhao W, Huang X. Fabrication of a novel laccase biosensor based on silica nanoparticles modified with phytic acid for sensitive detection of dopamine. Sens Actuators B Chem 2014; 197: 292-9.
[http://dx.doi.org/10.1016/j.snb.2014.03.002]
[150]
Bounegru AV, Apetrei C. Laccase and tyrosinase biosensors used in the determination of hydroxycinnamic acids. Int J Mol Sci 2021; 22(9): 4811.
[http://dx.doi.org/10.3390/ijms22094811] [PMID: 34062799]
[151]
Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 2006; 273(10): 2308-26.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05247.x] [PMID: 16650005]
[152]
Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J. The Laccase Engineering Database: A classification and analysis system for laccases and related multicopper oxidases. Database (Oxford) 2011; 2011: bar006.
[http://dx.doi.org/10.1093/database/bar006] [PMID: 21498547]
[153]
Weirick T, Sahu SS, Mahalingam R, Kaundal R. LacSubPred: Predicting subtypes of Laccases, an important lignin metabolism-related enzyme class, using in silico approaches. BMC Bioinformatics 2014; 15(S11) (Suppl. 11): S15.
[http://dx.doi.org/10.1186/1471-2105-15-S11-S15] [PMID: 25350584]
[154]
Ausec L, Zakrzewski M, Goesmann A, Schlüter A, Mandic-Mulec I. Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One 2011; 6(10): e25724.
[http://dx.doi.org/10.1371/journal.pone.0025724] [PMID: 22022440]
[155]
Feng BZ, Li PQ, Fu L, Yu XM. Exploring laccase genes from plant pathogen genomes: A bioinformatic approach. Genet Mol Res 2015; 14(4): 14019-36.
[http://dx.doi.org/10.4238/2015.October.29.21] [PMID: 26535716]
[156]
Cázares-García SV, Vázquez-Garcidueñas MS, Vázquez-Marrufo G. Structural and phylogenetic analysis of laccases from Trichoderma: A bioinformatic approach. PLoS One 2013; 8(1): e55295.
[http://dx.doi.org/10.1371/journal.pone.0055295] [PMID: 23383142]
[157]
Wilm M, Shevchenko A, Houthaeve T, et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 1996; 379(6564): 466-9.
[http://dx.doi.org/10.1038/379466a0] [PMID: 8559255]
[158]
Neifar M, Jaouani A, Ellouze-Ghorbel R, Ellouze-Chaabouni S, Penninckx MJ. Effect of culturing processes and copper addition on laccase production by the white-rot fungus Fomes fomentarius MUCL 35117. Lett Appl Microbiol 2009; 49(1): 73-8.
[http://dx.doi.org/10.1111/j.1472-765X.2009.02621.x] [PMID: 19413764]
[159]
Bateman A, Coin L, Durbin R, et al. The Pfam protein families database. Nucleic Acids Res 2004; 32(90001): 138D-41.
[http://dx.doi.org/10.1093/nar/gkh121] [PMID: 14681378]
[160]
Marchler-Bauer A, Anderson JB, Derbyshire MK, et al. CDD: A conserved domain database for interactive domain family analysis. Nucleic Acids Res 2007; 35: D237-40.
[http://dx.doi.org/10.1093/nar/gkl951] [PMID: 17135202]
[161]
Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013; 41(Database issue): D808-15.
[PMID: 23203871]
[162]
Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P. Metagenomic gene discovery: Past, present and future. Trends Biotechnol 2005; 23(6): 321-9.
[http://dx.doi.org/10.1016/j.tibtech.2005.04.001] [PMID: 15922085]
[163]
Ferrer M, Martínezabarca F, Golyshin P. Mining genomes and ‘metagenomes’ for novel catalysts. Curr Opin Biotechnol 2005; 16(6): 588-93.
[http://dx.doi.org/10.1016/j.copbio.2005.09.001] [PMID: 16171989]
[164]
Su J, Noro J, Fu J, Wang Q, Silva C, Cavaco-Paulo A. Exploring PEGylated and immobilized laccases for catechol polymerization. AMB Express 2018; 8(1): 134.
[http://dx.doi.org/10.1186/s13568-018-0665-5] [PMID: 30136217]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy