Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Diabetic Nephropathy: Pathogenesis to Cure

Author(s): Kriti Kushwaha, Uma Kabra, Rupal Dubey and Jeena Gupta*

Volume 23, Issue 15, 2022

Published on: 07 September, 2022

Page: [1418 - 1429] Pages: 12

DOI: 10.2174/1389450123666220820110801

Price: $65

Abstract

Diabetic nephropathy (DN) is a leading cause of end-stage renal disorder (ESRD). It is defined as the increase in urinary albumin excretion (UAE) when no other renal disease is present. DN is categorized into microalbuminuria and macroalbuminuria. Factors like high blood pressure, high blood sugar levels, genetics, oxidative stress, hemodynamic and metabolic changes affect DN. Hyperglycemia causes renal damage through activating protein kinase C (PKC), producing advanced end glycation products (AGEs) and reactive oxygen species (ROS). Growth factors, chemokines, cell adhesion molecules, inflammatory cytokines are found to be elevated in the renal tissues of the diabetic patient. Many different and new diagnostic methods and treatment options are available due to the increase in research efforts and progression in medical science. However, until now, no permanent cure is available. This article aims to explore the mechanism, diagnosis, and therapeutic strategies in current use for increasing the understanding of DN.

Keywords: Diabetic nephropathy, Urinary albumin excretion, microalbuminuria, macroalbuminuria, renal damage.

Graphical Abstract

[1]
Chan JCN, Lim LL, Wareham NJ, et al. The Lancet Commission on diabetes: Using data to transform diabetes care and patient lives. Lancet 2021; 396(10267): 2019-82.
[http://dx.doi.org/10.1016/S0140-6736(20)32374-6] [PMID: 33189186]
[2]
Bommer C, Sagalova V, Heesemann E, et al. Global economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care 2018; 41(5): 963-70.
[http://dx.doi.org/10.2337/dc17-1962] [PMID: 29475843]
[3]
Mota RI, Morgan SE, Bahnson EM. Diabetic vasculopathy: Macro and microvascular injury. Curr Pathobiol Rep 2020; 8(1): 1-14.
[http://dx.doi.org/10.1007/s40139-020-00205-x] [PMID: 32655983]
[4]
Woodhams L, Sim TF, Chalmers L, et al. Diabetic kidney disease in type 2 diabetes: A review of pathogenic mechanisms, patient-related factors and therapeutic options. PeerJ 2021; 9: e11070.
[http://dx.doi.org/10.7717/peerj.11070] [PMID: 33976959]
[5]
Börnhorst C, Russo P, Veidebaum T, et al. The role of lifestyle and non-modifiable risk factors in the development of metabolic disturbances from childhood to adolescence. Int J Obes 2020; 44(11): 2236-45.
[http://dx.doi.org/10.1038/s41366-020-00671-8] [PMID: 32943762]
[6]
Werner N, Nickenig G, Sinning JM. Complex PCI procedures: Challenges for the interventional cardiologist. Clin Res Cardiol 2018; 107(2) (Suppl. 2): 64-73.
[http://dx.doi.org/10.1007/s00392-018-1316-1] [PMID: 29978353]
[7]
Bowden DW. Genetics of diabetes complications. Curr Diab Rep 2002; 2(2): 191-200.
[http://dx.doi.org/10.1007/s11892-002-0080-8] [PMID: 12643139]
[8]
Kebede SA, Tusa BS, Weldesenbet AB, Tessema ZT, Ayele TA. ncidence of diabetic nephropathy and its predictors among type 2 diabetes mellitus patients at university of gondar comprehensive specialized hospital, Northwest Ethiopia. J Nutr Metab. 2021
[9]
Magee C, Grieve DJ, Watson CJ, Brazil DP. Diabetic nephropathy: A tangled web to unweave. Cardiovasc Drugs Ther 2017; 31(5-6): 579-92.
[http://dx.doi.org/10.1007/s10557-017-6755-9] [PMID: 28956186]
[10]
Lopez-Parra V, Mallavia B, Egido J, Gomez-Guerrero C. Immunoinflammation in diabetic nephropathy: Molecular mechanisms and therapeutic options. Diabet Nephrop 2012; 127-46.
[http://dx.doi.org/10.5772/34541]
[11]
Gaballa MR, Farag YM. Predictors of diabetic nephropathy. Cent Eur J Med 2013; 8(3): 287-96.
[12]
Lei L, Mao Y, Meng D, et al. Percentage of circulating CD8+ T lymphocytes is associated with albuminuria in type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2014; 122(1): 27-30.
[PMID: 24203650]
[13]
Yu SM, Bonventre JV. Acute kidney injury and progression of diabetic kidney disease. Adv Chronic Kidney Dis 2018; 25(2): 166-80.
[http://dx.doi.org/10.1053/j.ackd.2017.12.005] [PMID: 29580581]
[14]
Tan RJ, Bastacky SI, Liu Y. Molecular basis of kidney disease.Molecular Pathology. Academic Press 2018; pp. 531-53.
[http://dx.doi.org/10.1016/B978-0-12-802761-5.00024-9]
[15]
Noshahr ZS, Salmani H, Khajavi Rad A, Sahebkar A. Animal models of diabetes-associated renal injury. J Diabetes Res 2020; 16.
[http://dx.doi.org/10.1155/2020/9416419]
[16]
Brandt-Jacobsen NH, Johansen ML, Rasmussen J, et al. Effect of high-dose mineralocorticoid receptor antagonist eplerenone on urinary albumin excretion in patients with type 2 diabetes and high cardiovascular risk: Data from the MIRAD trial. Diabetes Metab 2021; 47(4): 101190.
[http://dx.doi.org/10.1016/j.diabet.2020.08.005] [PMID: 32919068]
[17]
Paul S, Ali A, Katare R. Molecular complexities underlying the vascular complications of diabetes mellitus - A comprehensive review. J Diabetes Complications 2020; 34(8): 107613.
[http://dx.doi.org/10.1016/j.jdiacomp.2020.107613] [PMID: 32505477]
[18]
Zhang C, Fang X, Zhang H, et al. Genetic susceptibility of hypertension-induced kidney disease. Physiol Rep 2021; 9(1): e14688.
[http://dx.doi.org/10.14814/phy2.14688] [PMID: 33377622]
[19]
Hayashi Y. Detection of lower albuminuria levels and early development of diabetic kidney disease using an artificial intelligence-based rule extraction approach. Diagnostics (Basel) 2019; 9(4): 133.
[http://dx.doi.org/10.3390/diagnostics9040133] [PMID: 31569548]
[20]
Wu J, Tomsa D, Zhang M, et al. A passive mixing microfluidic urinary albumin chip for chronic kidney disease assessment. ACS Sens 2018; 3(10): 2191-7.
[http://dx.doi.org/10.1021/acssensors.8b01072] [PMID: 30350581]
[21]
Shiwa T, Nishimura M, Kato M. The effectiveness of the semi-quantitative assessment of microalbuminuria using routine urine dipstick screening in patients with diabetes. Intern Med 2018; 57(4): 503-6.
[http://dx.doi.org/10.2169/internalmedicine.9069-17] [PMID: 29269642]
[22]
Incerti J, Zelmanovitz T, Camargo JL, Gross JL, de Azevedo MJ. Evaluation of tests for microalbuminuria screening in patients with diabetes. Nephrol Dial Transplant 2005; 20(11): 2402-7.
[http://dx.doi.org/10.1093/ndt/gfi074]
[23]
Uwaezuoke SN. The role of novel biomarkers in predicting diabetic nephropathy: A review. Int J Nephrol Renovasc Dis 2017; 10: 221-31.
[http://dx.doi.org/10.2147/IJNRD.S143186] [PMID: 28860837]
[24]
Zhang D, Ye S, Pan T. The role of serum and urinary biomarkers in the diagnosis of early diabetic nephropathy in patients with type 2 diabetes. PeerJ 2019; 7: e7079.
[http://dx.doi.org/10.7717/peerj.7079] [PMID: 31218128]
[25]
Satirapoj B, Adler SG. Prevalence and management of diabetic nephropathy in western countries. Kidney Dis 2015; 1(1): 61-70.
[http://dx.doi.org/10.1159/000382028] [PMID: 27536666]
[26]
Caramori ML, Fioretto P, Mauer M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: An indicator of more advanced glomerular lesions. Diabetes 2003; 52(4): 1036-40.
[http://dx.doi.org/10.2337/diabetes.52.4.1036] [PMID: 12663477]
[27]
MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 2004; 27(1): 195-200.
[http://dx.doi.org/10.2337/diacare.27.1.195] [PMID: 14693989]
[28]
Carrara F, Gaspari F. GFR measured by iohexol: The best choice from a laboratory perspective. J Lab Precis Med 2018; 3: 77.
[http://dx.doi.org/10.21037/jlpm.2018.09.07]
[29]
Sahajpal NS, Goel RK, Chaubey A, Aurora R, Jain SK. Pathological perturbations in diabetic retinopathy: Hyperglycemia, AGEs, oxidative stress and inflammatory pathways. Curr Protein Pept Sci 2019; 20(1): 92-110.
[http://dx.doi.org/10.2174/1389203719666180928123449] [PMID: 30264677]
[30]
Rowan S, Bejarano E, Taylor A. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864(12): 3631-43.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.036] [PMID: 30279139]
[31]
Chun P. Therapeutic effects of histone deacetylase inhibitors on kidney disease. Arch Pharm Res 2018; 41(2): 162-83.
[http://dx.doi.org/10.1007/s12272-017-0998-7] [PMID: 29230688]
[32]
Li J, Gobe G. Protein kinase C activation and its role in kidney disease. Nephrology (Carlton) 2006; 11(5): 428-34.
[http://dx.doi.org/10.1111/j.1440-1797.2006.00673.x] [PMID: 17014557]
[33]
Inoguchi T, Sonta T, Tsubouchi H, et al. Protein kinase C–dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: Role of vascular NAD (P) H oxidase. J Am Soc Nephrol 2003; 14 (Suppl. 3): S227-32.
[34]
Ma X, Cui Z, Du Z, Lin H. Transforming growth factor-β signaling, a potential mechanism associated with diabetes mellitus and pancreatic cancer? J Cell Physiol 2020; 235(9): 5882-92.
[http://dx.doi.org/10.1002/jcp.29605] [PMID: 32017070]
[35]
Chen X, Sun L, Li D, et al. Green tea peptides ameliorate diabetic nephropathy by inhibiting the TGF-β/Smad signaling pathway in mice. Food Funct 2022; 13(6): 3258-70.
[http://dx.doi.org/10.1039/D1FO03615G] [PMID: 35234233]
[36]
Schiffer M, von Gersdorff G, Bitzer M, Susztak K, Böttinger EP. Smad proteins and transforming growth factor-β signaling. Kidney Int Suppl 2000; 77(58): S45-52.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07708.x] [PMID: 10997690]
[37]
Ramazani Y, Knops N, Elmonem MA, et al. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol 2018; 68-69: 44-66.
[http://dx.doi.org/10.1016/j.matbio.2018.03.007] [PMID: 29574063]
[38]
Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-β pathway. Kidney Int 2006; 70(11): 1914-9.
[http://dx.doi.org/10.1038/sj.ki.5001846] [PMID: 16985515]
[39]
Bhatti JS, Sehrawat A, Mishra J, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic Biol Med 2022; 184: 114-34.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.03.019] [PMID: 35398495]
[40]
Ha H, Lee HB. Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology 2005; 10: S7-S10.
[http://dx.doi.org/10.1111/j.1440-1797.2005.00448.x] [PMID: 16174288]
[41]
Han Y, Xu X, Tang C, et al. Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol 2018; 16: 32-46.
[http://dx.doi.org/10.1016/j.redox.2018.02.013] [PMID: 29475133]
[42]
Djordjevic VB. Free radicals in cell biology. nt. Rev Cytol 2004; 22(237): 57-91.
[http://dx.doi.org/10.1016/S0074-7696(04)37002-6]
[43]
Koya D, Hayashi K, Kitada M, Kashiwagi A, Kikkawa R, Haneda M. Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats. J Am Soc Nephrol 2003; 14 (Suppl. 3): S250-3.
[44]
Li JM, Shah AM. ROS generation by nonphagocytic NADPH oxidase: Potential relevance in diabetic nephropathy. J Am Soc Nephrol 2003; 14 (Suppl. 3): S221-6.
[45]
Gill PS, Wilcox CS. NADPH oxidases in the kidney. Antioxid Redox Signal 2006; 8(9-10): 1597-607.
[http://dx.doi.org/10.1089/ars.2006.8.1597] [PMID: 16987014]
[46]
Xiao X, Ma B, Dong B, et al. Cellular and humoral immune responses in the early stages of diabetic nephropathy in NOD mice. J Autoimmun 2009; 32(2): 85-93.
[http://dx.doi.org/10.1016/j.jaut.2008.12.003] [PMID: 19200691]
[47]
Moon JY, Jeong KH, Lee TW, Ihm CG, Lim SJ, Lee SH. Aberrant recruitment and activation of T cells in diabetic nephropathy. Am J Nephrol 2012; 35(2): 164-74.
[http://dx.doi.org/10.1159/000334928] [PMID: 22286547]
[48]
Navarro-González JF, Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008; 19(3): 433-42.
[http://dx.doi.org/10.1681/ASN.2007091048] [PMID: 18256353]
[49]
Sassy-Prigent C, Heudes D, Mandet C, et al. Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes 2000; 49(3): 466-75.
[http://dx.doi.org/10.2337/diabetes.49.3.466] [PMID: 10868970]
[50]
Navarro JF, Milena FJ, Mora C, León C, García J. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: Effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am J Nephrol 2006; 26(6): 562-70.
[http://dx.doi.org/10.1159/000098004] [PMID: 17167242]
[51]
Jones S, Jones S, Phillips AO. Regulation of renal proximal tubular epithelial cell hyaluronan generation: Implications for diabetic nephropathy. Kidney Int 2001; 59(5): 1739-49.
[http://dx.doi.org/10.1046/j.1523-1755.2001.0590051739.x] [PMID: 11318944]
[52]
Mahadevan P, Larkins RG, Fraser JR, Fosang AJ, Dunlop ME. Increased hyaluronan production in the glomeruli from diabetic rats: A link between glucose-induced prostaglandin production and reduced sulphated proteoglycan. Diabetologia 1995; 38(3): 298-305.
[http://dx.doi.org/10.1007/BF00400634] [PMID: 7758876]
[53]
Feigerlová E, Battaglia-Hsu SF. IL-6 signaling in diabetic nephropathy: From pathophysiology to therapeutic perspectives. Cytokine Growth Factor Rev 2017; 37: 57-65.
[http://dx.doi.org/10.1016/j.cytogfr.2017.03.003] [PMID: 28363692]
[54]
Dalla Vestra M, Mussap M, Gallina P, et al. Acute-phase markers of inflammation and glomerular structure in patients with type 2 diabetes. J Am Soc Nephrol 2005; 16(3) (Suppl. 1): S78-82.
[http://dx.doi.org/10.1681/ASN.2004110961] [PMID: 15938041]
[55]
Suzuki D, Miyazaki M, Naka R, et al. In situ hybridization of interleukin 6 in diabetic nephropathy. Diabetes 1995; 44(10): 1233-8.
[http://dx.doi.org/10.2337/diab.44.10.1233] [PMID: 7556963]
[56]
Schwarz M, Wahl M, Resch K, Radeke HH. IFNgamma induces functional chemokine receptor expression in human mesangial cells. Clin Exp Immunol 2002; 128(2): 285-94.
[http://dx.doi.org/10.1046/j.1365-2249.2002.01829.x] [PMID: 11985519]
[57]
Dai SM, Matsuno H, Nakamura H, Nishioka K, Yudoh K. Interleukin-18 enhances monocyte tumor necrosis factor α and interleukin-1β production induced by direct contact with T lymphocytes: Implications in rheumatoid arthritis. Arthritis Rheum 2004; 50(2): 432-43.
[http://dx.doi.org/10.1002/art.20064] [PMID: 14872485]
[58]
Stuyt RJ, Netea MG, Geijtenbeek TB, Kullberg BJ, Dinarello CA, van der Meer JW. Selective regulation of intercellular adhesion molecule-1 expression by interleukin-18 and interleukin-12 on human monocytes. Immunology 2003; 110(3): 329-34.
[http://dx.doi.org/10.1046/j.1365-2567.2003.01747.x] [PMID: 14632660]
[59]
Mariño E, Cardier JE. Differential effect of IL-18 on endothelial cell apoptosis mediated by TNF-α and Fas (CD95). Cytokine 2003; 22(5): 142-8.
[http://dx.doi.org/10.1016/S1043-4666(03)00150-9] [PMID: 12842762]
[60]
Nakamura A, Shikata K, Hiramatsu M, et al. Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care 2005; 28(12): 2890-5.
[http://dx.doi.org/10.2337/diacare.28.12.2890] [PMID: 16306550]
[61]
Moriwaki Y, Yamamoto T, Shibutani Y, et al. Elevated levels of interleukin-18 and tumor necrosis factor-α in serum of patients with type 2 diabetes mellitus: Relationship with diabetic nephropathy. Metabolism 2003; 52(5): 605-8.
[http://dx.doi.org/10.1053/meta.2003.50096] [PMID: 12759891]
[62]
Wong CK, Ho AW, Tong PC, et al. Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy. Clin Exp Immunol 2007; 149(1): 123-31.
[http://dx.doi.org/10.1111/j.1365-2249.2007.03389.x] [PMID: 17425653]
[63]
Zhang B, Ramesh G, Norbury CC, Reeves WB. Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-α produced by renal parenchymal cells. Kidney Int 2007; 72(1): 37-44.
[http://dx.doi.org/10.1038/sj.ki.5002242] [PMID: 17396112]
[64]
Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int 2007; 71(7): 619-28.
[http://dx.doi.org/10.1038/sj.ki.5002132] [PMID: 17311071]
[65]
Sugimoto H, Shikata K, Wada J, Horiuchi S, Makino H. Advanced glycation end products-cytokine-nitric oxide sequence pathway in the development of diabetic nephropathy: Aminoguanidine ameliorates the overexpression of tumour necrosis factor-α and inducible nitric oxide synthase in diabetic rat glomeruli. Diabetologia 1999; 42(7): 878-86.
[http://dx.doi.org/10.1007/s001250051241] [PMID: 10440132]
[66]
Navarro JF, Milena FJ, Mora C, et al. Tumor necrosis factor-α gene expression in diabetic nephropathy: Relationship with urinary albumin excretion and effect of angiotensin-converting enzyme inhibition. Kidney Int Suppl 2005; 1(99): S98-S102.
[http://dx.doi.org/10.1111/j.1523-1755.2005.09918.x] [PMID: 16336586]
[67]
DiPetrillo K, Gesek FA. Pentoxifylline ameliorates renal tumor necrosis factor expression, sodium retention, and renal hypertrophy in diabetic rats. Am J Nephrol 2004; 24(3): 352-9.
[http://dx.doi.org/10.1159/000079121] [PMID: 15205554]
[68]
DiPetrillo K, Coutermarsh B, Gesek FA. Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am J Physiol Renal Physiol 2003; 284(1): F113-21.
[http://dx.doi.org/10.1152/ajprenal.00026.2002] [PMID: 12388406]
[69]
Tiongco RE, Aguas IS, Cabrera FJ, et al. The role of the TNF-α gene -308 G/A polymorphism in the development of diabetic nephropathy: An updated meta-analysis. Diabetes Metab Syndr 2020; 14(6): 2123-9.
[http://dx.doi.org/10.1016/j.dsx.2020.10.032] [PMID: 33395772]
[70]
Martinon F, Burns K, Tschopp J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002; 10(2): 417-26.
[http://dx.doi.org/10.1016/S1097-2765(02)00599-3] [PMID: 12191486]
[71]
Wada J, Makino H. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol 2016; 12(1): 13-26.
[http://dx.doi.org/10.1038/nrneph.2015.175] [PMID: 26568190]
[72]
Rathinam VA, Fitzgerald KA. Inflammasome complexes: Emerging mechanisms and effector functions. Cell 2016; 165(4): 792-800.
[http://dx.doi.org/10.1016/j.cell.2016.03.046] [PMID: 27153493]
[73]
Oliveira CB, Lima CAD, Vajgel G, Sandrin-Garcia P. The role of NLRP3 Inflammasome in lupus nephritis. Int J Mol Sci 2021; 22(22): 12476.
[http://dx.doi.org/10.3390/ijms222212476] [PMID: 34830358]
[74]
Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol 2021; 18(5): 1141-60.
[http://dx.doi.org/10.1038/s41423-021-00670-3] [PMID: 33850310]
[75]
Zhang C, Zhu X, Li L, et al. A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation. Diabetes Metab Syndr Obes 2019; 12: 1297-309.
[http://dx.doi.org/10.2147/DMSO.S199802] [PMID: 31447572]
[76]
Hou Y, Lin S, Qiu J, et al. NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy. Biochem Biophys Res Commun 2020; 521(3): 791-8.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.194] [PMID: 31703838]
[77]
Du L, Wang L, Wang B, et al. A novel compound AB38b attenuates oxidative stress and ECM protein accumulation in kidneys of diabetic mice through modulation of Keap1/Nrf2 signaling. Acta Pharmacol Sin 2020; 41(3): 358-72.
[http://dx.doi.org/10.1038/s41401-019-0297-6] [PMID: 31645661]
[78]
Bakker PJ, Butter LM, Kors L, et al. Nlrp3 is a key modulator of diet-induced nephropathy and renal cholesterol accumulation. Kidney Int 2014; 85(5): 1112-22.
[http://dx.doi.org/10.1038/ki.2013.503] [PMID: 24352154]
[79]
Ludwig-Portugall I, Bartok E, Dhana E, et al. An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int 2016; 90(3): 525-39.
[http://dx.doi.org/10.1016/j.kint.2016.03.035] [PMID: 27262364]
[80]
Abd El-Khalik SR, Nasif E, Arakeep HM, Rabah H. The prospective ameliorative role of zinc oxide nanoparticles in STZ-induced diabetic nephropathy in rats: Mechanistic targeting of autophagy and regulating Nrf2/TXNIP/NLRP3 inflammasome signaling. Biol Trace Elem Res 2022; 200(4): 1677-87.
[http://dx.doi.org/10.1007/s12011-021-02773-4] [PMID: 34241775]
[81]
Sies H, Belousov VV, Chandel NS, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 2022; 1-17.
[http://dx.doi.org/10.1038/s41580-022-00456-z] [PMID: 35190722]
[82]
Yun HR, Jo YH, Kim J, Shin Y, Kim SS, Choi TG. Roles of autophagy in oxidative stress. Int J Mol Sci 2020; 21(9): 3289.
[http://dx.doi.org/10.3390/ijms21093289] [PMID: 32384691]
[83]
Mortimore GE, Pösö AR. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 1987; 7(1): 539-64.
[http://dx.doi.org/10.1146/annurev.nu.07.070187.002543] [PMID: 3300746]
[84]
Petibone DM, Majeed W, Casciano DA. Autophagy function and its relationship to pathology, clinical applications, drug metabolism and toxicity. J Appl Toxicol 2017; 37(1): 23-37.
[http://dx.doi.org/10.1002/jat.3393] [PMID: 27682190]
[85]
Yang D, Livingston MJ, Liu Z, et al. Autophagy in diabetic kidney disease: Regulation, pathological role and therapeutic potential. Cell Mol Life Sci CMLS 2018; 75(4): 669-88.
[http://dx.doi.org/10.1007/s00018-017-2639-1] [PMID: 28871310]
[86]
Duan X, Kong Z, Mai X, et al. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney. Redox Biol 2018; 16: 414-25.
[http://dx.doi.org/10.1016/j.redox.2018.03.019] [PMID: 29653411]
[87]
Liu Y, Li D, He Z, et al. Inhibition of autophagy-attenuated calcium oxalate crystal-induced renal tubular epithelial cell injury in vivo and in vitro. Oncotarget 2017; 9(4): 4571-82.
[http://dx.doi.org/10.18632/oncotarget.23383] [PMID: 29435125]
[88]
Liu X, Zhao X, Cheng R, Huang Y. Autophagy attenuates high glucose-induced oxidative injury to lens epithelial cells. Biosci Rep 2020; 40(4): BSR20193006.
[http://dx.doi.org/10.1042/BSR20193006] [PMID: 32186721]
[89]
Bai M, Che R, Zhang Y, et al. Reactive oxygen species-initiated autophagy opposes aldosterone-induced podocyte injury. Am J Physiol Renal Physiol 2016; 310(7): F669-78.
[http://dx.doi.org/10.1152/ajprenal.00409.2015] [PMID: 26764202]
[90]
Song Y, Tao Q, Yu L, et al. Activation of autophagy contributes to the renoprotective effect of postconditioning on acute kidney injury and renal fibrosis. Biochem Biophys Res Commun 2018; 504(4): 641-6.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.003] [PMID: 30205956]
[91]
Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: A randomized prospective 6-year study. Diabetes Res Clin Pract 1995; 28(2): 103-17.
[http://dx.doi.org/10.1016/0168-8227(95)01064-K] [PMID: 7587918]
[92]
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837-53.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[93]
Shichiri M, Kishikawa H, Ohkubo Y, Wake N. Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care 2000; 23 (Suppl. 2): B21-9.
[94]
Bakris G, Viberti G, Weston WM, Heise M, Porter LE, Freed MI. Rosiglitazone reduces urinary albumin excretion in type II diabetes. J Hum Hypertens 2003; 17(1): 7-12.
[http://dx.doi.org/10.1038/sj.jhh.1001444] [PMID: 12571611]
[95]
Bakris GL, Weir MR, Shanifar S, et al. Effects of blood pressure level on progression of diabetic nephropathy: Results from the RENAAL study. Arch Intern Med 2003; 163(13): 1555-65.
[http://dx.doi.org/10.1001/archinte.163.13.1555] [PMID: 12860578]
[96]
Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: Principal results of the Hypertension Optimal Treatment (HOT) randomised trial. Lancet 1998; 351(9118): 1755-62.
[http://dx.doi.org/10.1016/S0140-6736(98)04311-6] [PMID: 9635947]
[97]
Zhu Y, Li ZL, Ding A, et al. Olmesartan medoxomil, an angiotensin II-receptor blocker, ameliorates renal injury in db/db mice. Drug Des Devel Ther 2019; 13: 3657-67.
[http://dx.doi.org/10.2147/DDDT.S217826] [PMID: 31695333]
[98]
Fioretto P, Zambon A, Rossato M, Busetto L, Vettor R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care 2016; 39 (Suppl. 2): S165-71.
[http://dx.doi.org/10.2337/dcS15-3006] [PMID: 27440829]
[99]
Lewis EJ, Rohde R, Bain R. A follow-up study of the course of nephropathy in type I diabetes mellitus. Nephrology 1997; 3 (Suppl. 1): 1222.
[100]
Mandita A, Timofte D, Balcangiu-Stroescu AE, et al. Treatment of high blood pressure in patients with chronic renal disease. Rev Chim Buchar 2019; 70: 993-5.
[http://dx.doi.org/10.37358/RC.19.3.7047]
[101]
Rossing P. Clinical perspective-evolving evidence of mineralocorticoid receptor antagonists in patients with chronic kidney disease and type 2 diabetes. Kidney Int Suppl 2022; 12(1): 27-35.
[http://dx.doi.org/10.1016/j.kisu.2021.11.005] [PMID: 35529090]
[102]
Ruggenenti P, Cortinovis M, Parvanova A, et al. Preventing microalbuminuria with benazepril, valsartan, and benazepril-valsartan combination therapy in diabetic patients with high-normal albuminuria: A prospective, randomized, open-label, blinded endpoint (PROBE) study. PLoS Med 2021; 18(7): e1003691.
[http://dx.doi.org/10.1371/journal.pmed.1003691] [PMID: 34260595]
[103]
Apetrii M, Timofte D, Voroneanu L, Covic A. Nutrition in chronic kidney disease-the role of proteins and specific diets. Nutrients 2021; 13(3): 956.
[http://dx.doi.org/10.3390/nu13030956] [PMID: 33809492]
[104]
Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. J Am Coll Cardiol 2004; 44(3): 720-32.
[http://dx.doi.org/10.1016/j.jacc.2004.07.001] [PMID: 15358046]
[105]
Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: A meta-analysis. Kidney Int 2001; 59(1): 260-9.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00487.x] [PMID: 11135079]
[106]
Collins R, Armitage J, Parish S, Sleigh P, Peto R. MRC/BHF heart protection study of cholesterol-lowering with simvastatin in 5963 people with diabetes: A randomised placebo-controlled trial. Lancet 2003; 361(9374): 2005-16.
[http://dx.doi.org/10.1016/S0140-6736(03)13636-7] [PMID: 12814710]
[107]
Sinclair SH, DelVecchio C, Levin A. Treatment of anemia in the diabetic patient with retinopathy and kidney disease. Am J Ophthalmol 2003; 135(5): 740-3.
[http://dx.doi.org/10.1016/S0002-9394(02)02149-9] [PMID: 12719099]
[108]
Laville M. New strategies in anaemia management: ACORD (Anaemia CORrection in Diabetes) trial. Acta Diabetol 2004; 41(1): s18-22.
[109]
Bosman DR, Winkler AS, Marsden JT, Macdougall IC, Watkins PJ. Anemia with erythropoietin deficiency occurs early in diabetic nephropathy. Diabetes Care 2001; 24(3): 495-9.
[http://dx.doi.org/10.2337/diacare.24.3.495] [PMID: 11289474]
[110]
Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 2003; 52(8): 2110-20.
[http://dx.doi.org/10.2337/diabetes.52.8.2110] [PMID: 12882930]
[111]
Forbes JM, Thallas V, Thomas MC, et al. The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J 2003; 17(12): 1762-4.
[http://dx.doi.org/10.1096/fj.02-1102fje] [PMID: 12958202]
[112]
Kelly DJ, Zhang Y, Hepper C, et al. Protein kinase C β inhibition attenuates the progression of experimental diabetic nephropathy in the presence of continued hypertension. Diabetes 2003; 52(2): 512-8.
[http://dx.doi.org/10.2337/diabetes.52.2.512] [PMID: 12540629]
[113]
Ceol M, Gambaro G, Sauer U, et al. Glycosaminoglycan therapy prevents TGF-β1 overexpression and pathologic changes in renal tissue of long-term diabetic rats. J Am Soc Nephrol 2000; 11(12): 2324-36.
[http://dx.doi.org/10.1681/ASN.V11122324] [PMID: 11095655]
[114]
Bignamini AA, Chebil A, Gambaro G, Matuška J. Sulodexide for diabetic-induced disabilities: A systematic review and meta-Analysis. Adv Ther 2021; 38(3): 1483-513.
[http://dx.doi.org/10.1007/s12325-021-01620-1] [PMID: 33502688]
[115]
Bolton WK, Cattran DC, Williams ME, et al. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol 2004; 24(1): 32-40.
[http://dx.doi.org/10.1159/000075627] [PMID: 14685005]
[116]
Utimura R, Fujihara CK, Mattar AL, Malheiros DM, Noronha IL, Zatz R. Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes. Kidney Int 2003; 63(1): 209-16.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00736.x] [PMID: 12472785]
[117]
Han J, Thompson P, Beutler B. Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/tumor necrosis factor synthesis at separate points in the signaling pathway. J Exp Med 1990; 172(1): 391-4.
[http://dx.doi.org/10.1084/jem.172.1.391] [PMID: 2358784]
[118]
Prabhakar PK, Kumar A, Doble M. Combination therapy: A new strategy to manage diabetes and its complications. Phytomedicine 2014; 21(2): 123-30.
[http://dx.doi.org/10.1016/j.phymed.2013.08.020] [PMID: 24074610]
[119]
Nankar R, Prabhakar PK, Doble M. Hybrid drug combination: Combination of ferulic acid and metformin as anti-diabetic therapy. Phytomedicine 2017; 37: 10-3.
[http://dx.doi.org/10.1016/j.phymed.2017.10.015] [PMID: 29126698]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy