Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Design, Synthesis, Molecular Docking, ADMET, and Biological Studies of Some Novel 1,2,3-Triazole Linked Tetrazoles as Anticancer Agents

Author(s): Ananda Kumar Dunga, Tejeswara Rao Allaka, Yugandhar Kethavarapu, Sunil Kumar Nechipadappu, Pradeep Pothana, Chandrasekhar Kuppan and Pilli Veera Venkata Nanda Kishore*

Volume 20, Issue 5, 2023

Published on: 07 November, 2022

Page: [576 - 587] Pages: 12

DOI: 10.2174/1570179419666220822125724

Price: $65

Abstract

Background: 1,2,3-Triazole-tetrazoles have received substantial attention because of their unique bioisosteric properties and an extraordinarily broad spectrum of biological activity, making them interesting for the drug design, and synthesis of a delightful class of widely investigated heterocyclic compounds. To address major health concerns, it is consequently important to devote ongoing effort to the identification and development of New Chemical Entities (NCEs) as possible anticancer medicines.

Methods: We began our initial investigation of the reaction between 5-(azidomethyl)-1H-pyrrolo[ 2,3-b]pyridine and 1-phenyl substituted-5-(prop-2-yn-1-ylthio)-1 H-tetrazole under click chemistry to give the corresponding triazole precursors and screened for their cytotoxicity reported by variations in therapeutic actions of the parent molecule. All of the prepared scaffolds were characterized by proton, carbon resonance spectroscopy, IR, and mass spectral techniques.

Results:When tested for in vitro antitumor activity the prepared compounds 7e, 7h had a significant anticancer activity against human adenocarcinoma Hs766T cell line with IC50 = 5.33, 4.92 μg/mL and Hs460 cell line with IC50 = 4.82, 6.15 μg/mL respectively. Final scaffolds 7f, 7h, and 7j acquire the highest potential drug binding scores ΔG = -10.42, -8.80, -9.37 Kcal/, with amino acids residues Ala A:11 (2.195 A˚), Asp A:119 (1.991 A˚), Thr A:58 (1.890 A˚), Lys A:16 (1.253 A˚), Asp A:38 (2.013 A˚), Lys A:117 (2.046 A˚) respectively and process Lipinski’s rule of five as good agents for oral bioavailability.

Conclusion: The molecular framework for the synthesis of novel Aza indole 1,2,3-triazole scaffolds coupled to tetrazole core was discovered in our study and evaluated for their anticancer activity.

Keywords: Azaindole, 1, 2, 3–triazole, tetrazole, docking analysis, anticancer activity, ADMET properties

« Previous
Graphical Abstract

[1]
Sharma, V.; Pradeep, K.; Devender, P. Biological importance of the indole nucleus in recent years: A comprehensive review. J. Heterocycl. Chem., 2010, 47, 491-502.
[http://dx.doi.org/10.1002/jhet.349]
[2]
Wistuba, I.I.; Gazdar, A.F.; Minna, J.D. Molecular genetics of small cell lung carcinoma. Semin. Oncol., 2001, 28(2)(Suppl. 4), S3-S13.
[http://dx.doi.org/10.1016/S0093-7754(01)90072-7] [PMID: 11479891]
[3]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[4]
Dearden, S.; Stevens, J.; Wu, Y.L.; Blowers, D. Mutation incidence and coincidence in non small-cell lung cancer: Meta-analyses by ethnicity and histology (mutMap). Ann. Oncol., 2013, 24(9), 2371-2376.
[http://dx.doi.org/10.1093/annonc/mdt205] [PMID: 23723294]
[5]
Yang, H.; Liang, S.Q.; Schmid, R.A.; Peng, R.W. New horizons in KRAS-mutant lung cancer: Dawn after darkness. Front. Oncol., 2019, 9, 953-953.
[http://dx.doi.org/10.3389/fonc.2019.00953] [PMID: 31612108]
[6]
Bailey, P.; Chang, D.K.; Nones, K.; Johns, A.L.; Patch, A.M.; Gingras, M.C.; Miller, D.K.; Christ, A.N.; Bruxner, T.J.; Quinn, M.C.; Nourse, C.; Murtaugh, L.C.; Harliwong, I.; Idrisoglu, S.; Manning, S.; Nourbakhsh, E.; Wani, S.; Fink, L.; Holmes, O.; Chin, V.; Anderson, M.J.; Kazakoff, S.; Leonard, C.; Newell, F.; Waddell, N.; Wood, S.; Xu, Q.; Wilson, P.J.; Cloonan, N.; Kassahn, K.S.; Taylor, D.; Quek, K.; Robertson, A.; Pantano, L.; Mincarelli, L.; Sanchez, L.N.; Evers, L.; Wu, J.; Pinese, M.; Cowley, M.J.; Jones, M.D.; Colvin, E.K.; Nagrial, A.M.; Humphrey, E.S.; Chantrill, L.A.; Mawson, A.; Humphris, J.; Chou, A.; Pajic, M.; Scarlett, C.J.; Pinho, A.V.; Giry-Laterriere, M.; Rooman, I.; Samra, J.S.; Kench, J.G.; Lovell, J.A.; Merrett, N.D.; Toon, C.W.; Epari, K.; Nguyen, N.Q.; Barbour, A.; Zeps, N.; Moran-Jones, K.; Jamieson, N.B.; Graham, J.S.; Duthie, F.; Oien, K.; Hair, J.; Grützmann, R.; Maitra, A.; Iacobuzio-Donahue, C.A.; Wolfgang, C.L.; Morgan, R.A.; Lawlor, R.T.; Corbo, V.; Bassi, C.; Rusev, B.; Capelli, P.; Salvia, R.; Tortora, G.; Mukhopadhyay, D.; Petersen, G.M.; Munzy, D.M.; Fisher, W.E.; Karim, S.A.; Eshleman, J.R.; Hruban, R.H.; Pilarsky, C.; Morton, J.P.; Sansom, O.J.; Scarpa, A.; Musgrove, E.A.; Bailey, U.M.; Hofmann, O.; Sutherland, R.L.; Wheeler, D.A.; Gill, A.J.; Gibbs, R.A.; Pearson, J.V.; Waddell, N.; Biankin, A.V.; Grimmond, S.M. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 2016, 531(7592), 47-52.
[http://dx.doi.org/10.1038/nature16965] [PMID: 26909576]
[7]
Chabon, J.J.; Simmons, A.D.; Lovejoy, A.F.; Esfahani, M.S.; Newman, A.M.; Haringsma, H.J.; Kurtz, D.M.; Stehr, H.; Scherer, F.; Karlovich, C.A.; Harding, T.C.; Durkin, K.A.; Otterson, G.A.; Purcell, W.T.; Camidge, D.R.; Goldman, J.W.; Sequist, L.V.; Piotrowska, Z.; Wakelee, H.A.; Neal, J.W.; Alizadeh, A.A.; Diehn, M. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat. Commun., 2016, 7, 11815.
[http://dx.doi.org/10.1038/ncomms11815] [PMID: 27283993]
[8]
Wei, C.X.; Bian, M.; Gong, G.H. Tetrazolium compounds: Synthesis and applications in medicine. Molecules, 2015, 20(4), 5528-5553.
[http://dx.doi.org/10.3390/molecules20045528] [PMID: 25826789]
[9]
Shmatova, O.I.; Nenajdenko, V.G. Synthesis of tetrazole-derived organocatalysts via azido-Ugi reaction with cyclic ketimines. J. Org. Chem., 2013, 78(18), 9214-9222.
[http://dx.doi.org/10.1021/jo401428q] [PMID: 23944996]
[10]
DeMarinis, R.M.; Hoover, J.R.; Dunn, G.L.; Actor, P.; Uri, J.V.; Weisbach, J.A. A new parenteral cephalosporin, SK&F 59962: 7-trifluoromethylthioacetamido-3-(1-methyl-1H-tetrazol-5-ylthiomethyl)-3-cephem-4-carboxylic acid. Chemistry and structure activity relationships. J. Antibiot., 1975, 28(6), 463-470.
[http://dx.doi.org/10.7164/antibiotics.28.463] [PMID: 807547]
[11]
Upadhayaya, R.S.; Jain, S.; Sinha, N.; Kishore, N.; Chandra, R.; Arora, S.K. Synthesis of novel substituted tetrazoles having antifungal activity. Eur. J. Med. Chem., 2004, 39(7), 579-592.
[http://dx.doi.org/10.1016/j.ejmech.2004.03.004] [PMID: 15236838]
[12]
Łukowska-Chojnacka, E.; Mierzejewska, J.; Milner-Krawczyk, M.; Bondaryk, M.; Staniszewska, M. Synthesis of novel tetrazole derivatives and evaluation of their antifungal activity. Bioorg. Med. Chem., 2016, 24(22), 6058-6065.
[http://dx.doi.org/10.1016/j.bmc.2016.09.066] [PMID: 27745991]
[13]
Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via multicomponent reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
[14]
Gao, F.; Xiao, J.; Huang, G. Current scenario of tetrazole hybrids for antibacterial activity. Eur. J. Med. Chem., 2019, •••184111744
[http://dx.doi.org/10.1016/j.ejmech.2019.111744] [PMID: 31605865]
[15]
Zhan, P.; Li, Z.; Liu, X.; De Clercq, E. Sulfanyltriazole/tetrazoles: a promising class of HIV-1 NNRTIs. Mini Rev. Med. Chem., 2009, 9(8), 1014-1023.
[http://dx.doi.org/10.2174/138955709788681618] [PMID: 19601897]
[16]
Chauhan, K.; Sharma, M.; Trivedi, P.; Chaturvedi, V.; Chauhan, P.M. New class of methyl tetrazole based hybrid of (Z)-5-benzylidene-2-(piperazin-1-yl)thiazol-4(%H)-one as potent antitubercular agents. Bioorg. Med. Chem. Lett., 2014, 24(17), 4166-4170.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.061] [PMID: 25127167]
[17]
Uchida, M.; Komatsu, M.; Morita, S.; Kanbe, T.; Nakagawa, K. Studies on gastric antiulcer active agents. II. Synthesis of tetrazole alkanamides and related compounds. Chem. Pharm. Bull., 1989, 37(2), 322-326.
[http://dx.doi.org/10.1248/cpb.37.322] [PMID: 2743478]
[18]
Hayao, S.; Havera, H.J.; Strycker, W.G.; Leipzig, T.J.; Rodriguez, R. New antihypertensive aminoalkyltetrazoles. J. Med. Chem., 1967, 10(3), 400-402.
[http://dx.doi.org/10.1021/jm00315a025] [PMID: 22185141]
[19]
Ford, R.E.; Knowles, P.; Lunt, E.; Marshall, S.M.; Penrose, A.J.; Ramsden, C.A.; Summers, A.J.; Walker, J.L.; Wright, D.E. Synthesis and quantitative structure-activity relationships of antiallergic 2-hydroxy-N-1H-tetrazol-5-ylbenzamides and N-(2-hydroxyphenyl)-1H-tetrazole-5-carboxamides. J. Med. Chem., 1986, 29(4), 538-549.
[http://dx.doi.org/10.1021/jm00154a019] [PMID: 2870188]
[20]
Purohit, P.; Pandey, A.K.; Singh, D.; Chouhan, P.S.; Ramalingam, K.; Shukla, M.; Goyal, N.; Lal, J.; Chauhan, P.M.S. An insight into tetrahydro-β-carboline-tetrazole hybrids: synthesis and bioevaluation as potent antileishmanial agents. MedChemComm, 2017, 8(9), 1824-1834.
[http://dx.doi.org/10.1039/C7MD00125H] [PMID: 30108893]
[21]
Dileep, K.; Polepalli, S.; Jain, N.; Buddana, S.K.; Prakasham, R.S.; Murty, M.S.R. Synthesis of novel tetrazole containing hybrid ciprofloxacin and pipemidic acid analogues and preliminary biological evaluation of their antibacterial and antiproliferative activity. Mol. Divers., 2018, 22(1), 83-93.
[http://dx.doi.org/10.1007/s11030-017-9795-y] [PMID: 29138963]
[22]
Sharghi, H.; Shiri, P.; Aberi, M. Five-membered N-heterocycles synthesis catalyzed by nano-silica supported copper(II)–2-imino-1,2-diphenylethan-1-ol complex. Catal. Lett., 2017, 147, 2844-2862.
[http://dx.doi.org/10.1007/s10562-017-2173-7]
[23]
Fascio, M.L.; Errea, M.I.; D’Accorso, N.B. Imidazothiazole and related heterocyclic systems. Synthesis, chemical and biological properties. Eur. J. Med. Chem., 2015, 90, 666-683.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.012] [PMID: 25499987]
[24]
Feng, L.S.; Zheng, M.J.; Zhao, F.; Liu, D. 1,2,3-Triazole hybrids with anti-HIV-1 activity. Arch. Pharm. (Weinheim), 2021, 354(1)e2000163
[http://dx.doi.org/10.1002/ardp.202000163] [PMID: 32960467]
[25]
Batra, N.; Rajendran, V.; Agarwal, D.; Wadi, I.; Ghosh, P.C.; Gupta, R.D.; Nath, M. Synthesis and antimalarial evaluation of [1,2,3]-triazole- tethered sulfonamide-berberine hybrids. ChemistrySelect, 2018, 3, 9790-9793.
[http://dx.doi.org/10.1002/slct.201801905]
[26]
Mashayekh, K.; Shiri, P. An overview of recent advances in the applications of click chemistry in the synthesis of bioconjugates with anticancer activities. ChemistrySelect, 2019, 4, 13459-13478.
[http://dx.doi.org/10.1002/slct.201902362]
[27]
Howieson, V.M.; Tran, E.; Hoegl, A.; Fam, H.L.; Fu, J.; Sivonen, K.; Li, X.X.; Auclair, K.; Saliba, K.J. Triazole substitution of a labile amide bond stabilizes pantothenamides and improves their antiplasmodial potency. Antimicrob. Agents Chemother., 2016, 60(12), 7146-7152.
[http://dx.doi.org/10.1128/AAC.01436-16] [PMID: 27645235]
[28]
Jordão, A.K.; Ferreira, V.F.; Souza, T.M.; Faria, G.G.; Machado, V.; Abrantes, J.L.; De Souza, M.C.; Cunha, A.C. Synthesis and anti-HSV-1 activity of new 1,2,3-triazole derivatives. Bioorg. Med. Chem., 2011, 19(6), 1860-1865.
[http://dx.doi.org/10.1016/j.bmc.2011.02.007] [PMID: 21376603]
[29]
Deshmukh, T.R.; Sarkate, A.P.; Lokwani, D.K.; Tiwari, S.V.; Azad, R.; Shingate, B.B. New amide linked dimeric 1,2,3-triazoles bearing aryloxy scaffolds as a potent antiproliferative agents and EGFR tyrosine kinase phosphorylation inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(19)126618
[http://dx.doi.org/10.1016/j.bmcl.2019.08.022] [PMID: 31431361]
[30]
Chu, X.M.; Wang, C.; Wang, W.L.; Liang, L.L.; Liu, W.; Gong, K.K.; Sun, K.L. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2019, 166, 206-223.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.047] [PMID: 30711831]
[31]
Gao, F.; Ye, L.; Kong, F.; Huang, G.; Xiao, J. Design, synthesis and antibacterial activity evaluation of moxifloxacin-amide-1,2,3-triazole-isatin hybrids. Bioorg. Chem., 2019.91103162
[http://dx.doi.org/10.1016/j.bioorg.2019.103162] [PMID: 31382058]
[32]
Totobenazara, J.; Burke, A.J. New click-chemistry methods for 1,2,3-triazoles synthesis: recent advances and applications. Tetrahedron Lett., 2015, 56, 2853-2859.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.136]
[33]
Li, L.J.; Zhang, Y.Q.; Zhang, Y.; Zhu, A.L.; Zhang, G.S. Synthesis of 5-functionalized-1,2,3-triazoles via a one-pot aerobic oxidative coupling reaction of alkynes and azides. Chin. Chem. Lett., 2014, 25, 1161-1164.
[http://dx.doi.org/10.1016/j.cclet.2014.03.004]
[34]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[35]
Bose, D.S.; Idrees, M.; Jakka, N.M.; Rao, J.V. Diversity-oriented synthesis of quinolines via Friedländer annulation reaction under mild catalytic conditions. J. Comb. Chem., 2010, 12(1), 100-110.
[http://dx.doi.org/10.1021/cc900129t] [PMID: 20000618]
[36]
Gebregiworgis, T.; Kano, Y.; St-Germain, J.; Radulovich, N.; Udaskin, M.L.; Mentes, A.; Huang, R.; Poon, B.P.K.; He, W.; Valencia-Sama, I.; Robinson, C.M.; Huestis, M.; Miao, J.; Yeh, J.J.; Zhang, Z.Y.; Irwin, M.S.; Lee, J.E.; Tsao, M.S.; Raught, B.; Marshall, C.B.; Ohh, M.; Ikura, M. The Q61H mutation decouples KRAS from upstream regulation and renders cancer cells resistant to SHP2 inhibitors. Nat. Commun., 2021, 12(1), 6274.
[http://dx.doi.org/10.1038/s41467-021-26526-y] [PMID: 34725361]
[37]
ACD/ChemSketch, version 2020.2.1; Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2021. Available from: www.acdlabs.com
[38]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[39]
Laskowski, R.A. Jabłońska, J.; Pravda, L.; Vařeková, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein Sci., 2018, 27(1), 129-134.
[http://dx.doi.org/10.1002/pro.3289] [PMID: 28875543]
[40]
Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43(20), 3714-3717.
[http://dx.doi.org/10.1021/jm000942e] [PMID: 11020286]
[41]
Zhao, Y.H.; Abraham, M.H.; Le, J.; Hersey, A.; Luscombe, C.N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res., 2002, 19(10), 1446-1457.
[http://dx.doi.org/10.1023/A:1020444330011] [PMID: 12425461]
[42]
Allaka, T.R.; Anireddy, J.S. Novel 7-substituted fluoroquinolone citrate conjugates as powerful antibacterial and anticancer agents: Synthesis and molecular docking studies. Curr. Org. Chem., 2019, 23, 1991-2002.
[http://dx.doi.org/10.2174/1877946809666191007125408]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy