Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Design, Synthesis and Biological Evaluation of Novel N-Alkyl-4-Methyl-2,2- Dioxo-1H-2λ6,1-Benzothiazine-3-Carboxamides as Promising Analgesics

Author(s): Igor Ukrainets, Anna Burian, Natali Voloshchuk, Illia Taran, Svitlana Shishkina, Hanna Severina, Lina Grinevich, Galina Sim, Kateryna Burian and Victoriya Georgiyants*

Volume 19, Issue 2, 2023

Published on: 04 October, 2022

Page: [174 - 192] Pages: 19

DOI: 10.2174/1573406418666220820103927

Price: $65

Abstract

Introduction: An analysis of the literature on the painkillers long used in traditional medicine, which are isolated from plant materials, has shown that many of them are alkylamides of various carboxylic acids. This fact served as the basis for the study of a large group of N-alkyl-4- methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides as potential new analgesics. The objects of the study were synthesized in the traditional way involving the initial conversion of 4-methyl- 2,2-dioxo-1H-2λ6,1- benzothiazine-3-carboxylic acid to imidazolide, in which imidazolide was used as an acylating agent. The method is simple to implement and, as a rule, gives high yields of final alkylamides. However, in reaction with sterically hindered tert-butylamine, along with the “normal” product, an unexpected formation of N-tert-butyl-4-methyl-1-(4-methyl-2,2-dioxo-1H-2λ6,1- benzothiazine-3-carbonyl)-2,2-dioxo-2λ6,1-benzothiazine-3-carboxamide was observed, which was characterized by X-ray diffraction analysis as a monosolvate with N,N-dimethylformamide. These synthetic problems can be avoided using a more powerful acylating agent, 4-methyl-2,2-dioxo-1H- 2λ6,1- benzothiazine-3-carbonyl chloride.

Background: A large group of new N-alkyl-4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3- carboxamides was synthesized.

Objective: On the basis of molecular docking, some derivatives of N-alkyl-4-methyl-2,2-dioxo-1H- 2λ6,1-benzothiazine-3-carboxamides have been designed. Their preliminary structure-activity relationships (SAR) have been studied. The most rational approaches to the synthesis of lead compounds have been developed. The most active compounds have shown high anti-inflammatory and analgesic activities.

Methods: The structure of all compounds prepared has been confirmed by the data of elemental analysis, 1H- and 13C NMR spectroscopy, and electrospray ionization liquid chromato-mass spectrometry. For rational drug design, optimization of further pharmacological screening and prediction of a possible mechanism of pharmacological action, molecular docking has been performed. For the determination of activity, pharmacological studies have been carried out.

Results: Pharmacological tests have determined that the transition from N-aryl(heteroaryl) alkylamides to “pure” N-alkylamides we carried out is accompanied by a significant reduction and even complete loss of anti-inflammatory effect with remaining analgesic activity.

Conclusion: According to the studies, compounds from N-alkyl-4-methyl-2,2-dioxo-1H-2λ6,1- benzothiazine-3-carboxamides are potential anti-inflammatory and analgesic agents.

Keywords: Benzothiazine-3-carboxamide, alkyl amides, crystal structure, analgesic activity, anti-inflammatory action, cyclooxygenase-2.

Graphical Abstract

[1]
Dallazen, J.L.; Maria-Ferreira, D.; da Luz, B.B.; Nascimento, A.M.; Cipriani, T.R.; de Souza, L.M.; Felipe, L.P.G.; Silva, B.J.G.; Nassini, R.; de Paula Werner, M.F. Pharmacological potential of alkylamides from Acmella oleracea flowers and synthetic isobutylalkyl amide to treat inflammatory pain. Inflammopharmacology, 2020, 28(1), 175-186.
[http://dx.doi.org/10.1007/s10787-019-00601-9] [PMID: 31111412]
[2]
Hernández, I.; Márquez, L.; Martínez, I.; Dieguez, R.; Delporte, C.; Prieto, S.; Molina-Torres, J.; Garrido, G. Anti-inflammatory effects of ethanolic extract and alkamides-derived from Heliopsis longipes roots. J. Ethnopharmacol., 2009, 124(3), 649-652.
[http://dx.doi.org/10.1016/j.jep.2009.04.060] [PMID: 19439170]
[3]
Paulraj, J.; Govindarajan, R.; Palpu, P. The genus spilanthes ethnopharmacology, phytochemistry, and pharmacological properties: A review. Adv. Pharmacol. Sci., 2013, 2013510298
[http://dx.doi.org/10.1155/2013/510298] [PMID: 24454346]
[4]
Cilia-López, V.G.; Juárez-Flores, B.I.; Aguirre-Rivera, J.R.; Reyes-Agüero, J.A. Analgesic activity of Heliopsis longipes and its effect on the nervous system. Pharm. Biol., 2010, 48(2), 195-200.
[http://dx.doi.org/10.3109/13880200903078495] [PMID: 20645840]
[5]
Chakraborty, A.; Devi, B.R.K.; Sanjebam, R.; Khumbong, S.; Thokchom, I.S. Preliminary studies on local anesthetic and antipyretic activities of Spilanthes acmella Murr. in experimental animal models. Indian J. Pharm., 2010, 42(5), 277-279.
[http://dx.doi.org/10.4103/0253-7613.70106] [PMID: 21206617]
[6]
Rios, M.Y.; Aguilar-Guadarrama, A.B. Gutiérrez, Mdel.C. Analgesic activity of affinin, an alkamide from Heliopsis longipes (Compositae). J. Ethnopharmacol., 2007, 110(2), 364-367.
[http://dx.doi.org/10.1016/j.jep.2006.09.041] [PMID: 17113736]
[7]
Magaji, M.G.; Anuka, J.A.; Abdu-Aguye, I.; Yaro, A.H.; Hussaini, I.M. Preliminary studies on anti-inflammatory and analgesic activities of Securinega virosa in experimental animal models. J. Med. Plants Res., 2008, 2, 39-44.
[8]
Nomura, E.C.O.; Rodrigues, M.R.A.; da Silva, C.F.; Hamm, L.A.; Nascimento, A.M.; de Souza, L.M.; Cipriani, T.R.; Baggio, C.H.; Werner, M.F. Antinociceptive effects of ethanolic extract from the flowers of Acmella oleracea (L.) R.K. Jansen in mice. J. Ethnopharmacol., 2013, 150(2), 583-589.
[http://dx.doi.org/10.1016/j.jep.2013.09.007] [PMID: 24051025]
[9]
Tsunozaki, M.; Lennertz, R.C.; Vilceanu, D.; Katta, S.; Stucky, C.L.; Bautista, D.M.A.A. ‘toothache tree’ alkylamide inhibits A mechanonociceptors to alleviate mechanical pain. J. Physiol., 2013, 591(13), 3325-3340.
[http://dx.doi.org/10.1113/jphysiol.2013.252106] [PMID: 23652591]
[10]
Ruiu, S.; Anzani, N.; Orrù, A.; Floris, C.; Caboni, P.; Maccioni, E.; Distinto, S.; Alcaro, S.; Cottiglia, F. N-Alkyl dien- and trienamides from the roots of Otanthus maritimus with binding affinity for opioid and cannabinoid receptors. Bioorg. Med. Chem., 2013, 21(22), 7074-7082.
[http://dx.doi.org/10.1016/j.bmc.2013.09.017] [PMID: 24095014]
[11]
Gulledge, T.V.; Collette, N.M.; Mackey, E.; Johnstone, S.E.; Moazami, Y.; Todd, D.A.; Moeser, A.J.; Pierce, J.G.; Cech, N.B.; Laster, S.M. Mast cell degranulation and calcium influx are inhibited by an Echinacea purpurea extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide. J. Ethnopharmacol., 2018, 212, 166-174.
[http://dx.doi.org/10.1016/j.jep.2017.10.012] [PMID: 29042288]
[12]
Rondanelli, M.; Fossari, F.; Vecchio, V.; Braschi, V.; Riva, A.; Allegrini, P.; Petrangolini, G.; Iannello, G.; Faliva, M.A.; Peroni, G.; Nichetti, M.; Gasparri, C.; Spadaccini, D.; Infantino, V.; Mustafa, S.; Alalwan, T.; Perna, S. Acmella oleracea for pain management. Fitoterapia, 2020, 140104419
[http://dx.doi.org/10.1016/j.fitote.2019.104419] [PMID: 31705952]
[13]
Cheng, Y-B.; Liu, R.H.; Ho, M.C.; Wu, T.Y.; Chen, C.Y.; Lo, I.W.; Hou, M.F.; Yuan, S.S.; Wu, Y.C.; Chang, F.R. Alkylamides of Acmella oleracea. Molecules, 2015, 20(4), 6970-6977.
[http://dx.doi.org/10.3390/molecules20046970] [PMID: 25913934]
[14]
Rios, M.Y.; Olivo, H.F. Natural and synthetic alkamides: applications in pain therapy. Stud. Nat. Prod. Chem., 2014, 43, 79-121.
[http://dx.doi.org/10.1016/B978-0-444-63430-6.00003-5]
[15]
O’Neil, M.J.; Heckelman, P.E.; Koch, C.B.; Roman, K.J. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 14th ed; Merck and Co., Inc.: Whitehouse Station, NJ, USA, 2006.
[16]
Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substances: Syntheses, Patents, Applications of the Most Relevant APIs, 5th ed; Thieme: Stuttgart, Germany, 2008.
[17]
Ukrainets, I.V.; Hamza, G.M.; Burian, A.A.; Voloshchuk, N.I.; Malchenko, O.V.; Shishkina, S.V.; Grinevich, L.N.; Grynenko, V.V.; Sim, G. Molecular conformations and biological activity of N-hetaryl(aryl)-alkyl- 4-methyl-2,2-dioxo-1H-2 6,1-benzothiazine-3-carboxamides. Sci. Pharm., 2018, 86, 50.
[http://dx.doi.org/10.3390/scipharm86040050]
[18]
Ukrainets, I.V.; Hamza, G.M.; Burian, A.A.; Voloshchuk, N.I.; Malchenko, O.V.; Shishkina, S.V.; Danylova, I.A.; Sim, G. The crystal structure of N-(1-arylethyl)-4-methyl-2,2-dioxo-1H-2 6,1-benzothiazine-3- carboxamides as the factor determining biological activity thereof. Sci. Pharm., 2019, 87, 10.
[http://dx.doi.org/10.3390/scipharm87020010]
[19]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[20]
Protein Data Bank Available from: www.rcsb.org/pdb/home/home.do
[21]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[22]
Ukrainets, I.V.; Hamza, G.M.; Burian, A.A.; Shishkina, S.V.; Voloshchuk, N.I.; Malchenko, O.V. 4-Methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acid. Peculiarities of preparation, structure, and biological properties. Sci. Pharm., 2018, 86(1), 9.
[http://dx.doi.org/10.3390/scipharm86010009] [PMID: 29518063]
[23]
Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A, 2008, 64(Pt 1), 112-122.
[http://dx.doi.org/10.1107/S0108767307043930] [PMID: 18156677]
[24]
Cambridge Crystallographic Data Center. Request Quoting via: CCDC 1991169. Available from: http://ccdc.cam.ac.uk/conts/retrieving.htm(Accessed on: 17/08/2021).
[25]
Cambridge Crystallographic Data Center Request Quoting via: CCDC 1991170. Available from: http://ccdc.cam.ac.uk/conts/retrieving.html (Accessed on 18/03/2020).
[26]
Cambridge Crystallographic Data Center Request Quoting via: CCDC 1991167. Available from: http://ccdc.cam.ac.uk/conts/retrieving.html(Accessed on 18/03/2020)..
[27]
Cambridge Crystallographic Data Center Request Quoting via: CCDC 1991168. Available from: http://ccdc.cam.ac.uk/conts/retrieving.html(Accessed on: 18/03/2020).
[28]
Ukrainian Law No 3447-IV. On protection of animals from severe treatment. Available from: http://zakon2.rada.gov.ua/laws/show/3447-15(Accessed on: 4/08/2017).
[29]
Drug Discovery and Evaluation: Pharmacological Assays, 2nd Ed; Springer: Berlin, Germany, 2008, 1103-1106.
[http://dx.doi.org/10.1007/978-3-540-70995-4]
[30]
Gregory, N.S.; Harris, A.L.; Robinson, C.R.; Dougherty, P.M.; Fuchs, P.N.; Sluka, K.A. An overview of animal models of pain: Disease models and outcome measures. J. Pain, 2013, 14(11), 1255-1269.
[http://dx.doi.org/10.1016/j.jpain.2013.06.008] [PMID: 24035349]
[31]
Luong, C.; Miller, A.; Barnett, J.; Chow, J.; Ramesha, C.; Browner, M.F. Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nat. Struct. Biol., 1996, 3(11), 927-933.
[http://dx.doi.org/10.1038/nsb1196-927] [PMID: 8901870]
[32]
Xu, S.; Hermanson, D.J.; Banerjee, S.; Ghebreselasie, K.; Clayton, G.M.; Garavito, R.M.; Marnett, L.J. Oxicams bind in a novel mode to the cyclooxygenase active site via a two-water-mediated H-bonding Network. J. Biol. Chem., 2014, 289(10), 6799-6808.
[http://dx.doi.org/10.1074/jbc.M113.517987] [PMID: 24425867]
[33]
Ukrainets, I.V.; Burian, A.A.; Hamza, G.M.; Voloshchuk, N.I.; Malchenko, O.V.; Shishkina, S.V.; Sidorenko, L.V.; Burian, K.O.; Sim, G. Synthesis and regularities of the structure - activity relationship in a series of N-pyridyl-4-methyl-2,2-dioxo-1H-2 6,1-benzothiazine-3-carboxamides. Sci. Pharm., 2019, 87, 12.
[http://dx.doi.org/10.3390/scipharm87020012]
[34]
Ukrainets, I.V.; Bereznyakova, N.L.; Parshikov, V.A.; Kravchenko, V.N. 4-Hydroxy-2-quinolones. 140. Synthesis and diuretic activity of arylalkylamides of 4-methyl-2-oxo-1,2-dihydro-quinoline-3-carboxylic acid. Chem. Heterocycl. Compd., 2008, 44, 64-72.
[http://dx.doi.org/10.1007/s10593-008-0009-5]
[35]
Vakarov, S.A.; Gruzdev, D.A.; Chulakov, E.N.; Sadretdinova, L.S.; Ezhikova, M.A.; Kodess, M.I.; Levit, G.L.; Krasnov, V.P. Diastereoselective acylation of racemic heterocyclic amines with N-tosyl-(S)-prolyl chloride and its structural analogs. Chem. Heterocycl. Compd., 2014, 50, 838-855.
[http://dx.doi.org/10.1007/s10593-014-1538-8]
[36]
Terent’ev, P.B.; Stankiavichyus, A.P. Mass Spectrometry Bioactive Nitrogenous Bases; Mokslas: Vilnius, Lithuania, 1987, pp. 60-64.
[37]
Zefirov, N.S.; Palyulin, V.A.; Dashevskaya, E.E. Stereochemical studies. XXXIV. Quantitative description of ring puckering via torsional angles. The case of six-membered rings. J. Phys. Org. Chem., 1990, 3, 147-158.
[http://dx.doi.org/10.1002/poc.610030304]
[38]
Zefirov, Y.V. Reduced intermolecular contacts and specific interactions in molecular crystals. Crystallogr. Rep., 1997, 42, 865-886.
[39]
Orpen, A.G.; Brammer, L.; Allen, F.H.; Kennard, O.; Watson, D.G.; Taylor, R. Typical interatomic distances in organic compounds and organometallic compounds and coordination complexes of the d- and f-block metals. Burgi H-B. Dunitz J.D.Structure Correlation. Wiley-VCH Weinheim, Germany; , 1994, Vol. 2, pp. 741-926.
[http://dx.doi.org/10.1002/9783527616091.app1]
[40]
Tucker, G.T. Chiral switches. Lancet, 2000, 355(9209), 1085-1087.
[http://dx.doi.org/10.1016/S0140-6736(00)02047-X] [PMID: 10744105]
[41]
Calcaterra, A.; D’Acquarica, I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal., 2018, 147, 323-340.
[http://dx.doi.org/10.1016/j.jpba.2017.07.008] [PMID: 28942107]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy