Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Association Between Telomere Length and Cardiovascular Risk: Pharmacological Treatments Affecting Telomeres and Telomerase Activity

Author(s): Sonja Zafirovic*, Mirjana Macvanin, Julijana Stanimirovic, Milan Obradovic, Jelena Radovanovic, Irena Melih and Esma Isenovic

Volume 20, Issue 6, 2022

Published on: 31 August, 2022

Page: [465 - 474] Pages: 10

DOI: 10.2174/1570161120666220819164240

Price: $65

Abstract

Telomeres represent the ends of chromosomes, and they are composed of an extensive number of – TTAGGG nucleotide sequence repeats in humans. Telomeres prevent chromosome degradation, participate in stabilization, and regulate the DNA repair system. Inflammation and oxidative stress have been identified as important processes causing cardiovascular disease and accelerating telomere shortening rate. This review investigates the link between telomere length and pathological vascular conditions from experimental and human studies. Also, we discuss pharmacological treatments affecting telomeres and telomerase activity.

Keywords: telomeres, telomere length, telomerase activity, inflammation, cardiovascular disease, pharmacological treatments

Graphical Abstract

[1]
Serrano AL, Andrés V. Telomeres and cardiovascular disease: Does size matter? Circ Res 2004; 94(5): 575-84.
[http://dx.doi.org/10.1161/01.RES.0000122141.18795.9C] [PMID: 15031270]
[2]
Fuster JJ, Andrés V. Telomere biology and cardiovascular disease. Circ Res 2006; 99(11): 1167-80.
[http://dx.doi.org/10.1161/01.RES.0000251281.00845.18] [PMID: 17122447]
[3]
Pinto AR, Li H, Nicholls C, Liu JP. Telomere protein complexes and interactions with telomerase in telomere maintenance. Front Biosci 2011; 16(1): 187-207.
[http://dx.doi.org/10.2741/3683] [PMID: 21196166]
[4]
Hoffmann J, Richardson G, Haendeler J, Altschmied J, Andrés V, Spyridopoulos I. Telomerase as a therapeutic target in cardiovascular disease. Arterioscler Thromb Vasc Biol 2021; 41(3): 1047-61.
[http://dx.doi.org/10.1161/ATVBAHA.120.315695] [PMID: 33504179]
[5]
Kolovou G, Bilianou H, Marvaki A, Mikhailidis DP. Aging men and lipids. Am J Men Health 2011; 5(2): 152-65.
[http://dx.doi.org/10.1177/1557988310370360] [PMID: 20483870]
[6]
Kolovou G, Katsiki N, Pavlidis A, Bilianou H, Goumas G, Mikhailidis DP. Ageing mechanisms and associated lipid changes. Curr Vasc Pharmacol 2014; 12(5): 682-9.
[http://dx.doi.org/10.2174/1570161111666131219094542] [PMID: 24350931]
[7]
Vaiserman A, Krasnienkov D. Telomere length as a marker of biological age: State-of-the-art, open issues, and future perspectives. Front Genet 2021; 11: 630186.
[http://dx.doi.org/10.3389/fgene.2020.630186] [PMID: 33552142]
[8]
Tzanetakou IP, Katsilambros NL, Benetos A, Mikhailidis DP, Perrea DN. “Is obesity linked to aging?”: Adipose tissue and the role of telomeres. Ageing Res Rev 2012; 11(2): 220-9.
[http://dx.doi.org/10.1016/j.arr.2011.12.003] [PMID: 22186032]
[9]
Kordinas V, Ioannidis A, Chatzipanagiotou S. The telomere/telomerase system in chronic inflammatory diseases. cause or effect? Genes (Basel) 2016; 7(9): 7.
[http://dx.doi.org/10.3390/genes7090060] [PMID: 27598205]
[10]
Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019; 25(12): 1822-32.
[http://dx.doi.org/10.1038/s41591-019-0675-0] [PMID: 31806905]
[11]
Balakumar P, Maung-U K, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus Pharmacol Res 2016; 113(Pt A): 600-9.
[http://dx.doi.org/10.1016/j.phrs.2016.09.040] [PMID: 27697647]
[12]
Anderson TJ. Arterial stiffness or endothelial dysfunction as a surrogate marker of vascular risk Can J Cardiol 2006; 22 Suppl B: 72B-80B.
[http://dx.doi.org/10.1016/S0828-282X(06)70990-4]
[13]
Morgan RG, Donato AJ, Walker AE. Telomere uncapping and vascular aging. Am J Physiol Heart Circ Physiol 2018; 315(1): H1-5.
[http://dx.doi.org/10.1152/ajpheart.00008.2018] [PMID: 29547021]
[14]
Blackburn EH, Epel ES, Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science 2015; 350(6265): 1193-8.
[http://dx.doi.org/10.1126/science.aab3389] [PMID: 26785477]
[15]
Squassina A, Pisanu C, Vanni R. Mood disorders, accelerated aging, and inflammation: is the link hidden in telomeres? Cells 2019; 8(1): 52.
[http://dx.doi.org/10.3390/cells8010052] [PMID: 30650526]
[16]
Harris SE, Martin-Ruiz C, von Zglinicki T, Starr JM, Deary IJ. Telomere length and aging biomarkers in 70-year-olds: The Lothian Birth Cohort 1936. Neurobiol Aging 2012; 33(7): 1486.e3-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.11.013] [PMID: 21194798]
[17]
Rode L, Nordestgaard BG, Weischer M, Bojesen SE. Increased body mass index, elevated C-reactive protein, and short telomere length. J Clin Endocrinol Metab 2014; 99(9): E1671-5.
[http://dx.doi.org/10.1210/jc.2014-1161] [PMID: 24762112]
[18]
Aulinas A, Ramírez MJ, Barahona MJ, et al. Dyslipidemia and chronic inflammation markers are correlated with telomere length shorten-ing in Cushing’s syndrome. PLoS One 2015; 10(3): e0120185.
[http://dx.doi.org/10.1371/journal.pone.0120185] [PMID: 25799396]
[19]
Chen S, Yeh F, Lin J, et al. Short leukocyte telomere length is associated with obesity in American Indians: The Strong Heart Family study. Aging (Albany NY) 2014; 6(5): 380-9.
[http://dx.doi.org/10.18632/aging.100664] [PMID: 24861044]
[20]
Carty CL, Kooperberg C, Liu J, et al. Leukocyte telomere length and risks of incident coronary heart disease and mortality in a racially diverse population of postmenopausal women. Arterioscler Thromb Vasc Biol 2015; 35(10): 2225-31.
[http://dx.doi.org/10.1161/ATVBAHA.115.305838] [PMID: 26249011]
[21]
Hardikar S, Song X, Risques RA, et al. Obesity and inflammation markers in relation to leukocyte telomere length in a cross-sectional study of persons with Barrett’s esophagus. BMC Obes 2015; 2: 32.
[http://dx.doi.org/10.1186/s40608-015-0063-3] [PMID: 26380096]
[22]
O’Donovan A, Pantell MS, Puterman E, et al. Cumulative inflammatory load is associated with short leukocyte telomere length in the Health, Aging and Body Composition Study. PLoS One 2011; 6(5): e19687.
[http://dx.doi.org/10.1371/journal.pone.0019687] [PMID: 21602933]
[23]
Mazidi M, Shekoohi N, Katsiki N, Rakowski M, Mikhailidis DP, Banach M. Serum anti-inflammatory and inflammatory markers have no causal impact on telomere length: A Mendelian randomization study. Arch Med Sci 2021; 17(3): 739-51.
[http://dx.doi.org/10.5114/aoms/119965] [PMID: 34025845]
[24]
Al-Attas OS, Al-Daghri N, Bamakhramah A, Shaun Sabico S, McTernan P, Huang TT. Telomere length in relation to insulin resistance, inflammation and obesity among Arab youth. Acta Paediatr 2010; 99(6): 896-9.
[http://dx.doi.org/10.1111/j.1651-2227.2010.01720.x] [PMID: 20178511]
[25]
Zhu H, Wang X, Gutin B, et al. Leukocyte telomere length in healthy Caucasian and African-American adolescents: Relationships with race, sex, adiposity, adipokines, and physical activity. J Pediatr 2011; 158(2): 215-20.
[http://dx.doi.org/10.1016/j.jpeds.2010.08.007] [PMID: 20855079]
[26]
Diaz VA, Mainous AG, Player MS, Everett CJ. Telomere length and adiposity in a racially diverse sample. Int J Obes 2010; 34(2): 261-5.
[http://dx.doi.org/10.1038/ijo.2009.198] [PMID: 19773737]
[27]
Rana KS, Arif M, Hill EJ, et al. Plasma irisin levels predict telomere length in healthy adults. Age (Dordr) 2014; 36(2): 995-1001.
[http://dx.doi.org/10.1007/s11357-014-9620-9] [PMID: 24469890]
[28]
Njajou OT, Cawthon RM, Blackburn EH, et al. Shorter telomeres are associated with obesity and weight gain in the elderly. Int J Obes 2012; 36(9): 1176-9.
[http://dx.doi.org/10.1038/ijo.2011.196] [PMID: 22005719]
[29]
Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet 2005; 366(9486): 662-4.
[http://dx.doi.org/10.1016/S0140-6736(05)66630-5] [PMID: 16112303]
[30]
Dinarello CA. Anti-inflammatory agents: Present and future. Cell 2010; 140(6): 935-50.
[http://dx.doi.org/10.1016/j.cell.2010.02.043] [PMID: 20303881]
[31]
Bae M, Kim H. The Role of Vitamin C, Vitamin D, and Selenium in Immune System against COVID-19. Molecules 2020; 25: 5346.
[http://dx.doi.org/10.3390/molecules25225346]
[32]
Liu W, Zhang L, Xu HJ, et al. The anti-inflammatory effects of vitamin D in tumorigenesis. Int J Mol Sci 2018; 19(9): 2736.
[http://dx.doi.org/10.3390/ijms19092736] [PMID: 30216977]
[33]
Ilinčić B, Stokić E, Stošić Z, et al. Vitamin D status and circulating biomarkers of endothelial dysfunction and inflammation in non-diabetic obese individuals: A pilot study. Arch Med Sci 2017; 13(1): 53-60.
[http://dx.doi.org/10.5114/aoms.2016.61812] [PMID: 28144255]
[34]
Williams DM, Palaniswamy S, Sebert S, et al. 25-Hydroxyvitamin D concentration and leukocyte telomere length in young adults: Find-ings from the Northern Finland birth cohort 1966. Am J Epidemiol 2016; 183(3): 191-8.
[http://dx.doi.org/10.1093/aje/kwv203] [PMID: 26797572]
[35]
Beilfuss J, Camargo CA Jr, Kamycheva E. Serum 25-hydroxyvitamin D has a modest positive association with leukocyte telomere length in middle-aged US adults. J Nutr 2017; 147(4): 514-20.
[http://dx.doi.org/10.3945/jn.116.244137] [PMID: 28179486]
[36]
Mazidi M, Mikhailidis DP, Banach M, Dehghan A. Impact of serum 25-hydroxyvitamin D 25(OH) on telomere attrition: A mendelian randomization study. Clin Nutr 2020; 39(9): 2730-3.
[http://dx.doi.org/10.1016/j.clnu.2019.12.008] [PMID: 31902602]
[37]
Hakeem S, Mendonça N, Aspray T, et al. The association between 25-hydroxyvitamin D concentration and telomere length in the very-old: The newcastle 85+ study. Nutrients 2021; 13(12): 4341.
[http://dx.doi.org/10.3390/nu13124341] [PMID: 34959893]
[38]
Myers KO, Ibrahimou B, Yusuf KK, Mauck DE, Salihu HM. The effect of maternal vitamin C intake on fetal telomere length. J Matern Fetal Neonatal Med 2021; 34(7): 1143-8.
[http://dx.doi.org/10.1080/14767058.2019.1628940] [PMID: 31170852]
[39]
Pineda-Pampliega J, Herrera-Dueñas A, Mulder E, Aguirre JI, Höfle U, Verhulst S. Antioxidant supplementation slows telomere shortening in free-living white stork chicks Proc Biol Sci 2020; 287(1918): 20191917.
[http://dx.doi.org/10.1098/rspb.2019.1917] [PMID: 31937223]
[40]
Prasad KN, Wu M, Bondy SC. Telomere shortening during aging: Attenuation by antioxidants and anti-inflammatory agents. Mech Ageing Dev 2017; 164: 61-6.
[http://dx.doi.org/10.1016/j.mad.2017.04.004] [PMID: 28431907]
[41]
Horsfall LJ, Nazareth I, Petersen I. Cardiovascular events as a function of serum bilirubin levels in a large, statin-treated cohort. Circulation 2012; 126(22): 2556-64.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.114066] [PMID: 23110860]
[42]
Tosevska A, Moelzer C, Wallner M, et al. Longer telomeres in chronic, moderate, unconjugated hyperbilirubinaemia: Insights from a hu-man study on Gilbert’s Syndrome. Sci Rep 2016; 6: 22300.
[http://dx.doi.org/10.1038/srep22300] [PMID: 26926838]
[43]
Tosevska A, Franzke B, Hofmann M, et al. Circulating cell-free DNA, telomere length and bilirubin in the Vienna Active Ageing Study: Exploratory analysis of a randomized, controlled trial. Sci Rep 2016; 6: 38084.
[http://dx.doi.org/10.1038/srep38084] [PMID: 27905522]
[44]
Butt HZ, Atturu G, London NJ, Sayers RD, Bown MJ. Telomere length dynamics in vascular disease: A review. Eur J Vasc Endovasc Surg 2010; 40(1): 17-26.
[http://dx.doi.org/10.1016/j.ejvs.2010.04.012] [PMID: 20547081]
[45]
Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telomere shortening in atherosclerosis. Lancet 2001; 358(9280): 472-3.
[http://dx.doi.org/10.1016/S0140-6736(01)05633-1] [PMID: 11513915]
[46]
Pérez-Rivero G, Ruiz-Torres MP, Rivas-Elena JV, et al. Mice deficient in telomerase activity develop hypertension because of an excess of endothelin production. Circulation 2006; 114(4): 309-17.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.611111] [PMID: 16831983]
[47]
Makino N, Maeda T, Oyama J, et al. Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice. J Mol Cell Cardiol 2011; 50(4): 670-7.
[http://dx.doi.org/10.1016/j.yjmcc.2010.12.014] [PMID: 21195081]
[48]
Sanders JL, Newman AB. Telomere length in epidemiology: A biomarker of aging, age-related disease, both, or neither? Epidemiol Rev 2013; 35: 112-31.
[http://dx.doi.org/10.1093/epirev/mxs008] [PMID: 23302541]
[49]
McClintock B. The stability of broken ends of chromosomes in Zea Mays. Genetics 1941; 26(2): 234-82.
[http://dx.doi.org/10.1093/genetics/26.2.234] [PMID: 17247004]
[50]
Muller HJ. The remaking of chromosomes Collecting net 1938; 13: 181-98.
[51]
Lim CJ, Cech TR. Shaping human telomeres: From shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol 2021; 22(4): 283-98.
[http://dx.doi.org/10.1038/s41580-021-00328-y] [PMID: 33564154]
[52]
Louzon M, Coeurdassier M, Gimbert F, Pauget B, de Vaufleury A. Telomere dynamic in humans and animals: Review and perspectives in environmental toxicology. Environ Int 2019; 131: 105025.
[http://dx.doi.org/10.1016/j.envint.2019.105025] [PMID: 31352262]
[53]
Grach A. Telomere shortening mechanisms. Mechanisms of DNA Replication 2013; 10: 55244.
[54]
Oeseburg H, de Boer RA, van Gilst WH, van der Harst P. Telomere biology in healthy aging and disease. Pflugers Arch 2010; 459(2): 259-68.
[http://dx.doi.org/10.1007/s00424-009-0728-1] [PMID: 19756717]
[55]
de Bono DP. Olovnikov’s clock: Telomeres and vascular biology. Heart 1998; 80(2): 110-1.
[http://dx.doi.org/10.1136/hrt.80.2.110] [PMID: 9813551]
[56]
O’Callaghan NJ, Fenech M. A quantitative PCR method for measuring absolute telomere length. Biol Proced Online 2011; 13: 3.
[http://dx.doi.org/10.1186/1480-9222-13-3] [PMID: 21369534]
[57]
Salpea KK. Telomere length in cardiovascular disease and type 2 diabetes Diss UCL (University College London) 2011.
[58]
De Boeck G, Forsyth RG, Praet M, Hogendoorn PC. Telomere-associated proteins: Cross-talk between telomere maintenance and telo-mere-lengthening mechanisms. J Pathol 2009; 217(3): 327-44.
[http://dx.doi.org/10.1002/path.2500] [PMID: 19142887]
[59]
Kam MLW, Nguyen TTT, Ngeow JYY. Telomere biology disorders. NPJ Genom Med 2021; 6(1): 36.
[http://dx.doi.org/10.1038/s41525-021-00198-5] [PMID: 34050178]
[60]
Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell 1999; 97(4): 503-14.
[http://dx.doi.org/10.1016/S0092-8674(00)80760-6] [PMID: 10338214]
[61]
Gruber H-J, Semeraro MD, Renner W, Herrmann M. Telomeres and age-related diseases. Biomedicines 2021; 9(10): 1335.
[http://dx.doi.org/10.3390/biomedicines9101335] [PMID: 34680452]
[62]
de Lange T. Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19(18): 2100-10.
[http://dx.doi.org/10.1101/gad.1346005] [PMID: 16166375]
[63]
Teo H, Ghosh S, Luesch H, et al. Telomere-independent Rap1 is an IKK adaptor and regulates NF-kappaB-dependent gene expression. Nat Cell Biol 2010; 12(8): 758-67.
[http://dx.doi.org/10.1038/ncb2080] [PMID: 20622870]
[64]
Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet 2008; 42: 301-34.
[http://dx.doi.org/10.1146/annurev.genet.41.110306.130350] [PMID: 18680434]
[65]
Bhari VK, Kumar D, Kumar S, Mishra R. Shelterin complex gene: Prognosis and therapeutic vulnerability in cancer. Biochem Biophys Rep 2021; 26: 100937-37.
[http://dx.doi.org/10.1016/j.bbrep.2021.100937] [PMID: 33553693]
[66]
Blackburn EH, Collins K. Telomerase: An RNP enzyme synthesizes DNA. Cold Spring Harb Perspect Biol 2011; 3(5): a003558.
[http://dx.doi.org/10.1101/cshperspect.a003558] [PMID: 20660025]
[67]
Ghanim GE, Fountain AJ, van Roon A-MM, et al. Structure of human telomerase holoenzyme with bound telomeric DNA. Nature 2021; 593(7859): 449-53.
[http://dx.doi.org/10.1038/s41586-021-03415-4] [PMID: 33883742]
[68]
He Y, Wang Y, Liu B, et al. Structures of telomerase at several steps of telomere repeat synthesis. Nature 2021; 593(7859): 454-9.
[http://dx.doi.org/10.1038/s41586-021-03529-9] [PMID: 33981033]
[69]
Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 1996; 18(2): 173-9.
[http://dx.doi.org/10.1002/(SICI)1520-6408(1996)18:2<173:AID-DVG10>3.0.CO;2-3] [PMID: 8934879]
[70]
Chalkoo AH, Kaul V, Wani LA. Zinsser-cole-engmann syndrome: A rare case report with literature review. J Clin Exp Dent 2014; 6(3): e303-6.
[http://dx.doi.org/10.4317/jced.51274] [PMID: 25136436]
[71]
Garcia CK, Wright WE, Shay JW. Human diseases of telomerase dysfunction: Insights into tissue aging. Nucleic Acids Res 2007; 35(22): 7406-16.
[http://dx.doi.org/10.1093/nar/gkm644] [PMID: 17913752]
[72]
Vaziri H, Schächter F, Uchida I, et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 1993; 52(4): 661-7.
[PMID: 8460632]
[73]
Huang Z, Liu C, Ruan Y, et al. Dynamics of leukocyte telomere length in adults aged 50 and older: A longitudinal population-based cohort study. Geroscience 2021; 43(2): 645-54.
[http://dx.doi.org/10.1007/s11357-020-00320-y] [PMID: 33469834]
[74]
Cowell W, Tang D, Yu J, et al. Telomere dynamics across the early life course: Findings from a longitudinal study in children. Psychoneuroendocrinology 2021; 129: 105270.
[http://dx.doi.org/10.1016/j.psyneuen.2021.105270] [PMID: 34020264]
[75]
Bertuch AA. The molecular genetics of the telomere biology disorders. RNA Biol 2016; 13(8): 696-706.
[http://dx.doi.org/10.1080/15476286.2015.1094596] [PMID: 26400640]
[76]
Haycock PC, Burgess S, Nounu A, et al. Association between telomere length and risk of cancer and non-neoplastic diseases: A mendelian randomization study. JAMA Oncol 2017; 3(5): 636-51.
[http://dx.doi.org/10.1001/jamaoncol.2016.5945] [PMID: 28241208]
[77]
McNally EJ, Luncsford PJ, Armanios M. Long telomeres and cancer risk: The price of cellular immortality. J Clin Invest 2019; 129(9): 3474-81.
[http://dx.doi.org/10.1172/JCI120851] [PMID: 31380804]
[78]
Wright WE, Shay JW. Telomere dynamics in cancer progression and prevention: Fundamental differences in human and mouse telomere biology. Nat Med 2000; 6(8): 849-51.
[http://dx.doi.org/10.1038/78592] [PMID: 10932210]
[79]
Jebaraj BMC, Stilgenbauer S. Telomere dysfunction in chronic lymphocytic leukemia. Front Oncol 2021; 10: 612665.
[http://dx.doi.org/10.3389/fonc.2020.612665] [PMID: 33520723]
[80]
Wang M. Telomere shortening promotes kidney fibrosis. Nat Rev Nephrol 2021; 17(6): 368-68.
[PMID: 33931781]
[81]
Stock CJW, Renzoni EA. Telomeres in interstitial lung disease. J Clin Med 2021; 10(7): 10.
[http://dx.doi.org/10.3390/jcm10071384] [PMID: 33808277]
[82]
Doroschuk NA, Postnov AY, Doroschuk AD, et al. An original biomarker for the risk of developing cardiovascular diseases and their complications: Telomere length. Toxicol Rep 2021; 8: 499-504.
[http://dx.doi.org/10.1016/j.toxrep.2021.02.024] [PMID: 33732625]
[83]
Cheng F, Carroll L, Joglekar MV, et al. Diabetes, metabolic disease, and telomere length. Lancet Diabetes Endocrinol 2021; 9(2): 117-26.
[http://dx.doi.org/10.1016/S2213-8587(20)30365-X] [PMID: 33248477]
[84]
Córdoba-Lanús E, Cazorla-Rivero S, García-Bello MA, et al. Telomere length dynamics over 10-years and related outcomes in patients with COPD. Respir Res 2021; 22(1): 56.
[http://dx.doi.org/10.1186/s12931-021-01616-z] [PMID: 33608013]
[85]
Niu Z, Wen X, Buka SL, et al. Associations of telomere length at birth with predicted atherosclerotic lesions and cardiovascular disease risk factors in midlife: A 40-year longitudinal study. Atherosclerosis 2021; 333: 67-74.
[http://dx.doi.org/10.1016/j.atherosclerosis.2021.08.013] [PMID: 34428605]
[86]
de Fluiter KS, Codd V, Denniff M, et al. Longitudinal telomere length and body composition in healthy term-born infants during the first two years of life. PLoS One 2021; 16(2): e0246400.
[http://dx.doi.org/10.1371/journal.pone.0246400] [PMID: 33529269]
[87]
Leri A, Franco S, Zacheo A, et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J 2003; 22(1): 131-9.
[http://dx.doi.org/10.1093/emboj/cdg013] [PMID: 12505991]
[88]
Booth SA, Wadley GD, Marques FZ, Wlodek ME, Charchar FJ. Fetal growth restriction shortens cardiac telomere length, but this is attenu-ated by exercise in early life. Physiol Genomics 2018; 50(11): 956-63.
[http://dx.doi.org/10.1152/physiolgenomics.00042.2018] [PMID: 30192712]
[89]
Karere GM, Mahaney MC, Newman DE, et al. Diet-induced leukocyte telomere shortening in a baboon model for early stage atherosclero-sis. Sci Rep 2019; 9(1): 19001.
[http://dx.doi.org/10.1038/s41598-019-55348-8] [PMID: 31831784]
[90]
Pusceddu I, Kleber M, Delgado G, Herrmann W, März W, Herrmann M. Telomere length and mortality in the Ludwigshafen risk and car-diovascular health study. PLoS One 2018; 13(6): e0198373.
[http://dx.doi.org/10.1371/journal.pone.0198373] [PMID: 29920523]
[91]
Matthews C, Gorenne I, Scott S, et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: Effects of telomerase and oxidative stress. Circ Res 2006; 99(2): 156-64.
[http://dx.doi.org/10.1161/01.RES.0000233315.38086.bc] [PMID: 16794190]
[92]
Pusceddu I, Herrmann W, Kleber ME, et al. Subclinical inflammation, telomere shortening, homocysteine, vitamin B6, and mortality: The Ludwigshafen risk and cardiovascular health study. Eur J Nutr 2020; 59(4): 1399-411.
[http://dx.doi.org/10.1007/s00394-019-01993-8] [PMID: 31129702]
[93]
Zhang J, Rane G, Dai X, et al. Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Res Rev 2016; 25: 55-69.
[http://dx.doi.org/10.1016/j.arr.2015.11.006] [PMID: 26616852]
[94]
Liu P, Zhang Y, Ma L. Telomere length and associated factors in older adults with hypertension. J Int Med Res 2019; 47(11): 5465-74.
[http://dx.doi.org/10.1177/0300060519882570] [PMID: 31662013]
[95]
Armani C, Botto N, Andreassi MG, Centaro E. Molecular markers of cardiovascular damage in hypertension. Curr Pharm Des 2013; 19(13): 2341-50.
[http://dx.doi.org/10.2174/1381612811319130002] [PMID: 23173583]
[96]
Demissie S, Levy D, Benjamin EJ, et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the framingham heart study. Aging Cell 2006; 5(4): 325-30.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00224.x] [PMID: 16913878]
[97]
Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Telomere length and oxidative stress and its relation with metabolic syndrome components in the aging. Biology (Basel) 2021; 10(4): 253.
[http://dx.doi.org/10.3390/biology10040253] [PMID: 33804844]
[98]
Griendling KK, Camargo LL, Rios FJ, Alves-Lopes R, Montezano AC, Touyz RM. Oxidative stress and hypertension. Circ Res 2021; 128(7): 993-1020.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.318063] [PMID: 33793335]
[99]
Chi C, Li D-J, Jiang Y-J, et al. Vascular smooth muscle cell senescence and age-related diseases: State of the art. Biochim Biophys Acta Mol Basis Dis 2019; 1865(7): 1810-21.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.015] [PMID: 31109451]
[100]
Solorio S, Murillo-Ortíz B, Hernández-González M, et al. Association between telomere length and C-reactive protein and the development of coronary collateral circulation in patients with coronary artery disease. Angiology 2011; 62(6): 467-72.
[http://dx.doi.org/10.1177/0003319710398007] [PMID: 21441231]
[101]
Huang Y-Q, Liu L, Lo K, Huang J-Y, Zhang B, Feng Y-Q. The relationship between mean telomere length and blood pressure: Results from the national health and nutrition examination surveys. Ann Transl Med 2020; 8(8): 535-35.
[http://dx.doi.org/10.21037/atm.2020.03.205] [PMID: 32411758]
[102]
Wang J, Uryga AK, Reinhold J, et al. Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerabil-ity. Circulation 2015; 132(20): 1909-19.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.016457] [PMID: 26416809]
[103]
Satoh M, Ishikawa Y, Takahashi Y, Itoh T, Minami Y, Nakamura M. Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis 2008; 198(2): 347-53.
[http://dx.doi.org/10.1016/j.atherosclerosis.2007.09.040] [PMID: 17983621]
[104]
Willeit P, Willeit J, Brandstätter A, et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardi-ovascular disease risk. Arterioscler Thromb Vasc Biol 2010; 30(8): 1649-56.
[http://dx.doi.org/10.1161/ATVBAHA.110.205492] [PMID: 20508208]
[105]
Kosmopoulos M, Chiriacò M, Stamatelopoulos K, et al. The relationship between telomere length and putative markers of vascular ageing: A systematic review and meta-analysis. Mech Ageing Dev 2022; 201: 111604.
[http://dx.doi.org/10.1016/j.mad.2021.111604] [PMID: 34774607]
[106]
Schneider CV, Schneider KM, Teumer A, et al. Association of telomere length with risk of disease and mortality. JAMA Intern Med 2022; 182(3): 291-300.
[http://dx.doi.org/10.1001/jamainternmed.2021.7804] [PMID: 35040871]
[107]
Chen R, Zhan Y, Pedersen N, et al. Marital status, telomere length and cardiovascular disease risk in a Swedish prospective cohort. Heart 2020; 106(4): 267-72.
[http://dx.doi.org/10.1136/heartjnl-2019-315629] [PMID: 31727634]
[108]
Rehkopf DH, Needham BL, Lin J, et al. Leukocyte telomere length in relation to 17 biomarkers of cardiovascular disease risk: A cross-sectional study of US adults. PLoS Med 2016; 13(11): e1002188.
[http://dx.doi.org/10.1371/journal.pmed.1002188] [PMID: 27898678]
[109]
Chen YF, Zhou KW, Yang GZ, Chen C. Association between lipoproteins and telomere length in US adults: Data from the NHANES 1999-2002. Lipids Health Dis 2019; 18(1): 80.
[http://dx.doi.org/10.1186/s12944-019-1030-7] [PMID: 30935416]
[110]
Banach M, Mazidi M, Mikhailidis DP, et al. Association between phenotypic familial hypercholesterolaemia and telomere length in US adults: Results from a multi-ethnic survey. Eur Heart J 2018; 39(40): 3635-40.
[http://dx.doi.org/10.1093/eurheartj/ehy527] [PMID: 30165413]
[111]
Cao Y, Li H, Mu FT, Ebisui O, Funder JW, Liu JP. Telomerase activation causes vascular smooth muscle cell proliferation in genetic hy-pertension. FASEB J 2002; 16(1): 96-8.
[http://dx.doi.org/10.1096/cj.01-0447fje] [PMID: 11772940]
[112]
Franco S, Segura I, Riese HH, Blasco MA. Decreased B16F10 melanoma growth and impaired vascularization in telomerase-deficient mice with critically short telomeres. Cancer Res 2002; 62(2): 552-9.
[PMID: 11809709]
[113]
Poch E, Carbonell P, Franco S, Díez-Juan A, Blasco MA, Andrés V. Short telomeres protect from diet-induced atherosclerosis in apolipo-protein E-null mice. FASEB J 2004; 18(2): 418-20.
[http://dx.doi.org/10.1096/fj.03-0710fje] [PMID: 14688198]
[114]
Ogawa D, Nomiyama T, Nakamachi T, et al. Activation of peroxisome proliferator-activated receptor gamma suppresses telomerase activi-ty in vascular smooth muscle cells. Circ Res 2006; 98(7): e50-9.
[http://dx.doi.org/10.1161/01.RES.0000218271.93076.c3] [PMID: 16556873]
[115]
Gizard F, Heywood EB, Findeisen HM, et al. Telomerase activation in atherosclerosis and induction of telomerase reverse transcriptase expression by inflammatory stimuli in macrophages. Arterioscler Thromb Vasc Biol 2011; 31(2): 245-52.
[http://dx.doi.org/10.1161/ATVBAHA.110.219808] [PMID: 21106948]
[116]
Needham BL, Rehkopf D, Adler N, et al. Leukocyte telomere length and mortality in the National Health and Nutrition Examination Sur-vey, 1999-2002. Epidemiology 2015; 26(4): 528-35.
[http://dx.doi.org/10.1097/EDE.0000000000000299] [PMID: 26039272]
[117]
Bischoff C, Petersen HC, Graakjaer J, et al. No association between telomere length and survival among the elderly and oldest old. Epidemiology 2006; 17(2): 190-4.
[http://dx.doi.org/10.1097/01.ede.0000199436.55248.10] [PMID: 16477260]
[118]
De Meyer T, Rietzschel ER, De Buyzere ML, et al. Systemic telomere length and preclinical atherosclerosis: The Asklepios Study. Eur Heart J 2009; 30(24): 3074-81.
[http://dx.doi.org/10.1093/eurheartj/ehp324] [PMID: 19687155]
[119]
Tran PT, Meeker AK, Platz EA. Association between statin drug use and peripheral blood leukocyte telomere length in the national health and nutrition examination survey 1999-2002: a cross-sectional study. Ann Epidemiol 2018; 28(8): 529-34.
[http://dx.doi.org/10.1016/j.annepidem.2018.04.010] [PMID: 29853162]
[120]
Brouilette SW, Moore JS, McMahon AD, et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scot-land Primary Prevention Study: A nested case-control study. Lancet 2007; 369(9556): 107-14.
[http://dx.doi.org/10.1016/S0140-6736(07)60071-3] [PMID: 17223473]
[121]
Bennaceur K, Atwill M, Al Zhrany N, et al. Atorvastatin induces T cell proliferation by a telomerase reverse transcriptase (TERT) mediat-ed mechanism. Atherosclerosis 2014; 236(2): 312-20.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.07.020] [PMID: 25127175]
[122]
Strazhesko ID, Tkacheva ON, Akasheva DU, et al. Atorvastatin therapy modulates telomerase activity in patients free of atherosclerotic cardiovascular diseases. Front Pharmacol 2016; 7: 347-47.
[http://dx.doi.org/10.3389/fphar.2016.00347] [PMID: 27746733]
[123]
Boccardi V, Barbieri M, Rizzo MR, et al. A new pleiotropic effect of statins in elderly: Modulation of telomerase activity. FASEB J 2013; 27(9): 3879-85.
[http://dx.doi.org/10.1096/fj.13-232066] [PMID: 23748973]
[124]
Spyridopoulos I, Haendeler J, Urbich C, et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 2004; 110(19): 3136-42.
[http://dx.doi.org/10.1161/01.CIR.0000142866.50300.EB] [PMID: 15520325]
[125]
Oh H, Wang SC, Prahash A, et al. Telomere attrition and Chk2 activation in human heart failure. Proc Natl Acad Sci USA 2003; 100(9): 5378-83.
[http://dx.doi.org/10.1073/pnas.0836098100] [PMID: 12702777]
[126]
Assmus B, Urbich C, Aicher A, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progeni-tor cells via regulation of cell cycle regulatory genes. Circ Res 2003; 92(9): 1049-55.
[http://dx.doi.org/10.1161/01.RES.0000070067.64040.7C] [PMID: 12676819]
[127]
Yeh JK, Lin MH, Wang CY. Telomeres as therapeutic targets in heart disease. JACC Basic Transl Sci 2019; 4(7): 855-65.
[http://dx.doi.org/10.1016/j.jacbts.2019.05.009] [PMID: 31998853]
[128]
Herbert KE, Mistry Y, Hastings R, Poolman T, Niklason L, Williams B. Angiotensin II-mediated oxidative DNA damage accelerates cellu-lar senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways. Circ Res 2008; 102(2): 201-8.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.158626] [PMID: 17991883]
[129]
Donnini S, Terzuoli E, Ziche M, Morbidelli L. Sulfhydryl angiotensin-converting enzyme inhibitor promotes endothelial cell survival through nitric-oxide synthase, fibroblast growth factor-2, and telomerase cross-talk. J Pharmacol Exp Ther 2010; 332(3): 776-84.
[http://dx.doi.org/10.1124/jpet.109.159178] [PMID: 19959747]
[130]
Bernardes de Jesus B, Schneeberger K, Vera E, Tejera A, Harley CB, Blasco MA. The telomerase activator TA-65 elongates short telo-meres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell 2011; 10(4): 604-21.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00700.x] [PMID: 21426483]
[131]
Molgora B, Bateman R, Sweeney G, et al. Functional assessment of pharmacological telomerase activators in human T cells. Cells 2013; 2(1): 57-66.
[http://dx.doi.org/10.3390/cells2010057] [PMID: 24709644]
[132]
Salvador L, Singaravelu G, Harley CB, Flom P, Suram A, Raffaele JM. A natural product telomerase activator lengthens telomeres in hu-mans: A randomized, double blind, and placebo controlled study. Rejuvenation Res 2016; 19(6): 478-84.
[http://dx.doi.org/10.1089/rej.2015.1793] [PMID: 26950204]
[133]
Erdem HB, Bahsi T, Ergün MA. Function of telomere in aging and age related diseases. Environ Toxicol Pharmacol 2021; 85: 103641.
[http://dx.doi.org/10.1016/j.etap.2021.103641] [PMID: 33774188]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy