Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Review Article

Sustainable Composites Based on Natural Rubber and Biomass Resources

Author(s): Maya Jacob John*, Martin George Thomas, Hanna Vidhu and Sabu Thomas*

Volume 5, Issue 3, 2022

Published on: 16 December, 2022

Page: [140 - 150] Pages: 11

DOI: 10.2174/2452271605666220823101517

Price: $65

Abstract

For the past two decades, environmentally friendly natural rubber composites and nanocomposites reinforced with renewable and biodegradable natural fillers have attracted the increasing attention of polymer researchers from both industrial and environmental viewpoints. The use of bio-based fillers in rubber materials has emerged as extremely promising in the progress of green rubber technology. The dispersion of bio-based fillers within the rubber matrix is the key parameter that decides the overall performance of bio-based rubber composites. An important criterion for obtaining superior properties in rubber composites is good interfacial adhesion between natural fillers and natural rubber matrix, along with good dispersion and distribution of fillers within the matrix. Natural fillers represent materials that are environmentally friendly, easily available, comprising of valuable lignocellulosic fractions and are from a bio-based feedstock. Recent developments in this area focus on renewable fillers such as cellulose, chitin and lignin in their micro and nanoforms. Additionally, recent studies have focused on the use of different types of biomass residue wastes in rubber composites with a view to adapting to the recent circular economy principles. This review presents an overview of various studies and highlights the area of bio-based filler reinforced natural rubber composites and also discusses the applications of such materials in industrial sectors.

Keywords: Natural rubber, Biomass, Natural fibres, Lignin, Chitin

Graphical Abstract

[1]
Singha NR, Mahapatra M, Karmakar M, Chattopadhyay PK. Processing, characterization and application of natural rubber based environmentally friendly polymer composites. In: Inamuddin , Thomas S, Kumar Mishra R, Asiri A, Eds. Sustainable Polymer Composites and Nanocomposites. Cham: New York Springer 2019; pp. 855-97.
[http://dx.doi.org/10.1007/978-3-030-05399-4_29]
[2]
El Mogy SA, Darwish NA, Awad A. Comparative study of the cure characteristics and mechanical properties of natural rubber filled with different calcium carbonate resources. J Vinyl and Addit Technol 2020; 26(3): 309-15.
[http://dx.doi.org/10.1002/vnl.21745]
[3]
Pontawit KP, Jarerat A, Poompradub S. Mechanical properties and biodegradability of cuttlebone/NR composites. J Polym Environ 2013; 21(3): 766-79.
[http://dx.doi.org/10.1007/s10924-012-0555-x]
[4]
Moopayak W, Tangbooribon N. Mangosteen peel and seed as antimicrobial and drug delivery in rubber products. J Appl Polym Sci 2020; 137(37): 49119.
[http://dx.doi.org/10.1002/app.49119]
[5]
Patmanathan T, Chai TA, Kamaruddin S. Design and development of engineering component using natural rubber biocomposites. Mater Sci Energy Technol 2020; 51: 1465-72.
[6]
Sareena C, Ramesan MT, Purushothaman E. Utilization of peanut shell powder as a novel filler in natural rubber. J Appl Polym Sci 2012; 125(3): 2322-34.
[http://dx.doi.org/10.1002/app.36468]
[7]
Sareena C, Ramesan MT, Purushothaman E. Utilization of coconut shell powder as a novel filler in natural rubber. J Reinf Plast Compos 2012; 31(8): 533-47.
[http://dx.doi.org/10.1177/0731684412439116]
[8]
Li LF, Zeng ZQ, Wang ZF, et al. Effect of oyster shell powder loading on the mechanical and thermal properties of natural rubber/oyster shell composites. Polym Polymer Compos 2017; 25(1): 17-22.
[http://dx.doi.org/10.1177/096739111702500103]
[9]
Pinpat W, Keawwattana W, Tangbunsuk S. Effect of ashes as biomass in silica filled natural rubber. Key Eng Mater 2017; 735: 153-7.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.735.153]
[10]
Ooi ZX, Azhar HI, Bakar A. Optimisation of oil palm ash as reinforcement in natural rubber vulcanisation: A comparison between silica and carbon black fillers. Polym Test 2013; 32(4): 625-30.
[http://dx.doi.org/10.1016/j.polymertesting.2013.02.007]
[11]
Kanking S, Niltui P, Wimolmala E, Sombatsompop N. Use of bagasse fiber ash as secondary filler in silica or carbon black filled natural rubber compound. Mater Des 2012; 41: 74-82.
[http://dx.doi.org/10.1016/j.matdes.2012.04.042]
[12]
Lay M, Rusli A, Abdullah MK, Zuratul Ain AHZAA, Shuib RK. Converting dead leaf biomass into activated carbon as a potential replacement for carbon black filler in rubber composites. Composites Part B: Engineering 2019; 201: 108366.
[http://dx.doi.org/10.1016/j.compositesb.2020.108366]
[13]
Formela K, Hejna A, Piszczyk Ł, Saeb MR, Colom X. Processing and structure–property relationships of natural rubber/wheat bran biocomposites. Cellulose 2016; 23(5): 3157-75.
[http://dx.doi.org/10.1007/s10570-016-1020-0]
[14]
Masłowski M, Miedzianowska J, Strzelec K. Natural rubber biocomposites containing corn, barley and wheat straw. Polym Test 2017; 63: 84-91.
[http://dx.doi.org/10.1016/j.polymertesting.2017.08.003]
[15]
Jayathilaka LPI, Ariyadasa TU, Egodage SM. Development of biodegradable natural rubber latex composites by employing corn derivative bio‐fillers. J Appl Polym Sci 2020; 137(40): 49325.
[http://dx.doi.org/10.1002/app.49205]
[16]
Afiq MM, Azura AR. Effect of sago starch loadings on soil decomposition of Natural Rubber Latex (NRL) composite films mechanical properties. Int Biodeterior Biodegrad 2013; 2013(85): 139.
[17]
Bacarin GB, Dognani G, Dos Santos RJ, et al. Natural rubber composites with grits waste from cellulose industry. J Mater Cycles Waste Manag 2020; 22(4): 1126-39.
[http://dx.doi.org/10.1007/s10163-020-01011-8]
[18]
Bittencourt NL, Bacarin GB, Paiva FF, et al. Natural rubber composites reinforced with dregs residue from cellulose kraft industry. Prog Rubber Plast Recycl Technol 2020; 36(2): 102-14.
[http://dx.doi.org/10.1177/1477760619895004]
[19]
Soltani S, Naderi G, Ghoreishy MHR. Mechanical and rheo-logical properties of short nylon fibre NR/SBR composites. J Rubber Res 2010; 13(2): 110-2.
[20]
Jacob MJ, Anandjiwala RD, Thomas S. Dynamical mechanical analysis of sisal/oil palm hybrid fiber‐reinforced natural rubber composites. Polym Comp 2008; 27: 671-80.
[21]
Joseph S, Joseph K, Thomas S. Green composites from natural rubber and oil palm fibre: Physical and mechanical properties. Int J Polym Mater 2006; 55(11): 925-45.
[http://dx.doi.org/10.1080/00914030600550505]
[22]
Varghese S, Kuriakose B, Thomas S. Stress relaxation in short sisal‐fiber‐reinforced natural rubber composites. J Appl Polym Sci 1994; 53(8): 1051-60.
[http://dx.doi.org/10.1002/app.1994.070530807]
[23]
Geethamma VG, Kalaprasad G, Groeninckx G, Thomas S. Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos Part A: Appl Sci Manuf 2005; 36(11): 1499-506.
[http://dx.doi.org/10.1016/j.compositesa.2005.03.004]
[24]
Bhattacharya TB, Biswas AK, Chatterjee J, Pramanick D. Short pineapple leaf fibre reinforced rubber composites. Plast Rubber Process Appl 1986; 6(2): 119-25.
[25]
Ismail H, Rosnah N, Ishiaku US. Oil palm fibre‐reinforced rubber composite: Effects of concentration and modification of fibre surface. Polym Int 1997; 43(3): 223-30.
[http://dx.doi.org/10.1002/(SICI)1097-0126(199707)43:3<223::AID-PI759>3.0.CO;2-D]
[26]
Ismail H, Jaffri RM, Rozman HD. Oil palm wood flour filled natural rubber composites: Fatigue and hysteresis behaviour. Polym Int 2000; 49(6): 618-22.
[http://dx.doi.org/10.1002/1097-0126(200006)49:6<618:AID-PI418>3.0.CO;2-#]
[27]
Das D, Datta M, Chavan RB, Datta SK. Coating of jute with natural rubber. J Appl Polym Sci 2005; 98(1): 484-9.
[http://dx.doi.org/10.1002/app.22048]
[28]
Haseena AP, Dasan KP, Unnikrishnan G, Thomas S. Mechanical properties of sisal/coir hybrid fibre reinforced natural rubber. Prog Rubber Plast Recycl Technol 2005; 21(3): 155-81.
[http://dx.doi.org/10.1177/147776060502100301]
[29]
John MJ, Thomas S. Biofibres and biocomposites. Carbohydr Polym 2008; 71(3): 343-64.
[http://dx.doi.org/10.1016/j.carbpol.2007.05.040]
[30]
John MJ, Francis B, Varughese KT, Thomas S. Effect of chemical modification on properties of hybrid fiber biocomposites. Compos, Part A Appl Sci Manuf 2008; 39(2): 352-63.
[http://dx.doi.org/10.1016/j.compositesa.2007.10.002]
[31]
Smitthipong W, Suethao S, Shah D, Fritz Vollrath F. Interesting green elastomeric composites: Silk textile reinforced natural rubber. Polym Test 2006; 55: 17-24.
[http://dx.doi.org/10.1016/j.polymertesting.2016.08.007]
[32]
Corriea CA. Cellulose nanocrystals and jute fiber-reinforced natural rubber composites: Cure characteristics and mechanical properties.M Mat Res 2019; 22 (suppl. 1).
[http://dx.doi.org/10.1590/1980-5373-MR-2019-0192]
[33]
De Paiva FFG, De Maria VPK, Torres GB, et al. Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals. J Mater Cycles Waste Manag 2019; 21(2): 326-35.
[http://dx.doi.org/10.1007/s10163-018-0801-y]
[34]
Kumagai A, Tajima N, Iwamoto S, et al. Properties of natural rubber reinforced with cellulose nanofibers based on fiber diameter distribution as estimated by differential centrifugal sedimentation. Int J Biol Macromol 2019; 121: 989-95.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.090] [PMID: 30342153]
[35]
Visakh PM, Thomas S, Oksman K, Mathew AP. Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical/thermal properties. Compos Part A: Appl Sci Manuf 2012; 43(4): 735-41.
[http://dx.doi.org/10.1016/j.compositesa.2011.12.015]
[36]
Cao L, Fu X, Xu C, Yin S, Chen Y. High-performance natural rubber nanocomposites with marine biomass (tunicate cellulose). Cellulose 2017; 24(7): 2849-60.
[http://dx.doi.org/10.1007/s10570-017-1293-y]
[37]
Mariano M, El Kissi N, Dufresne A. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. Carbohydr Polym 2016; 137: 174-83.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.027] [PMID: 26686118]
[38]
Khan A, Colmenares JC, Gläser R. Lignin-based composite materials for photocatalysis and photovoltaics. In: Lignin Chemistry. Cham, New York: Springer 2020; pp. 1-31.
[http://dx.doi.org/10.1007/978-3-030-00590-0_1]
[39]
Sen S, Patil S, Argyropoulos DS. Thermal properties of lignin in copolymers, blends, and composites: A review. Green Chem 2015; 17(11): 4862-87.
[http://dx.doi.org/10.1039/C5GC01066G]
[40]
Yu P, He H, Jia Y, et al. A comprehensive study on lignin as a green alternative of silica in natural rubber composites. Polym Test 2016; 54: 176-85.
[http://dx.doi.org/10.1016/j.polymertesting.2016.07.014]
[41]
Datta J, Parcheta P, Surówka J. Softwood-lignin/natural rubber composites containing novel plasticizing agent: Preparation and characterization. Ind Crops Prod 2017; 95: 675-85.
[http://dx.doi.org/10.1016/j.indcrop.2016.11.036]
[42]
Barana D, Ali SD, Salanti A, et al. Influence of lignin features on thermal stability and mechanical properties of natural rubber compounds. ACS Sustain Chem Eng 2016; 4(10): 5258-67.
[http://dx.doi.org/10.1021/acssuschemeng.6b00774]
[43]
Datta J, Parcheta P. A comparative study on selective properties of kraft lignin–natural rubber composites containing different plasticizers. Iran Polym J 2017; 26(6): 453-66.
[http://dx.doi.org/10.1007/s13726-017-0534-0]
[44]
John S, Issac JM, Alex R. Mechanical properties of natural rubber composites reinforced with lignin from caryota fibre. Int J Emerg Technol Adv Eng 2014; 4: 567-70.
[45]
Barana D, Orlandi M, Salanti A, Castellani L, Hanel T, Zoia L. Simultaneous synthesis of cellulose nanocrystals and a lignin-silica biofiller from rice husk: Application for elastomeric compounds. Ind Crops Prod 2019; 141: 111822.
[http://dx.doi.org/10.1016/j.indcrop.2019.111822]
[46]
Jiang C, He H, Yu P, Wang DK, Zhou L, Jia DM. Plane-interface-induced lignin-based nanosheets and its reinforcing effect on styrene-butadiene rubber. Express Polym Lett 2014; 8(9): 619-34.
[http://dx.doi.org/10.3144/expresspolymlett.2014.66]
[47]
Xiao S, Feng J, Zhu J, Wang X, Yi C, Su S. Preparation and characterization of lignin‐layered double hydroxide/styrene‐butadiene rubber composites. J Appl Polym Sci 2013; 130(2): 1308-12.
[http://dx.doi.org/10.1002/app.39311]
[48]
Bahl K, Jana SC. Surface modification of lignosulfonates for reinforcement of styrene–butadiene rubber compounds. J Appl Polym Sci 2014; 131(7): 40123.
[http://dx.doi.org/10.1002/app.40123]
[49]
Mohamad ANA, Othman N, Hussin MH, Sahakaro K, Hayeemasae N. Effect of extraction methods on the molecular structure and thermal stability of kenaf (Hibiscus cannabinus core) biomass as an alternative bio-filler for rubber composites. Int J Biol Macromol 2019; 154: 1255-64.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.280] [PMID: 31765744]
[50]
Gopalan Nair K, Dufresne A. Crab shell chitin whisker rein-forced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules 2003; 4(3): 666-74.
[http://dx.doi.org/10.1021/bm0201284] [PMID: 12741783]
[51]
Gopalan Nair K, Dufresne A, Gandini A, Belgacem MN. Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 2003; 4(6): 1835-42.
[http://dx.doi.org/10.1021/bm030058g] [PMID: 14606916]
[52]
Gopalan NK, Dufresne A. Crab shell chitin whisker rein-forced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 2003; 4(3): 657-65.
[http://dx.doi.org/10.1021/bm020127b] [PMID: 12741782]
[53]
Liu Y, Wu F, Zhao X, Liu M. High-performance strain sensors based on spirally structured composites with carbon black, chitin nanocrystals, and natural rubber. ACS Sustain Chem Eng 2018; 6(8): 10595-605.
[http://dx.doi.org/10.1021/acssuschemeng.8b01933]
[54]
Liu Y, Liu M, Yang S, Luo B, Zhou C. Liquid crystalline behaviors of chitin nanocrystals and their reinforcing effect on natural rubber. ACS Sustain Chem Eng 2018; 6(1): 325-36.
[http://dx.doi.org/10.1021/acssuschemeng.7b02586]
[55]
Ding B, Huang S, Shen K, et al. Natural rubber bio-nanocomposites reinforced with self-assembled chitin nano-fibers from aqueous KOH/urea solution. Carbohydr Polym 2019; 225: 115230.
[http://dx.doi.org/10.1016/j.carbpol.2019.115230] [PMID: 31521261]
[56]
Hu J, Tian X, Sun J, Yuan J, Yuan Y. Chitin nanocrystals reticulated self-assembled architecture reinforces deproteinized natural rubber latex film. J Appl Polym Sci 2020; 137(39): 49173.
[http://dx.doi.org/10.1002/app.49173]
[57]
Nie J, Mou W, Ding J, Chen Y. Bio-based epoxidized natural rubber/chitin nanocrystals composites: Self-healing and enhanced mechanical properties. Compos, Part B Eng 2019; 172: 152-60.
[http://dx.doi.org/10.1016/j.compositesb.2019.04.035]
[58]
Yin J, Hou J, Huang S, et al. Effect of surface chemistry on the dispersion and pH-responsiveness of chitin nanofibers/natural rubber latex nanocomposites. Carbohydr Polym 2019; 207: 555-62.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.025] [PMID: 30600039]
[59]
Egbujuo WO, Anyanwu PI, Obasi HO. Utilization of chitin powder as a filler in natural rubber vulcanizates: In comparison with carbon black filler. Int Rev Appl Sci Eng 2020; 11(1): 43-51.
[http://dx.doi.org/10.1556/1848.2020.00006]
[60]
Zhang N, Cao H. Enhancement of the antibacterial activity of natural rubber latex foam by blending it with chitin. Materials (Basel) 2020; 13(5): 1039.
[http://dx.doi.org/10.3390/ma13051039] [PMID: 32110858]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy