Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Methodological Verification-based Screening of the Representative Ingredients for Traditional Chinese Medicine: Taking Astragalus as an Example for Interfering with Cervical Cancer

Author(s): Hao Sun*, Dan Wang, Mengjin Xu, Yi Gao and Fan Li

Volume 18, Issue 5, 2022

Published on: 27 September, 2022

Page: [347 - 362] Pages: 16

DOI: 10.2174/1573409918666220823120304

Price: $65

Abstract

Background: The screening of effective ingredients is the bridge between the research of efficacy and the mechanism of traditional Chinese medicine. Although promising virtual screening has emerged as an attractive alternative, an ideal strategy is still urgently required due to the characteristics of multi-ingredients and multi-targets of traditional Chinese medicine.

Objective: The aim of the study was to develop a methodological verification-based novel screening strategy capable of comprehensively assessing the ability of compounds to perturb disease networks, thereby identifying representative ingredients of traditional Chinese medicine interventions in complex diseases.

Methods: In this article, we take astragalus interfering with cervical cancer as an example. First, a multifunctional clustering disease network model was constructed; second, the several drugs and their decoys were used for molecular docking with disease network clusters for methodological verification and determining the best scoring criteria. Third, the representative ingredients of astragalus were screened according to the best scoring criteria. Finally, the effects of the representative ingredients on cervical cancer SiHa cells were evaluated by CCK-8 assay, flow cytometry, and western blot analysis.

Results: Three representative ingredients of astragalus were betulinic acid, hederagenin and methylnissolin, which perturbed the apoptosis, stabilization of p53, and G1/S transition cluster as a whole, respectively. CCK-8 assay showed that the IC50 value of betulinic acid, hederagenin and methylnissolin at 48 h was 28.84, 101.90, and 187.40 μM, respectively. Flow cytometry showed that these three representative ingredients could significantly induce early apoptosis and cell cycle arrest. Western blot analysis showed that betulinic acid treatment significantly increased p53 expression, while hederagenin and methylnissolin did not.

Conclusion: This study has provided new ideas for the screening of effective ingredients in traditional Chinese medicine, and established a foundation for elucidating the overall mechanism of action of traditional Chinese medicine.

Keywords: Astragalus, cervical cancer, representative ingredients, disease network clusters, methodological verification, in vitro cell experiments.

Graphical Abstract

[1]
Lang, T.; Liu, Y.; Zheng, Z.; Ran, W.; Zhai, Y.; Yin, Q.; Zhang, P.; Li, Y. Cocktail strategy based on spatio-temporally controlled nano device improves therapy of breast cancer. Adv. Mater., 2019, 31(5), e1806202.
[http://dx.doi.org/10.1002/adma.201806202] [PMID: 30516854]
[2]
Wang, C.; Xin, P.; Wang, Y.; Zhou, X.; Wei, D.; Deng, C.; Sun, S. Iridoids and sfingolipids from hedyotis diffusa. Fitoterapia, 2018, 124, 152-159.
[http://dx.doi.org/10.1016/j.fitote.2017.11.004] [PMID: 29122633]
[3]
Zhou, Y.J.; Guo, Y.J.; Yang, X.L.; Ou, Z.L. Anti-cervical cancer role of matrine, oxymatrine and sophora flavescens alkaloid gels and its mechanism. J. Cancer, 2018, 9(8), 1357-1364.
[http://dx.doi.org/10.7150/jca.22427] [PMID: 29721044]
[4]
Pan, Y.; Bai, J.; Shen, F.; Sun, L.; He, Q.; Su, B. Glaucocalyxin B induces apoptosis and autophagy in human cervical cancer cells. Mol. Med. Rep., 2016, 14(2), 1751-1755.
[http://dx.doi.org/10.3892/mmr.2016.5450] [PMID: 27356884]
[5]
Muhammad, J.; Khan, A.; Ali, A.; Fang, L.; Yanjing, W.; Xu, Q.; Wei, D.Q. Network pharmacology: Exploring the resources and methodologies. Curr. Top. Med. Chem., 2018, 18(12), 949-964.
[http://dx.doi.org/10.2174/1568026618666180330141351] [PMID: 29600765]
[6]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2013, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[7]
Liu, C.; Yin, J.; Yao, J.; Xu, Z.; Tao, Y.; Zhang, H. Pharmacophore-based virtual screening toward the discovery of novel anti-echinococcal compounds. Front. Cell. Infect. Microbiol., 2020, 10, 118.
[http://dx.doi.org/10.3389/fcimb.2020.00118] [PMID: 32266168]
[8]
Wang, J.; Guo, Z.; Fu, Y.; Wu, Z.; Huang, C.; Zheng, C.; Shar, P.A.; Wang, Z.; Xiao, W.; Wang, Y. Weak-binding molecules are not drugs?-toward a systematic strategy for finding effective weak-binding drugs. Brief. Bioinform., 2017, 18(2), 321-332.
[PMID: 26962012]
[9]
Liu, P.; Zhao, H.; Luo, Y. Anti-aging implications of Astragalus membranaceus (Huangqi): A well-known Chinese tonic. Aging Dis., 2017, 8(6), 868-886.
[http://dx.doi.org/10.14336/AD.2017.0816] [PMID: 29344421]
[10]
Xia, C.; He, Z.; Cai, Y. Quantitative proteomics analysis of differentially expressed proteins induced by astragaloside IV in cervical cancer cell invasion. Cell. Mol. Biol. Lett., 2020, 25, 25.
[http://dx.doi.org/10.1186/s11658-020-00218-9] [PMID: 32265995]
[11]
Zhai, Q.L.; Hu, X.D.; Xiao, J.; Yu, D.Q. [Astragalus polysaccharide may increase sensitivity of cervical cancer HeLa cells to cisplatin by regulating cell autophagy]. Zhongguo Zhongyao Zazhi, 2018, 43(4), 805-812.
[PMID: 29600659]
[12]
Jin, Y.M.; Xu, T.M.; Zhao, Y.H.; Wang, Y.C.; Cui, M.H. in vitro and in vivo anti-cancer activity of formononetin on human cervical cancer cell line HeLa. Tumour Biol., 2014, 35(3), 2279-2284.
[http://dx.doi.org/10.1007/s13277-013-1302-1] [PMID: 24272199]
[13]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[14]
Nepusz, T.; Yu, H.; Paccanaro, A. Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods, 2012, 9(5), 471-472.
[http://dx.doi.org/10.1038/nmeth.1938] [PMID: 22426491]
[15]
Abu-Rustum, N.R.; Yashar, C.M.; Bean, S.; Bradley, K.; Campos, S.M.; Chon, H.S.; Chu, C.; Cohn, D.; Crispens, M.A.; Damast, S.; Fisher, C.M.; Frederick, P.; Gaffney, D.K.; Giuntoli, R.; Han, E.; Huh, W.K.; Lurain Iii, J.R.; Mariani, A.; Mutch, D.; Nagel, C.; Nekhlyudov, L.; Fader, A.N.; Remmenga, S.W.; Reynolds, R.K.; Sisodia, R.; Tillmanns, T.; Ueda, S.; Urban, R.; Wyse, E.; McMillian, N.R.; Motter, A.D. NCCN guidelines insights: Cervical cancer, version 1.2020. J. Natl. Compr. Canc. Netw., 2020, 18(6), 660-666.
[http://dx.doi.org/10.6004/jnccn.2020.0027] [PMID: 32502976]
[16]
Cohen, A.C.; Roane, B.M.; Leath, C.A., III Novel therapeutics for recurrent cervical cancer: Moving towards personalized therapy. Drugs, 2020, 80(3), 217-227.
[http://dx.doi.org/10.1007/s40265-019-01249-z] [PMID: 31939072]
[17]
Schutz, F.A.; Choueiri, T.K.; Sternberg, C.N. Pazopanib: Clinical development of a potent anti-angiogenic drug. Crit. Rev. Oncol. Hematol., 2011, 77(3), 163-171.
[http://dx.doi.org/10.1016/j.critrevonc.2010.02.012] [PMID: 20456972]
[18]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[19]
Sun, H.; Shen, Y.; Luo, G.; Cai, Y.; Xiang, Z. An integrated strategy for identifying new targets and inferring the mechanism of action: Taking rhein as an example. BMC Bioinformatics, 2018, 19(1), 315.
[http://dx.doi.org/10.1186/s12859-018-2346-4] [PMID: 30189851]
[20]
Yabuuchi, H.; Niijima, S.; Takematsu, H.; Ida, T.; Hirokawa, T.; Hara, T.; Ogawa, T.; Minowa, Y.; Tsujimoto, G.; Okuno, Y. Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Mol. Syst. Biol., 2011, 7, 472.
[http://dx.doi.org/10.1038/msb.2011.5] [PMID: 21364574]
[21]
Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci., 2012, 13(6), 6964-6982.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[22]
Tao, W.; Xu, X.; Wang, X.; Li, B.; Wang, Y.; Li, Y.; Yang, L. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal radix curcumae formula for application to cardiovascular disease. J. Ethnopharmacol., 2013, 145(1), 1-10.
[http://dx.doi.org/10.1016/j.jep.2012.09.051] [PMID: 23142198]
[23]
Forli, S. Charting a path to success in virtual screening. Molecules, 2015, 20(10), 18732-18758.
[http://dx.doi.org/10.3390/molecules201018732] [PMID: 26501243]
[24]
Rastelli, G.; Pinzi, L. Refinement and rescoring of virtual screening results. Front Chem., 2019, 7, 498.
[http://dx.doi.org/10.3389/fchem.2019.00498] [PMID: 31355188]
[25]
Perola, E.; Xu, K.; Kollmeyer, T.M.; Kaufmann, S.H.; Prendergast, F.G.; Pang, Y.P. Successful virtual screening of a chemical database for farnesyltransferase inhibitor leads. J. Med. Chem., 2000, 43(3), 401-408.
[http://dx.doi.org/10.1021/jm990408a] [PMID: 10669567]
[26]
Grüneberg, S.; Stubbs, M.T.; Klebe, G. Successful virtual screening for novel inhibitors of human carbonic anhydrase: Strategy and experimental confirmation. J. Med. Chem., 2002, 45(17), 3588-3602.
[http://dx.doi.org/10.1021/jm011112j] [PMID: 12166932]
[27]
Evers, A.; Klabunde, T. Structure-based drug discovery using GPCR homology modeling: Successful virtual screening for antagonists of the alpha1A adrenergic receptor. J. Med. Chem., 2005, 48(4), 1088-1097.
[http://dx.doi.org/10.1021/jm0491804] [PMID: 15715476]
[28]
Al Olaby, R.R.; Cocquerel, L.; Zemla, A.; Saas, L.; Dubuisson, J.; Vielmetter, J.; Marcotrigiano, J.; Khan, A.G.; Vences Catalan, F.; Perryman, A.L.; Freundlich, J.S.; Forli, S.; Levy, S.; Balhorn, R.; Azzazy, H.M. Identification of a novel drug lead that inhibits HCV infection and cell-to-cell transmission by targeting the HCV E2 glycoprotein. PLoS One, 2014, 9(10), e111333.
[http://dx.doi.org/10.1371/journal.pone.0111333] [PMID: 25357246]
[29]
Liebmann, J.E.; Cook, J.A.; Lipschultz, C.; Teague, D.; Fisher, J.; Mitchell, J.B. Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines. Br. J. Cancer, 1993, 68(6), 1104-1109.
[http://dx.doi.org/10.1038/bjc.1993.488] [PMID: 7903152]
[30]
So, T.H.; Chan, S.K.; Lee, V.H.; Chen, B.Z.; Kong, F.M.; Lao, L.X. Chinese medicine in cancer treatment - how is it practised in the East and the West? Clin. Oncol. (R. Coll. Radiol.), 2019, 31(8), 578-588.
[http://dx.doi.org/10.1016/j.clon.2019.05.016] [PMID: 31178347]
[31]
Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ., 2018, 25(1), 104-113.
[http://dx.doi.org/10.1038/cdd.2017.169] [PMID: 29149101]
[32]
Karimian, A.; Ahmadi, Y.; Yousefi, B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst.), 2016, 42, 63-71.
[http://dx.doi.org/10.1016/j.dnarep.2016.04.008] [PMID: 27156098]
[33]
Wang, X.; Simpson, E.R.; Brown, K.A. P53: Protection against tumor growth beyond effects on cell cycle and apoptosis. Cancer Res., 2015, 75(23), 5001-5007.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0563] [PMID: 26573797]
[34]
Ríos, J.L.; Máñez, S. New pharmacological opportunities for betulinic acid. Planta Med., 2018, 84(1), 8-19.
[http://dx.doi.org/10.1055/s-0043-123472] [PMID: 29202513]
[35]
Zuco, V.; Supino, R.; Righetti, S.C.; Cleris, L.; Marchesi, E.; Gambacorti-Passerini, C.; Formelli, F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett., 2002, 175(1), 17-25.
[http://dx.doi.org/10.1016/S0304-3835(01)00718-2] [PMID: 11734332]
[36]
Selzer, E.; Pimentel, E.; Wacheck, V.; Schlegel, W.; Pehamberger, H.; Jansen, B.; Kodym, R. Effects of betulinic acid alone and in combination with irradiation in human melanoma cells. J. Invest. Dermatol., 2000, 114(5), 935-940.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00972.x] [PMID: 10771474]
[37]
Pisha, E.; Chai, H.; Lee, I.S.; Chagwedera, T.E.; Farnsworth, N.R.; Cordell, G.A.; Beecher, C.W.; Fong, H.H.; Kinghorn, A.D.; Brown, D.M. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat. Med., 1995, 1(10), 1046-1051.
[http://dx.doi.org/10.1038/nm1095-1046] [PMID: 7489361]
[38]
Wang, X.; Lu, X.; Zhu, R.; Zhang, K.; Li, S.; Chen, Z.; Li, L. Betulinic acid induces apoptosis in differentiated PC12 cells via ROS-mediated mitochondrial pathway. Neurochem. Res., 2017, 42(4), 1130-1140.
[http://dx.doi.org/10.1007/s11064-016-2147-y] [PMID: 28124213]
[39]
Xu, T.; Pang, Q.; Wang, Y.; Yan, X. Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells. Int. J. Mol. Med., 2017, 40(6), 1669-1678.
[http://dx.doi.org/10.3892/ijmm.2017.3163] [PMID: 29039440]
[40]
Shen, H.; Liu, L.; Yang, Y.; Xun, W.; Wei, K.; Zeng, G. Betulinic acid inhibits cell proliferation in human oral squamous cell carcinoma via modulating ROS-regulated p53 signaling. Oncol. Res., 2017, 25(7), 1141-1152.
[http://dx.doi.org/10.3727/096504017X14841698396784] [PMID: 28109089]
[41]
Xu, Y.; Li, J.; Li, Q.J.; Feng, Y.L.; Pan, F. Betulinic acid promotes TRAIL function on liver cancer progression inhibition through p53/Caspase-3 signaling activation. Biomed. Pharmacother., 2017, 88, 349-358.
[42]
Zhao, H.; Mu, X.; Zhang, X.; You, Q. Lung cancer inhibition by betulinic acid nanoparticles via adenosine 5′-triphosphate (ATP)-binding cassette transporter G1 gene downregulation. Med. Sci. Monit., 2020, 26, e922092.
[http://dx.doi.org/10.12659/MSM.922092] [PMID: 32277808]
[43]
Kutkowska, J.; Strzadala, L.; Rapak, A. Hypoxia increases the apoptotic response to betulinic acid and betulin in human non-small cell lung cancer cells. Chem. Biol. Interact., 2021, 333, 109320.
[http://dx.doi.org/10.1016/j.cbi.2020.109320] [PMID: 33181113]
[44]
Rodríguez-Hernández, D.; Demuner, A.J.; Barbosa, L.C.; Csuk, R.; Heller, L. Hederagenin as a triterpene template for the development of new antitumor compounds. Eur. J. Med. Chem., 2015, 105, 57-62.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.006] [PMID: 26476750]
[45]
Lin, R.; Liu, L.; Silva, M.; Fang, J.; Zhou, Z.; Wang, H.; Xu, J.; Li, T.; Zheng, W. Hederagenin protects PC12 cells against corticosterone-induced injury by the activation of the PI3K/AKT pathway. Front. Pharmacol., 2021, 12, 712876.
[http://dx.doi.org/10.3389/fphar.2021.712876] [PMID: 34721013]
[46]
Rodríguez-Hernández, D.; Barbosa, L.C.A.; Demuner, A.J.; Ataide Martins, J.P.; Fischer Nee Heller, L.; Csuk, R. Hederagenin amide derivatives as potential antiproliferative agents. Eur. J. Med. Chem., 2019, 168, 436-446.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.057] [PMID: 30840925]
[47]
Yang, W.; He, L. The protective effect of hederagenin on renal fibrosis by targeting muscarinic acetylcholine receptor. Bioengineered, 2022, 13(4), 8689-8698.
[http://dx.doi.org/10.1080/21655979.2022.2054596] [PMID: 35322725]
[48]
Wang, L.; Zhao, M. Suppression of NOD-like receptor protein 3 inflammasome activation and macrophage M1 polarization by hederagenin contributes to attenuation of sepsis-induced acute lung injury in rats. Bioengineered, 2022, 13(3), 7262-7276.
[http://dx.doi.org/10.1080/21655979.2022.2047406] [PMID: 35266443]
[49]
Kim, G.J.; Song, D.H.; Yoo, H.S.; Chung, K.H.; Lee, K.J.; An, J.H. Hederagenin supplementation alleviates the pro-inflammatory and apoptotic response to alcohol in rats. Nutrients, 2017, 9(1), E41.
[http://dx.doi.org/10.3390/nu9010041] [PMID: 28067819]
[50]
Kim, E.H.; Baek, S.; Shin, D.; Lee, J.; Roh, J.L. Hederagenin induces apoptosis in cisplatin-resistant head and neck cancer cells by inhibiting the Nrf2-are antioxidant pathway. Oxid. Med. Cell. Longev., 2017, 2017, 5498908.
[http://dx.doi.org/10.1155/2017/5498908] [PMID: 29456786]
[51]
Ohkawara, S.; Okuma, Y.; Uehara, T.; Yamagishi, T.; Nomura, Y. Astrapterocarpan isolated from Astragalus membranaceus inhibits proliferation of vascular smooth muscle cells. Eur. J. Pharmacol., 2005, 525(1-3), 41-47.
[http://dx.doi.org/10.1016/j.ejphar.2005.08.063] [PMID: 16297381]
[52]
Li, W.; Sun, Y.N.; Yan, X.T.; Yang, S.Y.; Kim, S.; Lee, Y.M.; Koh, Y.S.; Kim, Y.H. Flavonoids from Astragalus membranaceus and their inhibitory effects on LPS-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Arch. Pharm. Res., 2014, 37(2), 186-192.
[http://dx.doi.org/10.1007/s12272-013-0174-7] [PMID: 23771500]
[53]
Wu, X.; Xu, J.; Cai, Y.; Yang, Y.; Liu, Y.; Cao, S. Cytoprotection against oxidative stress by methylnissolin-3-O-β-d-glucopyranoside from Astragalus membranaceus mainly via the activation of the Nrf2/HO-1 pathway. Molecules, 2021, 26(13), 3852.
[http://dx.doi.org/10.3390/molecules26133852] [PMID: 34202670]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy