Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Mini-Review Article

Novel Applications of Graphene and its Derivatives: A Short Review

Author(s): Amal Jose, Akhila Job, Jephin K. Jose* and Manoj Balachandran

Volume 8, Issue 3, 2023

Published on: 12 September, 2022

Page: [200 - 208] Pages: 9

DOI: 10.2174/2405461507666220823124855

Price: $65

Abstract

Graphene, a layered allotropic form of graphitic carbon, has fascinated the scientific world since its discovery. Its unique structural, physical, chemical, mechanical, and electrical properties find application in many areas. Because of its large surface area and its apt electrical property, it is used in electromagnetic interference shielding. With excellent carrier mobility, it is used for sensing purposes. Mechanical strength and elastic properties coupled with its lightweight make graphene a promising material as a supercapacitor. The 2-dimensional structural properties of the graphene layers can be used for the purification treatment of water and gas. The number of research in graphene applications is increasing every day, showing the importance and excellency of graphene properties. This short review provides a comprehensive understanding of graphene's properties and progress in electromagnetic interference shielding, sensors, water treatment, energy production, storage, and conversion applications such as supercapacitors, fuel cells, solar cells and electrocatalysts.

Keywords: Graphene, supercapacitor, purification, sensors, electromagnetic, multilayered graphite.

Graphical Abstract

[1]
Dong LX, Chen Q. Properties, synthesis, and characterization of graphene. Front Mater Sci China 2010; 4(1): 45-51.
[http://dx.doi.org/10.1007/s11706-010-0014-3]
[2]
Kakaei K, Balavandi A. Hierarchically porous fluorine-doped graphene nanosheets as efficient metal-free electrocatalyst for oxygen reduction in gas diffusion electrode. J Colloid Interface Sci 2017; 490: 819-24.
[http://dx.doi.org/10.1016/j.jcis.2016.12.011] [PMID: 27997850]
[3]
Choi W, Lahiri I, Seelaboyina R, Kang YS. Synthesis of graphene and its applications: A review. Crit Rev Solid State Mater Sci 2010; 35(1): 52-71.
[http://dx.doi.org/10.1080/10408430903505036]
[4]
Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: A review of graphene. Chem Rev 2010; 110(1): 132-45.
[http://dx.doi.org/10.1021/cr900070d] [PMID: 19610631]
[5]
Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007; 6(3): 183-91.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[6]
Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004; 306(5696): 666-9.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[7]
Jiang Y, Biswas P, Fortner JD. A review of recent developments in graphene-enabled membranes for water treatment. Environ Sci Water Res Technol 2016; 2(6): 915-22.
[http://dx.doi.org/10.1039/C6EW00187D]
[8]
Giubileo F, Di Bartolomeo A, Lemmo L, Luongo G, Urban F. Field emission from carbon nanostructures. Appl Sci 2018; 8: 526.
[http://dx.doi.org/10.3390/app8040526]
[9]
Pendolino F, Armata N. Synthesis, characterization and models of graphene oxide. Graphene Oxide in Environmental Remediation Process SpringerBriefs in Applied Sciences and Technology. Germany: Springer 2017; pp. 5-21.
[http://dx.doi.org/10.1007/978-3-319-60429-9_2]
[10]
Smith AT, Marie A. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nanomaterials Sci 2019; 1(1): 31-47.
[11]
Wang G, Wang B, Park J, Yang J, Shen X, Yao J. Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon 2009; 47(1): 68-72.
[http://dx.doi.org/10.1016/j.carbon.2008.09.002]
[12]
Chang H, Wu H. Graphene-based nanomaterials: Synthesis, properties, and optical and optoelectronic applications. Adv Funct Mater 2013; 23(16): 1984-97.
[http://dx.doi.org/10.1002/adfm.201202460]
[13]
Flynn GW. Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and Its Precursors on Metal Surfaces. New York, US: Columbia Univ. 2015.
[14]
Lang B. A LEED study of the deposition of carbon on platinum crystal surfaces. Surf Sci 1975; 53(1): 317-29.
[http://dx.doi.org/10.1016/0039-6028(75)90132-6]
[15]
Edwards RS, Coleman KS. Graphene synthesis: Relationship to applications. Nanoscale 2013; 5(1): 38-51.
[http://dx.doi.org/10.1039/C2NR32629A] [PMID: 23160190]
[16]
Wu YH, Yu T, Shen ZX. Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J Appl Phys 2010; 108(7): 071301.
[http://dx.doi.org/10.1063/1.3460809]
[17]
Choucair M, Thordarson P, Stride JA. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 2009; 4(1): 30-3.
[http://dx.doi.org/10.1038/nnano.2008.365] [PMID: 19119279]
[18]
Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 2009; 9(1): 30-5.
[http://dx.doi.org/10.1021/nl801827v] [PMID: 19046078]
[19]
Chung DDL. Materials for electromagnetic interference shielding. J Mater Eng Perform 2000; 9(3): 350-4.
[http://dx.doi.org/10.1361/105994900770346042]
[20]
Yang W, Zhao Z, Wu K, et al. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J Mater Chem C Mater Opt Electron Devices 2017; 5(15): 3748-56.
[http://dx.doi.org/10.1039/C7TC00400A]
[21]
Yan DX, Ren PG, Pang H, Fu Q, Yang MB, Li ZM. Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J Mater Chem 2012; 22(36): 18772.
[http://dx.doi.org/10.1039/c2jm32692b]
[22]
Joshi A, Bajaj A, Singh R, Alegaonkar PS, Balasubramanian K, Datar S. Graphene nanoribbon–PVA composite as EMI shielding material in the X band. Nanotechnology 2013; 24(45): 455705.
[http://dx.doi.org/10.1088/0957-4484/24/45/455705] [PMID: 24140728]
[23]
Chung DDL. Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 2012; 50(9): 3342-53.
[http://dx.doi.org/10.1016/j.carbon.2012.01.031]
[24]
Joshi A, Bajaj A, Singh R, Anand A, Alegaonkar PS, Datar S. Processing of graphene nanoribbon based hybrid composite for electromagnetic shielding. Compos, Part B Eng 2015; 69: 472-7.
[http://dx.doi.org/10.1016/j.compositesb.2014.09.014]
[25]
Singh AP, Mishra M, Chandra A, Dhawan SK. Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application. Nanotechnology 2011; 22(46): 465701.
[http://dx.doi.org/10.1088/0957-4484/22/46/465701] [PMID: 22024967]
[26]
Gavgani JN, Adelnia H, Gudarzi MM. Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 2014; 49(1): 243-54.
[http://dx.doi.org/10.1007/s10853-013-7698-6]
[27]
Hu N, Yang Z, Wang Y, et al. Ultrafast and sensitive room temperature NH 3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 2014; 25(2): 025502.
[http://dx.doi.org/10.1088/0957-4484/25/2/025502] [PMID: 24334417]
[28]
Justino CIL, Gomes AR, Freitas AC, Duarte AC, Rocha STAP. Graphene based sensors and biosensors. Trends Analyt Chem 2017; 91: 53-66.
[http://dx.doi.org/10.1016/j.trac.2017.04.003]
[29]
Ramya AV, Balachandran M. Valorization of agro-industrial fruit peel waste to fluorescent nanocarbon sensor: Ultrasensitive detection of potentially hazardous tropane alkaloid. Front Environ Sci Eng 2021; 16(3): 27.
[http://dx.doi.org/10.1007/s11783-021-1461-z]
[30]
Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL. Graphene for electrochemical sensing and biosensing. Trends Analyt Chem 2010; 29(9): 954-65.
[http://dx.doi.org/10.1016/j.trac.2010.05.011]
[31]
Shang NG, Papakonstantinou P, McMullan M, et al. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 2008; 18(21): 3506-14.
[http://dx.doi.org/10.1002/adfm.200800951]
[32]
Güryel S, Alonso M, Hajgató B, et al. A computational study on the role of noncovalent interactions in the stability of polymer/graphene nanocomposites. J Mol Model 2017; 23(2): 43.
[33]
Xiaomin Z, Gang L, Dongmei W, Zhihui Y, Jinghua Y, Jingshu L. Morphological studies of polyamide 1010/polypropylene blends. Polymer (Guildf) 1998; 39(1): 15-21.
[http://dx.doi.org/10.1016/S0032-3861(97)00251-6]
[34]
Kausar A. Composite coatings of polyamide/graphene: Microstructure, mechanical, thermal, and barrier properties. Compos Interfaces 2018; 25(2): 109-25.
[http://dx.doi.org/10.1080/09276440.2017.1340020]
[35]
B M. Raj AM, Thomas GC. Tailoring of low grade coal to fluorescent nanocarbon structures and their potential as a glucose sensor. Sci Rep 2018; 8(1): 13891.
[http://dx.doi.org/10.1038/s41598-018-32371-9] [PMID: 30224787]
[36]
Xie Y, Li Y, Niu L, Wang H, Qian H, Yao W. A novel surface-enhanced raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite. Talanta 2012; 100: 32-7.
[http://dx.doi.org/10.1016/j.talanta.2012.07.080] [PMID: 23141308]
[37]
Wang X, Zhi LJ, Mu¨llen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 2008; 8(1): 323-7.
[PMID: 18069877]
[38]
Zhang F, Zhang T, Yang X, et al. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ Sci 2013; 6(5): 1623-32.
[http://dx.doi.org/10.1039/c3ee40509e]
[39]
Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Adv Mater 2011; 23(42): 4828-50.
[http://dx.doi.org/10.1002/adma.201100984] [PMID: 21953940]
[40]
Sun L, Tian C, Li M, et al. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A Mater Energy Sustain 2013; 1(21): 6462.
[http://dx.doi.org/10.1039/c3ta10897j]
[41]
Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. J Power Sources 2006; 157(1): 11-27.
[http://dx.doi.org/10.1016/j.jpowsour.2006.02.065]
[42]
Liu C, Yu Z, Neff D, Zhamu A, Jang BZ. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 2010; 10(12): 4863-8.
[http://dx.doi.org/10.1021/nl102661q] [PMID: 21058713]
[43]
Thomas R, Manoj B. Electrochemical efficacies of coal derived nanocarbons. Int J Coal Sci Technol 2021; 8(4): 459-72.
[http://dx.doi.org/10.1007/s40789-020-00379-0]
[44]
Tan YB, Lee JM. Graphene for supercapacitor applications. J Mater Chem A Mater Energy Sustain 2013; 1(47): 14814.
[http://dx.doi.org/10.1039/c3ta12193c]
[45]
Wu Q, Sun Y, Bai H, Shi G. High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties. Phys Chem Chem Phys 2011; 13(23): 11193-8.
[http://dx.doi.org/10.1039/c1cp20980a] [PMID: 21562653]
[46]
Wang Z, Liu J, Hao X, et al. Enhanced power density of a supercapacitor by introducing 3D-interfacial graphene. New J Chem 2020; 44(31): 13377-81.
[http://dx.doi.org/10.1039/D0NJ02105A]
[47]
Lin S, Tang J, Zhang K, et al. High-rate supercapacitor using magnetically aligned graphene. J Power Sources 2021; 482: 228995.
[http://dx.doi.org/10.1016/j.jpowsour.2020.228995]
[48]
Tian J, Wu S, Yin X, Wu W. Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Appl Surf Sci 2019; 496: 143696.
[http://dx.doi.org/10.1016/j.apsusc.2019.143696]
[49]
Gupta RK, Alahmed ZA, Yakuphanoglu F. Graphene oxide based low cost battery. Mater Lett 2013; 112: 75-7.
[http://dx.doi.org/10.1016/j.matlet.2013.09.011]
[50]
Abbas A, Eng XE, Ee N, et al. Development of reduced graphene oxide from biowaste as an electrode material for vanadium redox flow battery. J Energy Storage 2021; 41: 102848.
[http://dx.doi.org/10.1016/j.est.2021.102848]
[51]
Wang H, Liang Y, Li Y, Dai H. Co1− xS–graphene hybrid: A high-performance metal chalcogenide electrocatalyst for oxygen reduction. Angew Chem 2011; 123(46): 11161-4.
[http://dx.doi.org/10.1002/ange.201104004]
[52]
Brownson DAC, Kampouris DK, Banks CE. An overview of graphene in energy production and storage applications. J Power Sources 2011; 196(11): 4873-85.
[53]
Qu L, Liu Y, Baek JB, Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010; 4(3): 1321-6.
[http://dx.doi.org/10.1021/nn901850u] [PMID: 20155972]
[54]
Seger B, Kamat PV. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C 2009; 113(19): 7990-5.
[http://dx.doi.org/10.1021/jp900360k]
[55]
Mahmoudi T, Wang Y, Hahn YB. Graphene and its derivatives for solar cells application. Nano Energy 2018; 47: 51-65.
[http://dx.doi.org/10.1016/j.nanoen.2018.02.047]
[56]
Wang X, Zhi L, Tsao N. Tomović Ž, Li J, Müllen K. Transparent carbon films as electrodes in organic solar cells. Angew Chem Int Ed 2008; 47(16): 2990-2.
[http://dx.doi.org/10.1002/anie.200704909] [PMID: 18330884]
[57]
Liang M, Luo B, Zhi L. Application of graphene and graphene-based materials in clean energy-related devices. Int J Energy Res 2009; 33(13): 1161-70.
[http://dx.doi.org/10.1002/er.1598]
[58]
Kalita G, Matsushima M, Uchida H, Wakita K, Umeno M. Graphene constructed carbon thin films as transparent electrodes for solar cell applications. J Mater Chem 2010; 20(43): 9713.
[http://dx.doi.org/10.1039/c0jm01352h]
[59]
Ali I, Alharbi OML, Tkachev A, Galunin E, Burakov A, Grachev VA. Water treatment by new-generation graphene materials: Hope for bright future. Environ Sci Pollut Res Int 2018; 25(8): 7315-29.
[http://dx.doi.org/10.1007/s11356-018-1315-9] [PMID: 29359248]
[60]
Wang J, Zhang P, Liang B, et al. Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Appl Mater Interfaces 2016; 8(9): 6211-8.
[http://dx.doi.org/10.1021/acsami.5b12723] [PMID: 26849085]
[61]
Kemp KC, Seema H, Saleh M, et al. Environmental applications using graphene composites: Water remediation and gas adsorption. Nanoscale 2013; 5(8): 3149-71.
[http://dx.doi.org/10.1039/c3nr33708a] [PMID: 23487161]
[62]
Sharma P, Das MR. Removal of a cationic dye from aqueous solution using graphene oxide nanosheets: Investigation of adsorption parameters. J Chem Eng Data 2013; 58(1): 151-8.
[http://dx.doi.org/10.1021/je301020n]
[63]
Guo H, Jiao T, Zhang Q, Guo W, Peng Q, Yan X. Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment. Nanoscale Res Lett 2015; 10(1): 272.
[http://dx.doi.org/10.1186/s11671-015-0931-2] [PMID: 26123269]
[64]
Zhang K, Kemp KC, Chandra V. Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Mater Lett 2012; 81: 127-30.
[http://dx.doi.org/10.1016/j.matlet.2012.05.002]
[65]
Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: A review. Environ Chem Lett 2010; 8(3): 199-216.
[http://dx.doi.org/10.1007/s10311-010-0297-8]
[66]
Madadrang CJ, Kim HY, Gao G, et al. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl Mater Interfaces 2012; 4(3): 1186-93.
[http://dx.doi.org/10.1021/am201645g] [PMID: 22304446]
[67]
Mittal A, Malviya A, Kaur D, Mittal J, Kurup L. Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl orange from wastewaters using waste materials. J Hazard Mater 2007; 148(1-2): 229-40.
[http://dx.doi.org/10.1016/j.jhazmat.2007.02.028] [PMID: 17379402]
[68]
Mossino P. Some aspects in self-propagating high-temperature synthesis. Ceram Int 2004; 30(3): 311-32.
[http://dx.doi.org/10.1016/S0272-8842(03)00119-6]
[69]
Lu N, He G, Liu J, Liu G, Li J. Combustion synthesis of graphene for water treatment. Ceram Int 2018; 44(2): 2463-9.
[http://dx.doi.org/10.1016/j.ceramint.2017.10.222]
[70]
Xu C, Cui A, Xu Y, Fu X. Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification. Carbon 2013; 62: 465-71.
[http://dx.doi.org/10.1016/j.carbon.2013.06.035]
[71]
Qurat-Ul- Ain. Farooq MU, Jalees MI. Application of magnetic graphene oxide for water purification: Heavy metals removal and disinfection. J Water Process Eng 2020; 33: 101044.
[http://dx.doi.org/10.1016/j.jwpe.2019.101044]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy