Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Research Article

Formulation Development and Optimization of Rosuvastatin Loaded Nanosuspension for Enhancing Dissolution Rate

Author(s): Asha Rani, Ravinder Verma, Vineet Mittal, Shailendra Bhatt, Manish Kumar, Abhishek Tiwari, Varsha Tiwari, Parijat Pandey and Deepak Kaushik*

Volume 18, Issue 1, 2023

Published on: 19 September, 2022

Page: [75 - 87] Pages: 13

DOI: 10.2174/1574885517666220822104652

Price: $65

conference banner
Abstract

Background: Nanotechnology has been considered an auspicious approach over the last twenty years and numerous researchers are making efforts to extend its applications in pharmaceuticals. Recently, various nano-based drug delivery systems, such as nanoparticles, nanoemulgel, nanosuspension, and nanoemulsion, have been developed to deliver varieties of hydrophobics to target sites. Rosuvastatin is a competitive inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase enzyme. The application of rosuvastatin is compromised because of its poor aqueous solubility and low oral bioavailability.

Objective: This research work aimed to develop and characterize nanosuspension formulation for enhancement of the dissolution rate of rosuvastatin.

Methods: Nanosuspension of rosuvastatin was prepared by using PVP K-30 and tween 80 as a stabiliser via the high-pressure homogenization method. The nanosuspension formulation was optimised by a factorial design to determine the effect of PVP K-30 (A), the concentration of tween 80 (B) and the number of the cycle (C) of high-pressure homogenizer on particle size (Y1), polydispersity index (Y2) and zeta potential (Y3) of the developed formulation. The optimised nanosuspension formulation of rosuvastatin was assessed for particle size, zeta potential, PDI, pH, % encapsulation efficiency of the drug, solubility study and comparative in vitro dissolution study. The optimised formulation passed the stability studies in terms of physical stability (sedimentation) for three months.

Results: The optimised formulation resulted in 92.79 nm of particle size with a 0.201 polydispersity index. The nanosuspension of rosuvastatin showed higher dissolution rate as compared to the pure drug.

Conclusion: This investigation demonstrated that nanosuspension preparation could be a promising approach for improvement of the dissolution rate of BCS II class drugs.

Keywords: Rosuvastatin, nanosuspension, factorial design, high-pressure homogenizer, encapsulation efficiency, zeta sizer, PVP K-30.

« Previous
Graphical Abstract

[1]
Kapure VJ, Pande VV, Deshmukh PK. Dissolution enhancement of rosuvastatin calcium by liquisolid compact technique. J Pharm (Cairo) 2013; 2013: 315902.
[http://dx.doi.org/10.1155/2013/315902] [PMID: 26555972]
[2]
Rosuvastatin Available from: https://go.drugbank.com/drugs/ DB01098
[3]
Vidya NK, Chemate SZ, Dharashive VM. Formulation development and solubility enhancement of rosuvastatin calcium tablet prepared by complexation with β-cyclodextrin by kneading method. Int J Pharm Sci Res 2016; 7(12): 4882-92.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.7(12).4882-92]
[4]
Gadad AP, Tigadi SG, Dandagi PM, Mastiholimath VS, Balmal UB. Rosuvastatin loaded nanostructured lipid carrier: For enhancement of oral bioavailability. Indian J Pharm Edu Res 2016; 50(4): 605-11.
[http://dx.doi.org/10.5530/ijper.50.4.13]
[5]
Kumar PT, Mishra J, Podder A. Design, Fabrication and evaluation of rosuvastatin pharmacosome- A noval sustained release drug delivery system. Eur J Pharm Med Res 2016; 3(4): 332-50.
[6]
Jaydip B, Dhaval M, Soniwala MM, Chavda J. Formulation and optimization of liquisolid compact for enhancing dissolution properties of efavirenz by using DoE approach. Saudi Pharm J 2020; 28(6): 737-45.
[http://dx.doi.org/10.1016/j.jsps.2020.04.016] [PMID: 32550806]
[7]
Verma R, Kaushik A, Almeer R, Rahman MH, Abdel-Daim MM, Kaushik D. Improved pharmacodynamic potential of rosuvastatin by self-nanoemulsifying drug delivery system: An in vitro and in vivo evaluation. Int J Nanomedicine 2021; 16: 905-24.
[http://dx.doi.org/10.2147/IJN.S287665] [PMID: 33603359]
[8]
Kaushik R, Budhwar V, Kaushik D. An overview on recent patents and technologies on solid dispersion. Recent Pat Drug Deliv Formul 2020; 14(1): 63-74.
[http://dx.doi.org/10.2174/1872211314666200117094406] [PMID: 31951172]
[9]
Alshora D, Ibrahim M, Elzayat E, Almeanazel OT, Alanazi F. Defining the process parameters affecting the fabrication of rosuvastatin calcium nanoparticles by planetary ball mill. Int J Nanomedicine 2019; 14: 4625-36.
[http://dx.doi.org/10.2147/IJN.S207301] [PMID: 31303752]
[10]
Palani K, Kesavan SK, Christoper GV. Enhancement of rosuvastatin calcium biovalability applying nanocrystal technology and in vitro, in vivo evaluation. Asian J Pharm Clin Res 2015; 2(8): 88-92.
[11]
Soroushnia A, Ganji F, Vasheghani-Farahani E, Mobedi H. Preparation, optimization, and evaluation of midazolam nanosuspension: Enhanced bioavailability for buccal administration. Prog Biomater 2021; 10(1): 19-28.
[http://dx.doi.org/10.1007/s40204-020-00148-x] [PMID: 33587239]
[12]
Song Z, Yin J, Xiao P, et al. Improving breviscapine oral bioavailability by preparing nanosuspensions, liposomes and phospholipid complexes. Pharmaceutics 2021; 13(2): 132.
[http://dx.doi.org/10.3390/pharmaceutics13020132] [PMID: 33498470]
[13]
Ravi M, Julu T, Kim NA, Park KE, Jeong SH. Solubility determination of c-met inhibitor in solvent mixtures and mathematical modeling to develop nanosuspension formulation. Molecules 2021; 26(2): 390.
[http://dx.doi.org/10.3390/molecules26020390] [PMID: 33450987]
[14]
Gourishetti K, Keni R, Nayak PG, et al. Sesamol-loaded PLGA nanosuspension for accelerating wound healing in diabetic foot ulcer in rats. Int J Nanomedicine 2020; 15: 9265-82.
[http://dx.doi.org/10.2147/IJN.S268941] [PMID: 33262587]
[15]
Wang Y, Wang S, Xu Y, et al. Etoposide amorphous nanopowder for improved oral bioavailability: Formulation development, optimization, in vitro and in vivo evaluation. Int J Nanomedicine 2020; 15: 7601-13.
[http://dx.doi.org/10.2147/IJN.S265817] [PMID: 33116490]
[16]
Jadhav S, Kaur A, Bansal AK. Comparison of downstream processing of nanocrystalline solid dispersion and nanosuspension of diclofenac acid to develop solid oral dosage form. Pharmaceutics 2020; 12(11): 1015.
[http://dx.doi.org/10.3390/pharmaceutics12111015] [PMID: 33114128]
[17]
Jethara SI, Patel AD, Patel MR, Patel MS, Patel KR. Recent survey on nanosuspension: A patent overview. Recent Pat Drug Deliv Formul 2015; 9(1): 65-78.
[http://dx.doi.org/10.2174/1872211308666141028214003] [PMID: 25354346]
[18]
Gera S, Talluri S, Rangaraj N, Sampathi S. Formulation and evaluation of naringenin nanosuspension for bioavailability enhancement. AAPS PharmSciTech 2017; 18(8): 3151-62.
[http://dx.doi.org/10.1208/s12249-017-0790-5]
[19]
Erratum: Fabrication and characterization of glimepiride nanosuspension by ultrasonication-assisted precipitation for improvement of oral bioavailability and in vitro α-glucosidase inhibition [Corrigendum]. Int J Nanomedicine 2020; 15: 6561-2.
[http://dx.doi.org/10.2147/IJN.S279083] [PMID: 32982217]
[21]
Verma R, Kaushik D. Design and optimization of candesartan loaded self-nanoemulsifying drug delivery system for improving its dissolution rate and pharmacodynamic potential. Drug Deliv 2020; 27(1): 756-71.
[http://dx.doi.org/10.1080/10717544.2020.1760961] [PMID: 32397771]
[22]
Bonaccorso A, Pellitteri R, Ruozi B, et al. Curcumin loaded polymeric vs. lipid nanoparticles: Antioxidant effect on normal and hypoxic olfactory ensheathing cells. Nanomaterials (Basel) 2021; 11(1): 159.
[http://dx.doi.org/10.3390/nano11010159] [PMID: 33435146]
[23]
Chen Y, Liu Y, Xie J, et al. Nose-to-brain delivery by nanosuspensions-based in situ gel for breviscapine. Int J Nanomedicine 2020; 15: 10435-51.
[http://dx.doi.org/10.2147/IJN.S265659] [PMID: 33380794]
[24]
Oktay AN, Ilbasmis-Tamer S, Celebi N. The effect of critical process parameters of the high pressure homogenization technique on the critical quality attributes of flurbiprofen nanosuspensions. Pharm Dev Technol 2019; 24(10): 1278-86.
[http://dx.doi.org/10.1080/10837450.2019.1667384] [PMID: 31535942]
[25]
Rahim H, Sadiq A, Ullah R, et al. Formulation of aceclofenac tablets using nanosuspension as granulating agent: An attempt to enhance dissolution rate and oral bioavailability. Int J Nanomedicine 2020; 15: 8999-9009.
[http://dx.doi.org/10.2147/IJN.S270746] [PMID: 33235448]
[26]
Verma R, Mittal V, Kaushik D. Quality based design approach for improving oral bioavailability of valsartan loaded SMEDDS and study impact of lipolysis on the drug diffusion. Drug Deliv Lett 2018; 8(2): 130-9.
[http://dx.doi.org/10.2174/2210303108666180313141956]
[27]
Gaber DA. Nanoparticles of lovastatin: Design, optimization and in vivo evaluation. Int J Nanomedicine 2020; 15: 4225-36.
[http://dx.doi.org/10.2147/IJN.S241120] [PMID: 32606674]
[28]
Verma R, Kaushik D. Development, optimization, characterization and impact of in vitro lipolysis on drug release of telmisartan loaded SMEDDS. Drug Deliv Lett 2019; 9(4): 330-40.
[http://dx.doi.org/10.2174/2210303109666190614120556]
[29]
Corzo-Deluquez E, Pineda-Muñoz L, Ruíz-Chamorro A, Ocampo-López C, Ramírez-Carmona M, Rendón-Castrillón L. Biosynthesized silica nanosuspension as thermal fluid in parabolic solar panels. Entropy (Basel) 2021; 23(2): 142.
[http://dx.doi.org/10.3390/e23020142] [PMID: 33503797]
[30]
Gahalwat N, Verma R, Kaushik D. Application of D-optimal mixture design for development and optimization of olmesartan medoxomil loaded SMEDDS. Curr Drug Ther 2020; 15: 1-13.
[http://dx.doi.org/10.2174/1574885515666200212094039]
[31]
Huang T, Wang Y, Shen Y, et al. Preparation of high drug-loading celastrol nanosuspensions and their anti-breast cancer activities in vitro and in vivo. Sci Rep 2020; 10(1): 8851.
[http://dx.doi.org/10.1038/s41598-020-65773-9] [PMID: 32483248]
[32]
Singh H, Gupta RD, Gautam G. Determination of rosuvastatin calcium in bulk and pharmaceutical dosage forms by using UV- spectrophotometric method. Asian J Pharm Pharmacol 2018; 4(1): 45-8.
[http://dx.doi.org/10.31024/ajpp.2018.4.1.8]
[33]
Abo Enin HA. Self-nanoemulsifying drug-delivery system for improved oral bioavailability of rosuvastatin using natural oil antihyperlipdemic. Drug Dev Ind Pharm 2015; 41(7): 1047-56.
[http://dx.doi.org/10.3109/03639045.2014.983113] [PMID: 25404208]
[34]
Sharannavar B, Sawant S. Formulation and evaluation of nanosuspension of rosuvastatin for solubility enhancement by quality by design approach. Int J Pharm Sci Res 2021; 12(11): 5949-58.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.12(11).5949-58]
[35]
Sheikhpour M, Arabi M, Kasaeian A, Rokn Rabei A, Taherian Z. Role of nanofluids in drug delivery and biomedical technology: Methods and applications. Nanotechnol Sci Appl 2020; 13: 47-59.
[http://dx.doi.org/10.2147/NSA.S260374] [PMID: 32801669]
[36]
Chouhan N, Mittal V, Kaushik D, Khatkar A, Raina M. Self emulsifying drug delivery system (SEDDS) for phytoconstituents: A review. Curr Drug Deliv 2015; 12(2): 244-53.
[http://dx.doi.org/10.2174/1567201811666141021142606] [PMID: 25335929]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy