Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Combining Network-based and Matrix Factorization to Predict Novel Drug-target Interactions: A Case Study Using the Brazilian Natural Chemical Database

Author(s): Ronald Sodre Martins, Marcelo Ferreira da Costa Gomes and Ernesto Raul Caffarena*

Volume 17, Issue 9, 2022

Published on: 19 September, 2022

Page: [793 - 803] Pages: 11

DOI: 10.2174/1574893617666220820105258

Price: $65

Abstract

Background: Chemogenomic techniques use mathematical calculations to predict new Drug- Target Interactions (DTIs) based on drugs' chemical and biological information and pharmacological targets. Compared to other structure-based computational methods, they are faster and less expensive. Network analysis and matrix factorization are two practical chemogenomic approaches for predicting DTIs from many drugs and targets. However, despite the extensive literature introducing various chemogenomic techniques and methodologies, there is no consensus for predicting interactions using a drug or a target, a set of drugs, and a dataset of known interactions.

Methods: This study predicted novel DTIs from a limited collection of drugs using a heterogeneous ensemble based on network and matrix factorization techniques. We examined three network-based approaches and two matrix factorization-based methods on benchmark datasets. Then, we used one network approach and one matrix factorization technique on a small collection of Brazilian plant-derived pharmaceuticals.

Results: We have discovered two novel DTIs and compared them to the Therapeutic Target Database to detect linked disorders, such as breast cancer, prostate cancer, and Cushing syndrome, with two drugs (Quercetin and Luteolin) originating from Brazilian plants.

Conclusion: The suggested approach allows assessing the performance of approaches only based on their sensitivity, independent of their unfavorable interactions. Findings imply that integrating network and matrix factorization results might be a helpful technique in bioinformatics investigations involving the development of novel medicines from a limited range of drugs.

Keywords: DTIs, chemogenomic methodologies, heterogeneous ensemble, network methods, matrix factorization method, drugs derived from Brazilian plants.

Graphical Abstract

[1]
Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA 2020; 323(9): 844-53.
[http://dx.doi.org/10.1001/jama.2020.1166] [PMID: 32125404]
[2]
Bolognesi ML, Cavalli A. Multitarget drug discovery and polypharmacology. ChemMedChem 2016; 11(12): 1190-2.
[http://dx.doi.org/10.1002/cmdc.201600161] [PMID: 27061625]
[3]
Park K. A review of computational drug repurposing. Transl Clin Pharmacol 2019; 27(2): 59-63.
[http://dx.doi.org/10.12793/tcp.2019.27.2.59] [PMID: 32055582]
[4]
Lucas X, Grüning BA, Bleher S, Günther S. The purchasable chemical space: A detailed picture. J Chem Inf Model 2015; 55(5): 915-24.
[http://dx.doi.org/10.1021/acs.jcim.5b00116] [PMID: 25894297]
[5]
Chen X, Yan CC, Zhang X, et al. Drug-target interaction prediction: Databases, web servers and computational models. Brief Bioinform 2016; 17(4): 696-712.
[http://dx.doi.org/10.1093/bib/bbv066] [PMID: 26283676]
[6]
Mohamed K, Yazdanpanah N, Saghazadeh A, Rezaei N. Computational drug discovery and repurposing for the treatment of COVID-19: A systematic review. Bioorg Chem 2021; 106(October 2020): 104490.
[http://dx.doi.org/10.1016/j.bioorg.2020.104490]
[7]
Reker D, Schneider P, Schneider G, Brown JB. Active learning for computational chemogenomics. Future Med Chem 2017; 9(4): 381-402.
[http://dx.doi.org/10.4155/fmc-2016-0197] [PMID: 28263088]
[8]
Wu Z, Li W, Liu G, Tang Y. Network-based methods for prediction of drug-target interactions. Front Pharmacol 2018; 9: 1134.
[http://dx.doi.org/10.3389/fphar.2018.01134] [PMID: 30356768]
[9]
Mousavian Z, Masoudi-Nejad A. Drug-target interaction prediction via chemogenomic space: Learning-based methods. Expert Opin Drug Metab Toxicol 2014; 10(9): 1273-87.
[http://dx.doi.org/10.1517/17425255.2014.950222] [PMID: 25112457]
[10]
Ezzat A, Wu M, Li XL, Kwoh CK. Computational prediction of drug-target interactions using chemogenomic approaches: An empirical survey. Brief Bioinform 2019; 20(4): 1337-57.
[http://dx.doi.org/10.1093/bib/bby002] [PMID: 29377981]
[11]
Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, Najarian K. Machine learning approaches and databases for prediction of drug-target interaction: A survey paper. Brief Bioinform 2021; 22(1): 247-69.
[http://dx.doi.org/10.1093/bib/bbz157] [PMID: 31950972]
[12]
Hao M, Bryant SH, Wang Y. Open-source chemogenomic data-driven algorithms for predicting drug-target interactions. Brief Bioinform 2019; 20(4): 1465-74.
[http://dx.doi.org/10.1093/bib/bby010] [PMID: 29420684]
[13]
Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLOS Comput Biol 2012; 8(5): e1002503.
[http://dx.doi.org/10.1371/journal.pcbi.1002503] [PMID: 22589709]
[14]
Yang X, Zamit L, Liu Y, He J. Additional neural matrix factorization model for computational drug repositioning. BMC Bioinformatics 2019; 20(1): 423.
[http://dx.doi.org/10.1186/s12859-019-2983-2] [PMID: 31412762]
[15]
Zheng X, Ding H, Mamitsuka H, Zhu S. Collaborative matrix factorization with multiple similarities for predicting drug-Target interactions. In: KDD '13: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining; New Yourk, USA: ACM;. August 2013; pp. 1025-.
[http://dx.doi.org/10.1145/2487575.2487670]
[16]
Reid S. A review of heterogeneous ensemble methods. Science 2007; 1.
[17]
Brown AS, Patel CJ. A review of validation strategies for computational drug repositioning. Brief Bioinform 2018; 19(1): 174-7.
[http://dx.doi.org/10.1093/bib/bbw110] [PMID: 27881429]
[18]
Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012; 40: D1100-7.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[19]
Roth BL, Lopez E, Patel S, Kroeze WK. The multiplicity of serotonin receptors: Uselessly diverse molecules or an embarrassment of riches? Neurosci 2000; 6(4): 252-62.
[20]
Liu T, Lin Y, Wen X, et al. A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007; 35(Database issue) (Suppl. 1): D198-201.
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[21]
Knox C, Law V, Jewison T, et al. DrugBank 3.0: A comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 2011; 39(Database issue) (Suppl. 1): D1035-41.
[http://dx.doi.org/10.1093/nar/gkq1126] [PMID: 21059682]
[22]
Thomford NE, Senthebane DA, Rowe A, et al. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int J Mol Sci 2018; 19(6): E1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[23]
Fang J, Wu Z, Cai C, Wang Q, Tang Y, Cheng F. Quantitative and systems pharmacology. 1. in silico prediction of drug-target interactions of natural products enables new targeted cancer therapy. J Chem Inf Model 2017; 57(11): 2657-71.
[http://dx.doi.org/10.1021/acs.jcim.7b00216] [PMID: 28956927]
[24]
Pilon AC, Valli M, Dametto AC, et al. NuBBEDB: An updated database to uncover chemical and biological information from Brazilian biodiversity. Sci Rep 2017; 7(1): 7215.
[http://dx.doi.org/10.1038/s41598-017-07451-x] [PMID: 28775335]
[25]
Valli M, Russo HM, Bolzani VS. The potential contribution of the natural products from Brazilian biodiversity to bioeconomy. An Acad Bras Cienc 2018; 90(1) (Suppl. 1): 763-78.
[http://dx.doi.org/10.1590/0001-3765201820170653] [PMID: 29668803]
[26]
Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 2008; 24(13): i232-40.
[http://dx.doi.org/10.1093/bioinformatics/btn162] [PMID: 18586719]
[27]
Lotfi Shahreza M, Ghadiri N, Mousavi SR, Varshosaz J, Green JR. A review of network-based approaches to drug repositioning. Brief Bioinform 2018; 19(5): 878-92.
[http://dx.doi.org/10.1093/bib/bbx017] [PMID: 28334136]
[28]
Xia LY, Yang ZY, Zhang H, Liang Y. Improved prediction of drug-target interactions using self-paced learning with collaborative matrix factorization. J Chem Inf Model 2019; 59(7): 3340-51.
[http://dx.doi.org/10.1021/acs.jcim.9b00408] [PMID: 31260620]
[29]
Wang W, Wang Y, Zhang Y, Liu D, Zhang H, Wang X. PPDTS: Predicting potential drug-target interactions based on network similarity. IET Syst Biol 2022; 16(1): 18-27.
[http://dx.doi.org/10.1049/syb2.12037] [PMID: 34783172]
[30]
Le NQK, Ho QT. Deep transformers and convolutional neural network in identifying DNA N6-methyladenine sites in cross-species genomes. Methods 2022; 204(204): 199-206.
[http://dx.doi.org/10.1016/j.ymeth.2021.12.004] [PMID: 34915158]
[31]
Peng J, Wang Y, Guan J, et al. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction. Brief Bioinform 2021; 22(5): 1-9.
[http://dx.doi.org/10.1093/bib/bbaa430] [PMID: 33517357]
[32]
Pliakos K, Vens C. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction. BMC Bioinformatics 2020; 21(1): 49.
[http://dx.doi.org/10.1186/s12859-020-3379-z] [PMID: 32033537]
[33]
Rayhan F, Ahmed S, Md Farid D, Dehzangi A, Shatabda S. CFSBoost: Cumulative feature subspace boosting for drug-target interaction prediction. J Theor Biol 2019; 464: 1-8.
[http://dx.doi.org/10.1016/j.jtbi.2018.12.024] [PMID: 30578798]
[34]
Mongia A, Majumdar A. Drug-target interaction prediction using multi graph regularized nuclear norm minimization. PLoS One 2020; 15(1): e0226484.
[http://dx.doi.org/10.1371/journal.pone.0226484] [PMID: 31945078]
[35]
Sorkhi AG, Mobarakeh MI, Hashemi SMR, Faridpour M. Predicting drug-target interaction based on bilateral local models using a decision tree-based hybrid support vector machine. Int J Nonlinear Anal Appl 2021; 12(2): 135-44.
[36]
Zhang P, Wei Z, Che C, Jin B. DeepMGT-DTI: Transformer network incorporating multilayer graph information for Drug–Target interaction prediction. Comput Biol Med 2022; 142(September 2021): 105214.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105214]
[37]
Wu Z, Peng Y, Yu Z, Li W, Liu G, Tang Y. NetInfer: A web server for prediction of targets and therapeutic and adverse effects via network-based inference methods. J Chem Inf Model 2020; 60(8): 3687-91.
[http://dx.doi.org/10.1021/acs.jcim.0c00291] [PMID: 32687354]
[38]
Li H, Pei F, Taylor DL, Bahar I. QuartataWeb: Integrated chemical-protein-pathway mapping for polypharmacology and chemogenomics. Bioinformatics 2020; 36(12): 3935-7.
[http://dx.doi.org/10.1093/bioinformatics/btaa210] [PMID: 32221612]
[39]
Wang Y, Zhang S, Li F, et al. Therapeutic target database 2020: Enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res 2020; 48(D1): D1031-41.
[PMID: 31691823]
[40]
3.5.1. RDCT. A Language and Environment for Statistical Computing In: R Foundation for Statistical Computing. Vienna: Austria 2018; 2. Available from: http://www.r-project.org
[41]
Cao Y, Charisi A, Cheng LC, et al. A compound mining framework for R. Bioinformatics 2008; 24(15): 1733-4.
[http://dx.doi.org/10.1093/bioinformatics/btn307] [PMID: 18596077]
[42]
Mahto A. Splitstackshape: Stack and reshape datasets after splitting concatenated values (R package version 148) 2019. Available from: https://cran.r-project.org/package=splitstackshape
[43]
Alex J. CompareDF: Do a git style diff of the rows between two dataframes with similar structure 2018. Available from: https://cran.r-project.org/package=compareDF
[44]
Boeckmann B, Bairoch A, Apweiler R, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003; 31(1): 365-70. http://dx.doi.org/10.1093/nar/gkg095
[PMID: 12520024]
[45]
Csardi G, Nepusz T. The igraph software package for complex network research. Int J Complex Syst 2006; 1695(5): 1-9.
[46]
Yap CW. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput Chem 2011; 32(7): 1466-74.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[47]
Bolton EE, Wang Y, Thiessen PA, Bryant SH. Chapter 12 Pub-Chem: Integrated platform of small molecules and biological activities.In Annual Reports in Computational Chemistry Elsevier 2008; 4: 217-41.
[http://dx.doi.org/10.1016/S1574-1400(08)00012-1]
[48]
Willett P. Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 2006; 11(23-24): 1046-53.
[http://dx.doi.org/10.1016/j.drudis.2006.10.005] [PMID: 17129822]
[49]
Charif D, Lobry JR. Seqin{R} 1.0-2: A contributed package to the {R} project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla U, Porto M, Roman HE, Vendruscolo M, Eds. Structural approaches to sequence evolution: Molecules, networks, populations. New York: Springer Verlag 2007; pp. 207-32. (Biological and Medical Physics, Biomedical Engineering).
[50]
Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981; 147(1): 195-7.
[http://dx.doi.org/10.1016/0022-2836(81)90087-5] [PMID: 7265238]
[51]
Styczynski MP, Jensen KL, Rigoutsos I, Stephanopoulos G. BLOSUM62 miscalculations improve search performance. Nat Biotechnol 2008; 26(3): 274-5.
[http://dx.doi.org/10.1038/nbt0308-274] [PMID: 18327232]
[52]
Pagès H, Aboyoun P, Gentleman R. Biostrings: Efficient manipulation of biological strings. R package version 2.46.0. 2017. Available from: https://bioconductor.org/packages/release/bioc/html/Bio-strings.html
[53]
Wickham H, François R, Henry L, Müller K. A grammar of data manipulation version. R J 2020; 1-50.
[54]
Wickham H. ggplot2: Elegant graphics for data analysis. 2016. Available from: https://ggplot2.tidyverse.org
[55]
Dowle M, Srinivasan A. Data table: Extension of `data.frame`. 2019.
[56]
Wickham H. Reshaping data with the reshape package. J Stat Softw 2007; 21(12): 1-20.
[http://dx.doi.org/10.18637/jss.v021.i12]
[57]
Borchers HW. pracma: Practical numerical math functions. 2019. Available from: https://cran.r-project.org/package=pracma
[58]
Daina A, Michielin O, Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 2019; 47(W1): W357-64.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[59]
Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007; 25(2): 197-206.
[http://dx.doi.org/10.1038/nbt1284] [PMID: 17287757]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy